
(Preprint) AAS 17-124

KINEMATIC STEERING LAW ENABLING CONICALLY
CONSTRAINED SPACECRAFT ATTITUDE CONTROL

Manuel Diaz Ramos∗ and Hanspeter Schaub†

This paper presents a novel algorithm for attitude control of a spacecraft with reaction wheels
subjected to inclusion and exclusion conic constraints using a rate-based attitude servo sys-
tem. The tracking errors are defined using Modified Rodrigues Parameters (MRPs) to yield
a non-singular description. Lyapunov theory and logarithmic barrier potential functions are
used to derive a kinematic steering law suitable for both attitude regulation and tracking sce-
narios. Conditions for switching between constrained and unconstrained laws are discussed
to not have the avoidance considerations impact rotational motion that does not approach
avoided orientations. A tracking problem with inclusion and exclusion attitude zones is sim-
ulated.

INTRODUCTION

Unconstrained autonomous attitude control has been extensively addressed in literature. However, space-
craft reorientation may have several restrictions. In fact, certain orientations might not be desired while
maneuvering. An example is a spacecraft carrying sensitive optical payloads, such as telescopes or cameras,
that cannot be exposed to direct sunlight. Bright celestial objects may thus impose constraints to a maneuver.
On the other hand, a change in attitude could be performed while keeping certain instruments, e.g. antennas,
pointing into a definite region in space. Ultimately, attitude constraints can be viewed as either exclusion
or inclusion zones, usually defined by cones in space around either a forbidden or a mandatory nominal
direction.

The existing techniques for studying the constrained attitude control problem may be classified into six
different groups.1 A geometric approach uses geometric relations to pre-compute trajectories that avoid the
constraint manifolds.2, 3 These techniques are relatively simple but do not scale well when the number of
constraints grow.1 Constraint Monitor Algorithms (CMT) use a predictor-corrector approach to change the
trajectory in real time when approaching a constraint.1 This method has been successfully tested in real
missions, such as Cassini4, 5 and Deep-Space-1.1 Randomized algorithms use graphs and random search
to go from an initial to a final attitude avoiding all constraints.6 The approach has mainly two drawbacks:
convergence can be guaranteed only in a probabilistic sense and computational time grows dramatically
with the size of the graph. The set of techniques known as Semi-Definite Programming (SDP) algorithms
and Quadratically Constrained Quadratic Programming (QCQP) utilize optimization tools for computing an
optimal control solution while avoiding all constraints.1, 7, 8 A recently developed new framework divides
the attitude space into discrete cells and uses searching algorithms like A∗ to find an optimal solution to the
constrained problem.9, 10 Finally, potential function-based algorithms use Lyapunov theory to design control
laws that converge to the target while evading constraints. This approach has already been tested with euler
angles11 and quaternions.12, 13 However, these algorithms only solve the regulation problem.

Modified Rodrigues Parameters (MRPs) constitute a non-unique minimal-set attitude representation. This
fact can be used to switch the parameters at the unit sphere in order to avoid their only singularity while
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naturally overcoming the unwinding14 phenomenon, making a control scheme to always follow the shortest
path.15

Kinematic steering laws permit dividing the attitude and angular velocity control strategies into two com-
pletely separate loops, simplifying the synthesis of control laws. Using this scheme, an angular velocity loop,
usually known as servo, is controlled by a kinematic loop.

In this work, a kinematic steering law using MRPs that permits autonomous attitude control and static
constraint enforcement at the same time is proposed. Constraint geometry is discussed and Lyapunov direct
method is used in order to synthesize the kinematic steering law. Reaction Wheels (RW) are used as attitude
actuators. The problem of wheel torque saturation is addressed.

The paper is organized as follows. After a brief introduction of the kinematics (MRPs), dynamics (rigid
body spacecraft with RW), and the unconstrained steering law used, conic static constraints are presented
showing a novel description as a function of MRPs. The tracking problem with conic constraints is then
developed with heuristic algorithms for asymptotic stability and switching between the constrained and un-
constrained steering laws. Finally, numerical results are shown.

PRELIMINARIES

Modified Rodrigues Parameters

The MRPs are a minimal parametrization set of the rotation group SO(3). The MRP vector σ is defined in
terms of the quaternion β =

[
β0 β1 β2 β3

]T
or the principal rotation vector representation (ê,Φ) as15

σ =
1

1 + β0

[
β1 β2 β3

]T
= tan

(
Φ

4

)
ê (1)

where β0 represents the scalar part of the quaternion. The representation is singular whenever β0 = −1,
where the rotation angle Φ = ±360◦.

The quaternion representation is not unique. In fact, since β and −β represent the same attitude, σ and
σs, known as the shadow set, also represent the same orientation, where15

σs = − 1

1− β0
[
β1 β2 β3

]T
= − σ

σTσ
(2)

Equation (1) shows that short rotations (Φ ≤ 180◦) have |σ| ≤ 1. Using this fact and the shadow set, the
general approach is to switch between MRP representations in the unit sphere in order to avoid the singularity
while always describing short rotations.15

The rotation matrix [C(σ)], also represented as [PQ] when describes the orientation of a frame P relative
to a frame Q, can be computed from the MRP σ (or σP/Q) as15

[C(σ)] = [I3×3] +
8[σ̃]2 − 4(1− σTσ)[σ̃]

(1 + σTσ)2
(3)

where [σ̃] is the associated skew-symmetric matrix.15

To transform the Direction Cosine Matrix (DCM) into MRPs, Shepard’s method can be used to compute
quaternions from DCM16 and then Equation (1) can be utilized to calculate the MRPs.

The MRP kinematic differential equation is given by15

σ̇ =
1

4

[
(1− σTσ)[I3×3] + 2[σ̃] + σσT

]
ω =

1

4
[B(σ)]ω (4)

If σ represents the attitude of frame P relative toQ (noted as σP/Q), then ω is the angular velocity of frame
P relative to Q written in P-frame components (also noted as PωP/Q).
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Rigid-Body Dynamics with Reaction Wheels

The rotational equations of motion of a rigid spacecraft with NRW perfectly symmetric and balanced Re-
action Wheels (RW) are given by15

[IRW]ω̇ = −[ω̃] ([IRW]ω + [Gs]hs)− [Gs]us +L (5)

where

[IRW] = [Is] +

NRW∑
i=1

(Jti ĝti ĝti
T + Jgi ĝgi ĝgi

T ) (6)

[Gs] =
[
ĝs1 ... ĝsi ... ĝsNRW

]
(7)

hs =
[
Js1(ĝs1

T ω + Ω1) ... Jsi(ĝsi
T ω + Ωi) ... JsN (ĝsNRW

T ω + ΩNRW)
]T

(8)

[Is] is the inertia tensor of the system with the wheels considered as point masses. A principal-axis
frame Wi : {ĝsi , ĝti , ĝgi} is attached to each RW, where ĝsi is the direction of the spin axis. [Iwi

] =
diag(

[
Jsi Jti Jgi

]
) is the inertia matrix of each wheel written in the W frame relative to its center of

mass. Ωi is the angular velocity of the RW i relative to the spacecraft. The vector us contains the torques
applied to each RW axis. L is the resultant external torque applied to the spacecraft.

The vector ω is a shorthand notation for ωB/N , where B is a body-fixed frame and N is an inertial frame.
The over-dot symbol (•̇) represents an inertial derivative while the prime symbol (•′) represents a derivative
with respect to the body frame. Although the equations of motion can be solved in any frame, it will be
assumed that every vector and tensor are written in the body-fixed frame B.

In this paper, the RW torque may saturate. In other words, there is a maximum torque usmax that is applied
to each reaction wheel.

Unconstrained Problem Using a Steering Law

The unconstrained attitude problem can be solved using the Lyapunov direct method with a Liapunov
function combining attitude and angular velocity.15 However, two separate feedback loops may also be
setup,17 in a rather similar way as the Backstepping Control method.18, 19 A faster loop controls angular
velocity. An outer, slower loop, or steering law, controls attitude, taking angular velocity as a control force.
Using two different loops for attitude and angular velocity has some advantages. First, the kinematic model
given by Equation (4) is exact. Second, the synthesis of control laws is simplified. Third, as this paper
demonstrates, the angular velocity loop does not need to be changed when static constraints are added. The
following notation assumes that every angular velocity vector is written in the body frame.

The goal of the control scheme is to steer the body frame B to the reference frame R. In other words, the
relative attitude σB/R and angular velocity ωB/R are to be driven to zero. If the given attitude σR/N is not
constant, the problem is usually known as the tracking control problem.

Consider the following Lyapunov candidate function15

V (σB/R) = 2 ln
(

1 + σT
B/RσB/R

)
(9)

Using Equation (4) it can be immediately shown that

V̇ (σB/R) = σT
B/RωB/R (10)

Let B∗ be the desired body orientation and ωB∗/R the desired angular velocity vector. Making

ωB∗/R = −f(σB/R) (11)
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where f(σB/R) is an even function such that

σT
B/Rf(σB/R) > 0 (12)

The Lyapunov rate will, thus, be negative definite

V̇ (σB/R) = −σT
B/Rf(σB/R) < 0 ∀σB/R 6= 0 (13)

In this paper, the smoothly saturated function given by

fi(xi) =
2ωmax

π
arctan

(
π

2ωmax
(K1xi +K3x

3
i )

)
i = 1, 2, 3 (14)

is used. f(σB/R) =
[
f1(σ1) f2(σ2) f3(σ3)

]T
.

A servo sub-system is utilized to produce the required torques to make the body rates track the desired
body rates commanded by the steering law. The tracking error is defined as

ωB/B∗ = ωB/N − ωB∗/N (15)

where ωB∗/N = ωB∗/R + ωR/N , ωB∗/R is the kinematic steering rate command and ωR/N is an input
coming from the attitude navigation solution. To create a rate-servo that is robust to unmodeled torques,15

the integral term z is defined as

z =

∫ t

t0

ωB/B∗ ddτ (16)

Consider the Lyapunov candidate function17

Vω(ωB/B∗ , z) =
1

2
ωT
B/B∗ [IRW]ωB/B∗ +

1

2
zT [KI]z (17)

where [KI] is a positive definite matrix.

Thus
V̇ω(ωB/B∗ , z) = ωT

B/B∗

(
[IRW]ω′B/B∗ + [KI]z

)
(18)

Using the identities ω′B/N = ω̇B/N and ω′R/N = ω̇R/N − ωB/N × ωR/N , and Equation (5)

V̇ω(ωB/B∗ , z) = ωT
B/B∗

[
−[ω̃B/N ]

(
[IRW]ωB/N + [Gs]hs

)
− [Gs]us +L+ [KI]z

−[IRW](ω′B∗/R + ω̇R/N − ωB/N × ωR/N )
]

(19)

Forcing V̇ω = −ωT
B/B∗ [P ]ωB/B∗ , with [P ] being a positive definite matrix, it is possible to write

[Gs]us = Lr (20)

where

Lr = [P ]ωB/B∗ +[KI]z−[ω̃B/N ]
(
[IRW]ωB/N + [Gs]hs

)
−[IRW](ω′B∗/R+ω̇R/N−ωB/N×ωR/N ) (21)

The RW torques can be computed in several different ways. In this paper, the minimum norm inverse is
used15

us = [Gs]
T ([Gs][Gs]

T )−1Lr (22)

The body frame derivative ω′B∗/R is calculated numerically.

Equations (11) and (22) can be used to control a spacecraft’s attitude using reaction wheels without con-
straints. The servo sub-system needs to have a faster frequency response.
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Figure 1. Static constraint geometry.

CONSTRAINT GEOMETRY

Constraints can be classified into several groups.1 In this work, only constraints that depend on the current
attitude are considered. Henceforth, those constraints will be called static constraints because they only
depend on the current orientation, and not on the angular velocity.

The conic constraint is a particular static constraint illustrated in Figure 1 where an inertial unit vector n̂
defines an exclusion or inclusion cone around it. Meshabi et. al.1 call these constraints Type-I constraints.
The goal is to slew a spacecraft avoiding a unit vector b̂ entering the cone. The security angle is given by
θmin, while θ is the instantaneous angle between both vectors. In a typical application n̂ can be a unit vector
pointing towards the sun (approximately inertially fixed) while b̂ is the boresight vector of a camera (body
fixed). Mathematically, the condition can be easily described as5

n̂ · b̂ = cos(θ) < cos(θmin) (23)

Conic constraints where n̂ is inertially fixed and b̂ is body-fixed can thus be written introducing the rotation
matrix [BN ] as

C[BN ]([BN ]) = cos(θ)− cos(θmin) = n̂ · b̂− cos(θmin) = Nn̂T [BN ]T B̂b− cos(θmin) < 0 (24)

where the notation C[BN ] indicates that the constraint is written as a function of the DCM.

Similarly, it might be desirable to maneuver while keeping a certain boresight vector b̂ inside a cone defined
by n̂ and θmin. In a typical application, the maneuver has to keep an antenna’s main lobe inside a cone defined
by a ground station. The mathematical condition is

n̂ · b̂ = cos(θ) > cos(θmin) (25)

Considering, again, conic constraints where n̂ is inertially fixed and b̂ is body-fixed

C[BN ]([BN ]) = cos(θ)− cos(θmin) = n̂ · b̂− cos(θmin) = Nn̂T [BN ]T B̂b− cos(θmin) > 0 (26)

It is important to notice that exclusion and inclusion zones can be defined using the same constraint formula-
tion; namely, through a function C[BN ]([BN ]). It is immediately apparent from the definition that

− 2 ≤ C[BN ]([BN ]) ≤ 2 (27)

Only constraints where n̂ is inertially fixed are considered, even though some of the results of the paper
may be extended to consider the more general case where n̂ is not inertially fixed.

An expression for Ċ[BN ]([BN ]) can be readily computed using the transport theorem15 and the circular
shift property of the triple product. If the derivatives are taken in the inertial frame under the hypothesis that
n̂ is inertially constant and b̂ is body-fixed, then

Ċ[BN ]([BN ]) = N
dn̂

dt
· b̂+ n̂ ·N db̂

dt
= n̂ · (ωB/N × b̂) = (b̂× n̂) ·ωB/N = ([B̃b][BN ]Nn̂)TBωB/N (28)
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From Equation (3), it is possible to write

C[BN ]([BN ](σB/N )) = Cσ(σB/N ) = Nn̂T [BN(σB/N )]T B̂b− cos(θmin) (29)

Ċ[BN ]([BN ](σB/N )) = Ċσ(σB/N ) = ([B̃b][BN(σB/N )]Nn̂)TBωB/N (30)

It is also possible to compute the time derivative using the gradient and the kinematic differential equa-
tion (4)

Ċ[BN ]([BN ]) = Ċσ(σB/N ) = ∇CT
σ (σB/N )σ̇B/N =

1

4
∇CT

σ (σB/N )[B(σB/N )]BωB/N (31)

PROBLEM STATEMENT

Let there be NE exclusion zones defined by continuous functions CE
i : SO(3) → R and NI inclusion

zones defined by continous functions CI
j : SO(3) → R, which can be the C[BN ] or the Cσ described in the

previous section. Let D be such that

D = {x ∈ SO(3)/CE
i (x) < 0 ∧ CI

j (x) > 0} (32)

The goal is to drive σB/R and ωB/R to zero while moving inside D. The first necessary condition is that
[BN ] ∈ D for all possible time.

Barrier functions have been used to design control laws avoiding constraints.11, 12, 20 In this paper, logarithm
barrier functions12, 13, 20 are used to design Lyapunov functions that converge to the reference while avoid
piercing the static constraints.

CONSTRAINED CONTROL - TRACKING PROBLEM

The problem is split into two parts: a steering law and sub-servo system controlling angular velocity. The
sub-servo is the same as described in the Preliminaries section for the unconstrained problem.

Consider the following Lyapunov candidate function V : D → R+

V (σB/R) = 2 ln(1 + σT
B/RσB/R)

− 1

NE

NE∑
i=1

ln

(
−C

E
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI

j (σB/N )

βj

) (33)

The parameters αi > 0 and βj > 0 can be chosen in several different ways with the only condition
−CE

i (σB/N ) < αi and CI
j (σB/N ) < βj ∀σB/N ∈ D. One possibility, based on Equation (27) is to

pick
αi = βi = 2e (34)

Therefore, the logarithm constraint terms will be between 1 and +∞. Another possibility for αi will be
discussed in a next section.

Given these conditions for αi and βj , it is possible to show that V (0) = 0, V (σB/R) > 0 ∀σB/N ∈
{D − {0}}, and V (σB/R)→ +∞ when CE

i (σB/N )→ 0 or CI
i (σB/N )→ 0.

In order to derive a control law, the time derivative of V is computed

V̇ (σB/R) =
4σT
B/Rσ̇B/R

(1 + σT
B/RσB/R)

 1

NE

NE∑
i=1

− ln

(
−C

E
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI

j (σB/N )

βj

)+

2 ln(1 + σT
B/RσB/R)

− 1

NE

NE∑
i=1

ĊE
i (σB/N )

CE
i (σB/N )

− 1

NI

NI∑
j=1

ĊI
j (σB/N )

CI
j (σB/N )

 (35)
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Figure 2. With perfect symmetry vR can be 0.

Using Equations (4), (28), the fact that ωB/N = ωB/R + ωR/N , and defining vT and uT such that

uT = 2 ln(1 + σT
B/RσB/R)

− 1

NE

NE∑
i=1

([B̃b][BN ]Nn̂)

CE
j (σB/N )

− 1

NI

NI∑
j=1

([B̃b][BN ]Nn̂)

CI
j (σB/N )

 (36)

vT = σB/R

 1

NE

NE∑
i=1

− ln

(
−C

E
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI

j (σB/N )

βj

)+ uT (37)

then
V̇ (σB/R) = vT

TBωB/R + uT
TBωR/N (38)

Choosing

BωB∗/R = −f(vT )− vTuT
T

vT TvT
BωR/N (39)

where f is given by Equation (14)

V̇ (σB/R) = −vT Tf(vT ) ≤ 0 (40)

It is easy to see that vT = uT = 0 whenever σB/R = 0. However, ln(1 + σT
B/RσB/R) → σT

B/RσB/R
when σB/R → 0. Thus, even though there is a 0

0 indetermination in the second term of the control law, that
term tends to zero and can be ignored whenever σB/R → 0.

vT can also be zero for other values of σB/R. This situation is described in the next section.

ASYMPTOTIC STABILITY

It has been shown that the law given by (39) is almost globally Lyapunov stable but not necessarily asymp-
totically stable. In the special case that vT = 0 and σB/R 6= 0, the law is not asymptotically stable and
can even be unstable. However, it turns out that this occurs only with very specific symmetry conditions.
To understand the geometric conditions that lead to this situation, consider the following regulation problem
(σR/N = 0), depicted in Figure 2. Let there only be one exclusion condition, given by n̂ = ŷN . The
boresight vector is in the body x̂ direction: b̂ = x̂B . In this qualitative description, the angle θmin is not
relevant. The initial attitude is a rotation of 180◦ about ẑN . Thus σB/N = tan(180◦/4)ẑN .
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The vector vT will be

vT = −σB/N ln

(
−C

E
1 (σB/N )

α1

)
− 2 ln(1 + σT

B/NσB/N )
([B̃b][BN ]Nn̂)

CE
1 (σB/N )

(41)

A necessary (but not sufficient) condition for vT to be zero with a non-zero σB/N is σB/N and [B̃b][BN ]Nn̂

to be anti-parallel. The latter is simply b̂×n̂. In this particular case, that situation is possible since the attitude
is a rotation about the ẑN axis and b̂× n̂ is in the same direction. These saddle points can occur whenever the
problem has one of such perfect symmetries. If the conic constraint is slightly tilted, the symmetry is broken,
and no saddle point is reached for that attitude initial condition.

In practice, due to perturbations and numerical noise, saddle points occur very rarely. However, vT can be
arbitrarily small.

A heuristic solution to avoid these saddle points is to detect whenever vT is small while σB/R is not and
apply a very small kick to the spacecraft in any direction orthogonal to σB/R in order to break the symmetry.
The heuristic algorithm is shown as Algorithm (1). σ⊥B/R is any orthogonal vector to σB/R . γ is a small
number to be chosen.

Algorithm 1 Saddle-point avoidance.

1: if ‖vT ‖ < 0.01 &&
∥∥σB/R∥∥ > 0.01 then

2: vT = γσ⊥B/R
3: end if

SWITCHING BETWEEN THE CONSTRAINED AND UNCONSTRAINED LAWS

When only exclusion constraints are defined, it might be desirable to use the unconstrained steering law
given in Equation (11) when “sufficiently far” from the constraints. In order to establish what “far” means,
consider the very simple worst-case planar scenario given in Figure 3. The boresight vector is going straight
into a constraint cone, rotating on a plane. The inertia of the system about the fixed rotation axis is I , the
angular velocity is ω and a constant available torque is given by umax. The angle at time t0 is θ0 and the initial
angular velocity is ω0.

The problem can be stated as follows: with an inertia I , constant control torque umax, and an initial velocity
ω0 = ωmax given, what is the initial angle θ0 to exactly stop the rotation at the security cone given by the
angle θmin? In other words, the final state should be θf = θmin and ωf = 0. This would mean that if θ > θ0,
the spacecraft would have enough torque capacity to avoid breaking into a conic constraint. Therefore, the
unconstrained law can be used whenever θ > θ0.
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Since ω = −θ̇, it is possible to write

θ̈ =
umax

I
(42)

θ̇f = 0 =
umax

I
(tf − t0)− ωmax (43)

θf = θmin =
1

2

umax

I
(tf − t0)2 − ωmax(tf − t0) + θ0 (44)

Solving for (tf − t0) in the first equation and replacing into the second

θ0 =
1

2

I

umax
ω2

max + θmin (45)

For a given spacecraft, I should be the maximum axis of inertia, ωmax is the same maximum velocity used
in the steering law in Equation (14) and umax should be, at most, the maximum torque available in the
poorest controllable direction. Given a maximum torque for each wheel usmax , the minimum torque capacity
for a reaction wheel array can be computed using the torque envelopes. The algorithm for computing this
minimum torque capacity is given by Landis Markley et. al.21

umax ≤ min{ui,jmin; i, j = 1, ..., NRW} (46)

ui,jmin = usmax

NRW∑
k=1,k 6=i,j

|ĝsk · n̂ij | (47)

n̂ij =
ĝsi × ĝsj∥∥ĝsi × ĝsj∥∥ (48)

In order to avoid chattering, two different thresholds can be defined, using a Schmitt trigger approach. The
gap is defined by an angle ψ. The algorithm is shown as Algorithm 2.

Algorithm 2 Constrained-Unconstrained control switching
1: Compute [BN ] from σB/N using Equation (3)

2: Compute θ = arccos
(
Nn̂T [BN ]T B̂b

)
3: if θ < θ0min = 1

2
I

umax
ω2

max + θmin then
4: Use constrained control given in Equation (39)
5: else if θ > θ0max = θ0min + ψ then
6: Use unconstrained control given in Equation (11)
7: end if

This algorithm is repeated for every single exclusion constraint. Therefore, at a given instant of time, some
constraints will be considered while others will not. That means eliminating those constraints that are not
considered in Equations (36) and (37).

− ln

(
−C

E
i (σB/N )

αi

)
→ 1 (49)

([B̃b][BN ]Nn̂)

CE
j (σB/N )

→ 0 (50)

In order to reduce (but not eliminate) the discontinuity while switching, the parameter αi in Equation (37)
can be chosen as

αi = | cos(θ0max)− cos(θmin)|e (51)

such that the logarithm in Equation (49) switches continuously when turning off the constraint algorithm.
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NUMERICAL RESULTS

The simulation shown utilizes the parameters indicated in Table 1. Four identical reaction wheels in a
pyramid configuration with an angle of 55◦ are used. The initial attitude is a simple rotation of 135◦ about
the x axis. The initial angular velocity is full speed (ωmax = 2◦/s) in the same direction. The four reaction
wheels are spinning at nominal speed (200 rpm). The control loops run at different frequencies: the servo has
a frequency of 100 Hz; the steering law, 10 Hz. Four exclusion constraints are used with an optical payload
in the y-body direction. One inclusion constraint, with an antenna in the x-body direction is also setup.

Table 1. Simulation parameters.

Spacecraft [IS ] [kg-m2] diag([4.415 4.415 3.83])

RW

[Iw] [kg-m2] diag([0.03 0.001 0.001])

[Gs]

[
0.819 0 −0.819 0

0 0.819 0 −0.819
0.5736 0.5736 0.5736 0.5736

]
usmax 15mNm

Initial Conditions
σB/N0

, ωB/N0
[−0.67 0 0]T , [ωmax 0 0]T

[Ω1 Ω2 Ω3 Ω4]T0 [200 −200 200 −200]T rpm

Control Constants

[P ] 10[I3×3]

[KI ] 0.01[I3×3]

K1, K3 0.1

Exclusion Constraints

Nn̂1, B̂b1, θmin1 [0 −0.34 −0.96]T , [0 1 0]T , 10◦

Nn̂2, B̂b2, θmin2 [0 −1 0]T , [0 1 0]T , 30◦

Nn̂3, B̂b3, θmin3 [1 1 0]T , [0 1 0]T , 20◦

Nn̂4, B̂b4, θmin4 [−1 1 0]T , [0 1 0]T , 20◦

Inclusion Constraints Nn̂5, B̂b5, θmin5 [1 0 0]T , [1 0 0]T , 60◦

Algorithm 1 is used for saddle-point avoidance with γ = 0.05. Algorithm 2 is used for switching between
the constrained and unconstrained laws. In order to compute the threshold angle, umax is chosen to be 40%
of the minimum torque capacity computed with Equation (46). A gap of ψ = 5◦ is used.

Figure 4 shows the attitude state and the attitude difference. Figure 5 shows the evolution of the five angles
angles θ1, θ2, θ3, θ4, and θ5. The black dotted lines indicate the cone angles. The minimum and maximum
threshold, in cyan and magenta respectively, are the switching angles described in Algorithm 2. The conical
projections of the boresight vector of each instrument, along with the exclusion (in red) and inclusion (in
green) zones is shown in Figure 6.

CONCLUSIONS

This paper has presented a kinematic steering law that can be used to control, in a regulation or tracking
problem, the attitude of a spacecraft with reaction wheels under static constraints. The scheme is suitable
for both inclusion and exclusion zones. It has been shown that the algorithm works with any number of
constraints, even in highly-symmetric conditions. Moreover, it is possible, if desired, to switch from the
constrained steering law to the unconstrained steering law when sufficiently far from the constraint cones.

One of the main advantages of using Lyapunov theory is to be able to synthesize control laws that, though
nonlinear, are fairly simple. The algorithm described in this paper allows controlling the attitude of a space-
craft under constraints using MRPs while separating the dynamics from the kinematics.
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Figure 4. Attitude state evolution in the tracking problem.
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Figure 5. Constraint angles.
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Figure 6. 2-D maps in the tracking problem.
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There are several questions that can be addressed in future work. First, the algorithm for escaping from
saddle points has been explained heuristically, but not mathematically. Second, the algorithm switching
between constrained and unconstrained laws still present some discontinuities. Future work could address
further smoothing techniques for switching between both. Third, it is still to be seen whether the control
scheme can be extended to develop Lyapunov functions that simultaneously include attitude and angular
velocity.
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