Spacecraft Formations Dynamics Using Variational Equations of FirstOrder Relative Motion Invariants

Trevor Bennett Graduate Research Assistant
Hanspeter Schaub
Alfred T. and Betty E. Look
Professor of Engineering

52nd Annual Technical Meeting of the Society of Engineering Science
Texas A\&M University, College Station, TX, Oct. 26-28, 2015

Motivation

Objective:

Utilize simple geometrically insightful parameters for relative orbit reconfiguration.

Orbit Element Difference Kinematics

Inclination
Semi-Major Axis

Eccentricity

Ascending Node

Schaub, H., Vadali, S. R., and Alfriend, K. T., "Spacecraft Formation Flying Control Using Mean Orbit Elements," Journal of the Astronautical Sciences, Vol. 48, No. 1, 2000, pp. 69-87.

[^0]
Eccentricty/Anclination Vector Difference Kinematics

$$
\begin{gathered}
\vec{e}=\binom{e_{X}}{e_{Y}}=e \cdot\binom{\cos \omega}{\sin \omega} \\
\Delta \vec{e}=\vec{e}_{2}-\vec{e}_{1}=\delta e \cdot\binom{\cos \varphi}{\sin \varphi} \\
\Delta \vec{i} \approx\binom{\Delta i}{\sin i \Delta \Omega}
\end{gathered}
$$

S. D. Amico, J. S. Ardaens, and R. Larsson, "In-flight demonstration of formation control based on relative orbit elements," $4^{\text {th }}$ International Conference on Spacecraft Formation Flying Missions and Technologies, August 18-20 2011.

Montebruck, O., Kirschner, M., and D’Amico, S., "E/I-Vector separation for grace proximity operations," DLR/GSOC TN 04-08, 2004.

52nd Annual Technical Meeting of the Society of Engineering Science, Texas A\&M University, College Station, TX, Oct. 26-28, 2015

CWH Relative Motion Solution

Schaub, H. and Junkins, J. L., Analytical Mechanics of Space
Systems, AIAA Education Series, Reston, VA, 2003.
$x(t)=A_{0} \cos (n t+\alpha)+x_{\text {off }}$
$y(t)=-2 A_{0} \sin (n t+\alpha)-\frac{3}{2} n t x_{\text {off }}+y_{\text {off }}$ $z(t)=B_{0} \cos (n t+\beta)$

Chief inertial orbit

Lovell, T. A. and Tragesser, S. G., "Guidance for Relative Motion of Low Earth Orbit Spacecraft Based on Relative Orbit Elements," AIAA/AAS Astrodynamics Specialist Conference, Providence, RI, Aug. 16-19 2004, Paper No. AIAA 2004-4988.

Lovell, T. A. and Spencer, D. A., "Relative Orbital Elements Formulation Based upon the Clohessy-Wiltshire Equations," Journal of Astronautical Sciences, 2015, pre-release available online, doi:10.1007/s40295-014-0029-6.

Gauss' Variational Equations

$$
\begin{aligned}
\frac{\mathrm{d} a}{\mathrm{~d} t} & =\frac{2 a^{2}}{h}\left(e \sin f u_{r}+\frac{p}{r} u_{\theta}\right) \\
\frac{\mathrm{d} e}{\mathrm{~d} t} & =\frac{1}{h}\left(p \sin f u_{r}+((p+r) \cos f+r e) u_{\theta}\right) \\
\frac{\mathrm{d} i}{\mathrm{~d} t} & =\frac{r \cos \theta}{h} u_{h} \\
\frac{\mathrm{~d} \Omega}{\mathrm{~d} t} & =\frac{r \sin \theta}{h \sin i} u_{h} \\
\frac{\mathrm{~d} \omega}{\mathrm{~d} t} & =\frac{1}{h e}\left[-p \cos f u_{r}+(p+r) \sin f u_{\theta}\right]-\frac{r \sin \theta \cos i}{h \sin i} u_{h} \\
\frac{\mathrm{~d} M}{\mathrm{~d} t} & =n+\frac{\eta}{h e}\left[(p \cos f-2 r e) u_{r}-(p+r) \sin f u_{\theta}\right]
\end{aligned}
$$

LROE Variation Equations

$$
\begin{aligned}
& x(t)=A_{0} \cos (n t+\alpha)+x_{\text {off }} \\
& y(t)=-2 A_{0} \sin (n t+\alpha)-1.5 n t x_{\text {off }}+y_{\text {off }} \\
& z(t)=B_{0} \cos (n t+\beta) \\
& \left.\qquad \begin{array}{c}
\text { LROE Invariant set }
\end{array}\right]
\end{aligned}
$$

Singular ROE set where a is ambiguous if $A_{0}=0$, or β is ambiguous if $B_{0}=0$

Non-Singular LROE Set

$$
A_{1}=A_{0} \cos (\alpha) \quad A_{2}=A_{0} \sin (\alpha) \quad B_{1}=B_{0} \cos (\alpha) \quad B_{2}=B_{0} \sin (\alpha)
$$

$$
\begin{aligned}
& x(t)=A_{1} \cos (n t)-A_{2} \sin (n t)+x_{\text {off }} \\
& y(t)=-2 A_{1} \sin (n t)-2 A_{2} \cos (n t)-\frac{3}{2} n t x_{\text {off }}+y_{\text {off }} \\
& z(t)=B_{1} \cos (n t)-B_{2} \sin (n t)
\end{aligned}
$$

LROE Variation Equations

$$
\boldsymbol{X}=\left(A_{1}, A_{2}, B_{1}, B_{2}, x_{\text {off }}, y_{\text {off }}\right) \quad[L]=\frac{\partial \boldsymbol{s}^{T}}{\partial \boldsymbol{e}}[J] \frac{\partial \boldsymbol{s}}{\partial \boldsymbol{e}} \quad \dot{\boldsymbol{e}}=[L]^{-1}\left[\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{e}}\right]^{T} \boldsymbol{a}_{d}
$$

$$
\dot{\boldsymbol{X}}=\underbrace{\frac{1}{n}\left[\begin{array}{ccc}
-\sin (n t) & -2 \cos (n t) & 0 \\
-\cos (n t) & 2 \sin (n t) & 0 \\
0 & 0 & -\sin (n t) \\
0 & 0 & -\cos (n t) \\
0 & 2 & 0 \\
-2 & 3 n t & 0
\end{array}\right]}_{[B(\boldsymbol{X}, t)]}\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]
$$

Bennett, T. and Schaub, H., "Continuous-Time Modeling and Control Using Linearized Relative Orbit Elements," AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado, Aug. 9-13 2015, Paper AAS 15-773.

Atmospheric Drag Illustration

Bennett, T. and Schaub, H., "Continuous-Time Modeling and Control Using Linearized Relative Orbit Elements," AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado, Aug. 9-13 2015, Paper AAS 15-773.

LROE Feedback Example Ellipse to Lead-Follower

$\boldsymbol{u}=-\left([B]^{T}[B]\right)^{-1}[B]^{T}[K] \Delta \boldsymbol{e}$
$\boldsymbol{e}_{0}=\left[\begin{array}{c}A_{1,0} \\ A_{2,0} \\ B_{1,0} \\ B_{2,0} \\ x_{\text {off }, 0} \\ y_{\text {off }, 0}\end{array}\right]=\left[\begin{array}{c}20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

(a) A_{1} Parameter Error

(c) $x_{\text {off }}$ Parameter Error

(b) A_{2} Parameter Error

(d) $y_{\text {off }}$ Parameter Error

Bennett, T. and Schaub, H., "Continuous-Time Modeling and Control Using Linearized Relative Orbit Elements," AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado, Aug. 9-13 2015, Paper AAS 15-773.

LROE Feedback Example Ellipse to Lead-Follower

$\boldsymbol{u}=-\left([B]^{T}[B]\right)^{-1}[B]^{T}[K] \Delta \boldsymbol{e}$

$$
\boldsymbol{e}_{r}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
30
\end{array}\right][\mathrm{m}]
$$

Bennett, T. and Schaub, H., "Continuous-Time Modeling and Control Using Linearized Relative Orbit Elements," AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado, Aug. 9-13 2015, Paper AAS 15-773.

LROE Feedback Example Lead-Follower to Ellipse

$$
\boldsymbol{u}=-\left([B]^{T}[B]\right)^{-1}[B]^{T}[K] \Delta \boldsymbol{e}
$$

$$
\boldsymbol{e}_{0}=\left[\begin{array}{c}
A_{1,0} \\
A_{2,0} \\
B_{1,0} \\
B_{2,0} \\
x_{\mathrm{off}, 0} \\
y_{\mathrm{off}, 0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
30
\end{array}\right][\mathrm{m}]
$$

(a) A_{1} Parameter Error

(c) $x_{\text {off }}$ Parameter Error

(b) A_{2} Parameter Error

(d) $y_{\text {off }}$ Parameter Error

Bennett, T. and Schaub, H., "Continuous-Time Modeling and Control Using Linearized Relative Orbit Elements," AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado, Aug. 9-13 2015, Paper AAS 15-773.

LROE Feedback Example Lead-Follower to Ellipse

$\boldsymbol{u}=-\left([B]^{T}[B]\right)^{-1}[B]^{T}[K] \Delta \boldsymbol{e}$

Bennett, T. and Schaub, H., "Continuous-Time Modeling and Control Using Linearized Relative Orbit Elements," AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado, Aug. 9-13 2015, Paper AAS 15-773.

Bearings-Only LROE Estimation

$\boldsymbol{X}=\left(A_{1}, A_{2}, B_{1}, B_{2}, x_{\text {off }}, y_{\text {off }}\right)$

Not fully observable
$\hat{\boldsymbol{X}}=\frac{1}{A_{1}}\left[\begin{array}{c}A_{2} \\ B_{1} \\ B_{2} \\ x_{\text {off }} \\ y_{\text {off }}\end{array}\right]=\left[\begin{array}{c}\hat{A}_{2} \\ \hat{B}_{1} \\ \hat{B}_{2} \\ \hat{x}_{\text {off }} \\ \hat{y}_{\text {off }}\end{array}\right]$ Reduced non-dimensional LROE set
$\hat{x}(t)=\cos (n t)-\hat{A}_{2} \sin (n t)+\hat{x}_{\text {off }}$
$\hat{y}(t)=-2 \sin (n t)-2 \hat{A}_{2} \cos (n t)-\frac{3}{2} n t \hat{x}_{\text {off }}+\hat{y}_{\text {off }}$
Non-dimensional CW solution
$\hat{z}(t)=\hat{B}_{1} \cos (n t)-\hat{B}_{2} \sin (n t)$

Bennett, T. and Schaub, H., "Space-to-Space Based Relative Motion Estimation Using Direct Relative Orbit Parameters," Advanced Maui Optical and Space Surveillance (AMOS) Technologies Conference, Wailea, Maui, Hawaii, Sept. 15-18 2015.

Angles-Only RLOE Example

Angles-Only RLOE Example

$$
\begin{aligned}
\boldsymbol{X}^{\text {true }} & =\left[\begin{array}{c}
A_{1} \\
A_{2} \\
B_{1} \\
B_{2} \\
x_{\text {off }} \\
y_{\text {off }}
\end{array}\right]=\left[\begin{array}{c}
100 \\
0 \\
200 \\
0 \\
20 \\
-2.5
\end{array}\right][\mathrm{m}] \\
\Delta \boldsymbol{X} & =\left[\begin{array}{c}
10 \\
-2 \\
-7 \\
2 \\
5 \\
-5
\end{array}\right][\mathrm{m}]
\end{aligned}
$$

Conclusions

- LROE's form a geometrically insightful relative orbit descriptions
- Can simplify the relative orbit control formulation is particular formation characteristics are controlled
- Has shown promise in relative orbit estimation as well.
- Future work:
- Apply perturbation forces directly to LROE formation to quantify accuracy of formation shape perturbation predictions
- Expand LROE formulation from rectilinear to curvilinear coordinates
- Investigate impulsive LROE control formulations based on the LROE variational equations

Questions?

[^0]: 52nd Annual Technical Meeting of the Society of Engineering Science, Texas A\&M University, College Station, TX, Oct. 26-28, 2015

