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VOLUME MULTI-SPHERE-MODEL DEVELOPMENT USING
ELECTRIC FIELD MATCHING

Gabriel Ingram; Joseph Hughes] Trevor Bennett; Christine Reilly; and
Hanspeter Schaub?

Electrostatic modeling of spacecraft has wide-reaching applications such as de-
tumbling space debris in the Geosynchronous Earth Orbit regime before docking
or servicing and tugging space debris to graveyard orbits. The viability of electro-
static actuation control applications relies on faster-than-realtime characterziation
of the electrostatic interaction. The Volume Multi-Sphere Method (VMSM) seeks
the optimal placement and radii of a small number of equipotential spheres to ac-
curately model the electrostatic force and torque on a conducting space object.
Current VMSM models tuned using force and torque comparisons with commer-
cially available finite element software are subject to the modeled probe size and
numerical errors of the software. This paper investigates fitting of VMSM mod-
els to Surface-MSM (SMSM) generated electrical field data, removing modeling
dependence on probe geometry while significantly increasing performance and
speed. A proposed electric field matching cost function is compared to a force
and torque cost function, the inclusion of a self-capacitance constraint is explored
and 4 degree-of-freedom VMSM models generated using electric field matching
are investigated. The resulting F-field based VMSM development framework is
illustrated on a box-shaped hub with a single solar panel. Despite the complex
non-symmetric spacecraft geometry, elegantly simple 2-sphere VMSM solutions
provide force and torque fits within a few percent.

INTRODUCTION

Electrostatic modeling of spacecraft and space debris is currently an active area of research with
applications in Space Situational Awareness (SSA), Lorentz Augmented Orbits (LAO) and touch-
less interaction between spacecraft. Spacecraft and debris in both Low Earth Orbit (LEO) and
Geosynchronous Earth Orbit (GEO) can become charged by interactions with ambient plasma to
such an extent that they are perturbed by Earth’s electric and magnetic fields.!:? Although accelera-
tions caused directly by Lorentz forces are small in both LEO and GEO, electromagnetic influence
on attitude can cause variation in more prominent attitude-dependent perturbations—such as solar
radiation pressure—that lead to significant changes in orbital parameters in a matter of hours.>3
Objects that are particularly affected by this phenomenon are those with high area-to-mass ratios,
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HAMR objects, which constitute part of the debris population.>* Improvements in satellite propa-
gation and orbit determination of these debris objects requires electrostatic modeling of some form.
Computational efficiency is desirable in both trajectory propagation, and orbit determination.

In addition to natural orbit evolutions, when spacecraft or debris charges are controlled artificially
using ion or electron beams, both Lorentz and Coulomb forces can be harnessed for useful purposes,
such as LAO, active debris removal and touchless de-tumbling of spacecraft.>~” LAO applications
are varied, and include drag compensation in elliptical orbits, inclination control, and rendezvous.’
In addition, Lorentz forces can be used to augment formation flying reconfiguration control laws to
reduce thruster AV requirements, and for limited propellentless propulsion.-!°

While LAO exploit the Lorentz force experienced by spacecraft moving quickly through a mag-
netic field, Coulomb forces between spacecraft and debris can also be utilized. Electrostatic tugging
is proposed as a means of active debris removal and for applications in formation flying.®!!-1> The
Geosynchronous Large Debris Reorbiter (GLiDeR) is one active debris removal concept that har-
nesses these electrostatic effects. The GLiDeR remotely charges a defunct satellite or piece of space
debris with an electron beam, allowing it to interact with the object for the purposes of changing
the object’s orbit. Orbit raising of 250 km can be accomplished in a little over two months using
Coulomb interaction between GLiDeR and a target.'* Electrostatic de-tumbling of space objects is
currently being researched, and shows promise as a method for reducing debris tumbling rates to
within an acceptable magnitude for grappling in servicing missions.”> 1410

Many of these applications motivate and require faster-than-realtime methods of electrostatic
modeling. Although finite element method (FEM) software, such as ANSYS Maxwell 3D(C), pro-
vide accurate results, calculations of the force and torque between a target and command space-
craft at one relative position and orientation requires time on the order of minutes. The duration
of this calculation is unacceptable for control purposes. The Multi-Sphere Method (MSM) is a
lower-fidelity electrostatic modeling technique that can be evaluated quickly enough for faster-than-
realtime applications.!”-13

MSM is an elastance-based method for predicting the force and torque on conductors.'® Tt is
similar to the method of moments in its linear form,?® but differs in that the size and location of the
nodes are hand-tuned rather than derived from first principles. This tuning is done by an optimizer
to match force and torque which are computed using a high-fidelity FEM software. Because of this,
MSM can predict Coulomb forces and torques very quickly at accuracies of 1-2%. Recent work
largely automates the process of generating MSM models using local optimizers; however, chal-
lenges to current MSM model generation methodologies remain.! In particular, current automation
of Volume-MSM (VMSM) modeling is accomplished by fitting to FEM generated force and torque
data. Not only is the process of generating FEM data time consuming, but it is prone to producing
noisy data in the far from the target model. The effect of noisy data is mitigated by fitting to near-
field data and imposing a self-capacitance constraint upon the optimization process. In addition,
fitting to force and torque data ties VMSM modeling methodologies to a specific probe geometry.

This paper introduces a novel automated method of generating VMSM models by matching the
electric field in the vicinity of the target rather than Coulomb forces and torques. Since the electric
field data is produced using Surface-MSM (SMSM), it is much smoother in the far field, which
avoids many of the drawbacks of current MSM model generation techniques. E-field fitting greatly
reduces the time required to generate a VMSM model while maintaining the model accuracy asso-
ciated with current modeling techniques. The E-field matching method can also be demonstrated



|

Figure 1. Illustration of the MSM Concept!®

to allow for creation of 4 degree-of-freedom VMSM models.

A brief review of the Multi-Sphere method is presented. The optimizer cost functions for current
VMSM and E-field matching model generation methodologies are compared near a solution. Force
and torque model accuracies when the F-field matching method is applied to a complex asymmet-
ric box-and-panel geometry, with and without a self-capacitance constraint, are investigated. The
computational effort of producing one, two and three-sphere VMSM models of the box-and-panel
geometry is detailed. The effect of data reduction on model accuracy when a self-capacitance con-
straint is imposed is shown, and a comparison between the accuracies of reduced-coordinate and 4
degree-of-freedom models is made.

MULTI-SPHERE METHOD BACKGROUND

MSM provides a reasonably accurate model of a spacecraft’s electrostatic properties for applica-
tions that require faster-than-realtime results. MSM solves for the force and torque on a conductor
by first finding the charge on a number of virtual spheres placed within the body. The charge on
the spheres is found by assuming all spheres are equipotential and solving a linear system. MSM
divides into VMSM, which uses a small number of spheres placed within the volume of the conduc-
tor, and SMSM, which places a large number of spheres on the surface of the conductor. It is more
difficult to generate VMSM models because the size and location of the spheres must be found us-
ing an optimizer; however, VMSM models are much faster to run once completed. SMSM models
are easier to set up because the sphere locations are specified, and the sphere size can be found by
matching self capacitance, which is computed from commercial FEM software. Generally, SMSM
models show higher accuracy when compared to FEM-generated force and torque data.* Although
SMSM greatly reduces the effort required to create a MSM model for a given spacecraft geometry
and increases the accuracy of the model, it comes at increased computational cost at runtime due to
the large number of spheres.

Both the Volume Multi-Sphere Method and Surface Multi-Sphere method represent an conduct-
ing object as IV spheres, as shown in Figure 1. These methods only differ in the number, size and
placement of the spheres used to represent the conductor. The MSM formulation currently assumes
that the surface of the target craft or debris is perfectly conducting, which implies that all MSM
spheres within a body are equipotential.

Thus, the charge on each sphere in a MSM model, which may include multiple distinct spheres



outside of the target model, is only a function of the sizes of the spheres in the complete model
and their relative positions. Letting N7 be the total number of MSM spheres in a MSM model,
computed as the sum of the number of spheres in the target model and the number of spheres
outside the target model, all MSM spheres can approximated as point charges. The N7 x 1 charge

matrix, g = [q1 g2 ... qng) T which contains the charge on each sphere of a MSM model, is
related to the N x 1 sphere voltage matrix V. = [V} Vo ... VNT]T through Eq. (1)!7
1
4= [Cum] V (1)
C

where k. is the Coulomb constant, and the N7 x N7 matrix [C)] is the Position Dependent
Capacitance (PDC) matrix. For a general Nt sphere MSM model, the PDC matrix is difficult to
produce; however, its inverse, the elastance matrix [S], contains only functions of the sphere radii
R; and relative distances between spheres r; ;. [S] is formulated as shown in Eq. )P
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The charges, which lead to the force and torque, are found by solving the linear system. For an
isolated conductor with a small number of spheres this can be done analytically, but in the majority
of cases is is done numerically. This computation is expensive, and is the cause of decreased run-
time performance when using the SMSM method.

The charge set q is calculated using Eq. (1). The charges, ¢;, are used to calculate the electric
field produced by the model, and forces and torques that an object model experiences subject to one
or more external point charges. Denoting the position vector of an external point charge as r; and
the relative position vector of each MSM model sphere with respect to its center of mass as r;, the
force, F, and torque, T, applied to the target model about its center of mass by all external spheres
with charges ¢;, are given in Egs. (3) and (4)'®
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where r; ;. is the relative position of the k™ external sphere with respect to the i internal MSM
sphere. N is the total number of spheres in the target model, and M is the total number of spheres
external to the target. Adding arbitrary numbers of external spheres does not add to the complexity
of MSM modeling because they can be appended to the charge and elastance matricies; however,
doing so will increase computational burden. Whole MSM models can be appended when the
calculation of force and torque between two complex geometries is desired.

The electric field at any point exterior to the spheres of a MSM model is given by the superposition



of the electric fields of each sphere, as shown in Eq. (5)
Nr "
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where [ is a point of interest in the space outside of the MSM model spheres, and r; ; is the relative
position between the i-th MSM model sphere and (.

Current VMSM model fitting methods minimize a cost function based upon the difference be-
tween the force and torque vectors predicted by a VMSM model and the force and torque vectors
generated by commercial FEM software. One such cost function is given by Eq. (6)'
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To alleviate far-field data noise effects in the optimization process, current methods utilize a self-
capacitance constraint. The self-capacitance C' of a VMSM model is given by Eq. (7)!
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ELECTRIC FIELD VMSM MODEL FITTING
SMSM E-field Data Generation

Using the current VMSM methodology, the sphere positions and radii are varied by an optimizer
to best match force and torque data produced by a commercial FEM program.!: 718 This method-
ology requires significant hand-tuning of model parameters for a model that fits force and torque
data accurately due to noisy FEM data in the far field, dependance on probe size, and convergence
properties of the force and torque cost function. Recent work largely streamlines the process of
generating VMSM models using ANSYS Maxwell 3D to generate numerical data.! The workflow
for current VMSM model fitting starts with generating solid models for a target and probe geometry
in FEM software and calculating accurate force and torque values between them at many relative
positions. Self-capacitance of the target spacecraft is also calculated.

A complete sweep of locations for force and torque matching and validation may take hours and
variations in accuracy depend heavily upon how many data points are used. In addition, complicated
workarounds that automatically change probe radius are required to get accurate results. Current
techniques use a spherical probe which has a radius that is a function of its distance from a target.
The dependence on external probe geometry for force and torque calculations is clear in the above
force and torque equations. This dependence is included into VMSM model generation when a cost
function based on force and torque is used.

The workflow proposed in this paper seeks to address both of these issues. The initial step in
modeling is the same — a solid model of the target spacecraft is created. However, a solid model
of external probe geometry is optional, and only used to gather limited force and torque data for
verification of a model. A target voltage is prescribed and FEM software is used to calculate the
self-capacitance of the target.
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Figure 2. Proposed Workflow Comparison with Previous Force and Torque Methods

A SMSM model of the target geometry is then generated using any appropriate method. One
method, appropriate for spherical and cylindrical geometries, is to use a golden spiral algorithm to
distribute SMSM spheres on the surface of the geometry.'® A method appropriate for flat geometries
is to use a function like MATLAB’s meshgrid to generate a distribution of sphere positions on the
surface of a plane. This distribution can then be translated, rotated and combined with other planar
distributions of spheres to form complex SMSM geometries.>! When combining distributions, care
should be taken to eliminate redundant spheres so that none overlap. Root finders like Matlab’s
fsolve can then be used with Eq. (7) to determine appropriate sphere radii to match the SMSM model
self-capacitance to the self-capacitance of the solid model. Using the prescribed target voltage and
Eq. (1), the charge on each SMSM sphere is calculated. Using the same equation applied to an
N-sphere VMSM model optimization problem, an optimizer is used to select the optimal positions
and radii of the model spheres to minimize the following cost function at sample points [
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where L is the total number of electric field sample points.

Using this cost function results in two major improvements to the prior methodology. The first
improvement is the separation of VMSM model generations from any external probe geometry. The
second improvement is in the time required to complete all the steps in generating a VMSM model.
G II in (Reference 17) shows a comparison of the time required to create a three-sphere VMSM
model using force and torque fitting at 82 relative positions. These results indicate that force and
torque fitted VMSM models require setup time measured in hours. Although the proposed E-field
fitting methodology adds the step of creating a SMSM model for a given target geometry and volt-
age, this process requires significantly less computational effort than computing forces and torques
at many relative positions with FEM. (Reference 1) discusses fitting to much smaller numbers of
force and torque data points; however, using the proposed method, hundreds of data points are cal-
culated and used to create a VMSM model in less than the time it requires to calculate one force and
torque calculation using commercial FEM software. A flowchart comparing the previous force and
torque optimization procedure and the proposed E-field matching method is included in Figure 2.

SMSM Validation

Before optimizing on a cost function built from a SMSM model, it is prudent to compare the
accuracy of SMSM to other methods. The Method Of Images (MOI) provides an analytic infinite
series solution to the problem of predicting the force between two spherical conductors.?>23 The
method consists of placing smaller and smaller image charges within the body of each sphere to
balance out the potential on the surfaces. As the number of image charges increases, the solution
converges.

SMSM models of spheres are made with a variable number of spheres, and the force between the
two bodies is compared to that predicted by MOI. For this case, two spheres with 1 meter radius are
separated by 5 meters, and charged to 10 kV. The results are plotted in Fig. 3
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Figure 3. Comparison Between MOI and SMSM

The z-axis indicates either the number of images charges used in each sphere for the MOI, or the



(a) Distribution of Sample Points Around Cylinder (b) Two-Sphere VMSM Cylinder Model with Parameter
Annotations’

Figure 4. Cylinder Data Distribution and VMSM Model Parameters

number of individual spheres in each SMSM sphere. The MOI converges with 40 image charges,
and SMSM converges with around 100 spheres. Since both methods converge to the same value,
SMSM is validated as a method for predicting forces and torques on perfect conductors.

Target Geometry, Data Generation and Optimization Methods

Two target geometries are used to compare the proposed E-field matching method to the previous
force and torque method and to establish the accuracy of models generated using E-field matching.
A two-sphere VMSM model is created for a charged cylinder, with a radius of 0.5 m and a height of
3 m, centered at the origin and oriented along the y-axis using the F-field matching method. This
geometry is selected for easy comparison to previous work using force and torque matching.!17-18

Data for the study involving the cylinder geometry are generated at evenly spaced intervals on
90 degree arcs of circles centered at the origin, lying in the x-y plane and in the fourth quadrant.
The symmetry of the cylinder model requires data in only one quadrant for the optimization process.
Force and torque data is generated using Maxwell 3D at the selected sample points. A SMSM model
of the cylinder, shown in Figure 5, is created to generate E-field data at the same sample points.
Only sample points lying on the arc of a 5 m radius circle are used for optimization, as shown in
Figure 4(a).

Two optimization methods are used to generate cylinder VMSM models: a global optimization
method using Mathematica’s Differential Evolution algorithm is used to optimize the force and
torque cost function of Eq. (6), and MATLAB'’s fimincon local optimizer is used to minimize the
E-field cost function of Eq. (8). Self-capacitance for the cylinder is calculated using Maxwell 3D.

Since a two-sphere VMSM model is used to represent the cylinder and the cylinder has symmetry
about the z-axis, the VMSM model can be parameterized by one radius value r, which is shared
by both spheres, and the separation distance, p, between the two spheres. This model is shown in
Figure 4(b).

Using this model, an exact formula for the VMSM model self-capacitance can be derived, as



Figure 5. SMSM Model of a Cylinder, Color Indicates Charge

shown in Eq. (9)!

1 2rp

Cker+p
Imposing a self-capacitance constraint, matching the VMSM model self-capacitance to the value
calculated by FEM, ensures that Lorentz forces and far-field Coulomb forces are automatically
matched. In addition, it reduces the optimization problem to one dimension, because for any r
value there is only one corresponding p value for which the constraint is met. Solving Eq. (9) for p
yields Eq. (10)!

(€))
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Since C),,0q is a scaling of the self-capacitance, it is used to impose the self-capacitance constraint in
the following studies because its value is on the order of model parameters. Both the optimal r and
p values are solved for using finincon and the self-capacitance constraint is imposed numerically.

The second target spacecraft geometry that is selected for this study is a box-and-panel satellite
modeled as a cube shaped bus with a long, slender panel attached. The bus width, height and depth
are 3 m. The panel width is 3 m, depth is 0.2 m and height is 8.5 m. The panel is located on the
top of the bus extending in the z-axis direction with one of its large faces coplanar with the positive
y face of the bus. This model geometry is shown in Figure 6. This geometry is selected because
it has significant variation from simple geometric shapes like cylinders and represents a realistic
target spacecraft. It also shows symmetry that can be used to impose additional constraints on the
positions of the VMSM model spheres, and this symmetry is exploited to reduce the amount of data
that is required for the optimization procedure.

A SMSM model of the box-and-panel is generated using MATLAB’s meshgrid feature, and elec-
tric field data is generated using Eq. (5), at positions spread radially about the SMSM model. Sample
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Figure 6. Box-and-Panel Geometry with Data Point Distribution

points are generated using the golden spiral algorithm, which places equally spaced points on the
surface of a sphere.?* This radial spread of electric field data produces distributions of shells of
data, which are easily selected or neglected, or reduced to hemispheres or octants for fitting, such
as the one shown in Figure 6. Whole spherical shells of data are produced for the box-and-panel
geometry; however, due to the symmetry of the model, the complete behavior of the electric field
produced by the SMSM model can be captured in one hemisphere of data.

One, two and three-sphere VMSM reduced-coordinate models are created with this data using
FE-field matching and MATLAB’s fimincon optimization algorithm. Various sets of data, including
whole spheres, hemispheres and multiple shell sets, are used in the optimization processes. In ad-
dition, a three-sphere 4 degree-of-freedom VMSM model is generated using F-field matching and
fmincon. Only shells with radii larger than 12 m are used for optimization to avoid overlap be-
tween sample points and SMSM spheres, which would invalidate Eq. (5). Like the cylinder model
optimization process, the box-and-panel self-capacitance is calculated using Maxwell 3D and the
self-capacitance constraints on the optimization processes are imposed numerically. Additional in-
equality constraints are imposed for the two and three-sphere VMSM models to ensure aesthetically
pleasing models in which spheres do not overlap.

COST FUNCTION COMPARISON

The cost function of Eq. (6) is compared with the proposed electric field cost function of Eq. (8) to
compare their characteristics. Both cost functions are used to generate two-sphere VMSM models
for a perfectly conducting cylinder charged to 30 kV. Maxwell 3D is used to determine a cylinder
self-capacitance value of 106.8345 pF. Noting a potential singularity in Eq. (10) when r is one
half Choq, the cost function values, shown in Figures 7(a) and 7(b), along the intersection with
the self-capacitance constraint surface are plotted against r for which p is positive. The r values
minimizing both cost functions are nearly identical, differing by only 0.2%. Investigating the cost
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Figure 7. Force and Torque and E-field Cost Functions for Cylinder Model

function sensitivities near both minima suggests that force and torque errors are more sensitive
to model parameters than F-field errors are. The proposed E-field cost function shows desirable
characteristics, particularly for a local optimization algorithm like fimincon. It is generally smooth
when compared with the force and torque cost function, and apart from a small region near the
singularity in p, approaches its minimum unimpeded.

CONSTRAINED AND UNCONSTRAINED BOX-AND-PANEL VMSM MODELS

One, two and three-sphere box-and-panel VMSM models are generated with and without a self-
capacitance constraint in order to determine the usefulness of the constraint when applied to an
optimization problem without far-field data noise. Models are fit to data in three whole spherical
shells with radii of 15, 20 and 25 m. Symmetry of the box-and-panel geometry about the y — 2
plane is used to reduce the 4N degree-of-freedom optimization problem to a 3/V degree-of-freedom
problem. Imposing a self-capacitance constraint reduces the degrees-of-freedom to 3N — 1. The
model is charged to 30 kV. Maxwell 3D is once again used to calculate self-capacitance, and returns
a value of 336.14 pF. Optimizer initial conditions are chosen loosely based on the box-and-panel
geometry. A visualization the VMSM models of the box-and-panel geometry is included in Figure 8.
Tables 1-3 show the initial and final conditions for the one, two and three-sphere box-and-panel
models, with and without the self-capacitance constraint.

Table 1. Initial and Final States for One-Sphere VMSM Model Optimization, C- Constrained, NC-
Non-Constrained

Ry [m] | y1 [m] | 21 [m]

Initial 1.000 | 0.000 | 0.000
Final C 3.021 | 0.626 | 2.914
Final NC | 2951 | 0.608 | 2.785

Shell-averaged force and torque errors of the six VMSM models with respect to the SMSM gen-
erated data are shown in Figures 9(a) and 9(b), respectively. As can be seen, the self-capacitance
constraint has utility even when far-field noise is not a concern. In particular, when generating a one-
sphere model the self-capacitance constraint ensures that force errors far from the target geometry
continue to decay as sample point radius is increased. The effect of the self-capacitance constraint

11
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Figure 8. Visualizations of VMSM Box-and-Panel Geometry Models

Table 2. Initial and Final States for Two-Sphere VMSM Model Optimization, C- Constrained, NC-
Non-Constrained

Ry [m] | Ro [m] | y1 [m] | 21 [m] | y2 [m] | 22 [m]

Initial 1.000 1.000 | 0.000 | 0.000 | 1.400 | 6.000
Final C | 2.202 1.458 | 0.135 | 0.210 | 1.596 | 8.183
Final NC | 2.201 1.471 | 0.134 | 0.207 | 1.600 | 8.177

Table 3. Initial and Final States for Three-Sphere VMSM Model Optimization, C- Constrained, NC-
Non-Constrained

Ry [m] | Ro [m] | R3[m] | y1 [m] | 21 [m] | y2 [m] | 22 [m] | y3 [m] | 23 [m]

Initial 1.000 1.000 1.000 | 0.000 | 0.000 | 1.400 | 6.000 | 1.400 | 9.000
Final C | 2.039 1.323 1.120 | -0.008 | -0.166 | 1.319 | 4.584 | 1.555 | 8.972
Final NC | 2.041 1.322 1.119 | -0.007 | -0.163 | 1.321 | 4.612 | 1.556 | 8.974

is also dramatic for the two-sphere model. The force errors of the two and three-sphere models are
nearly identical at 30 m from the target geometry when the constraint is imposed, whereas without it
the two-sphere model model force errors remain significantly larger than the three-sphere model’s.
It is interesting to note that, as more spheres are added to the VMSM model, self-capacitance is
matched automatically as displayed by the three-sphere force and torque errors. Both the con-
strained and non-constrained model errors overlap, and the optimal model parameters of each are
nearly identical.

Another benefit of imposing the self-capacitance constraint is that it can significantly reduce

12
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Figure 9. VMSM Model Errors with Respect to SMSM Data, (—) Constrained, (- -)
Non-Constrained

computational effort. The number of function calls required to generate each of the six models is
recorded. The results are shown in Figure 10. The results show that imposing the self-capacitance
constraint consistently results in increased performance regardless of how many sphere are used to
create the VMSM model. This performance increase is due to the reduced dimension of the search
space when a self-capacitance constraint is enforced. Given the increased force and torque accuracy
and decreased computation effort, the self-capacitance constraint should be enforced even when
far-field noise is not a concern.
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Figure 10. Total Function Calls Required to Generate One, Two and Three-Sphere
Box-and-Panel VMSM Models

REDUCED-SHELL DATA SETS WITH SELF-CAPACITANCE CONSTRAINT

Since imposing a self-capacitance constraint forces force vectors in the far-field to automatically
match, it is desired to investigate whether or not fewer numbers of shells with smaller radii can be
used to effectively generate VMSM models. This question is interesting for two reasons: smaller
data sets will reduce the amount of time required for optimization, and fitting to data closer to the
target might increase near-field accuracy without significantly affecting accuracy at larger distances.

A three-sphere VMSM model is used to model the box-and-panel geometry. The VMSM model

13
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Figure 11. Shell-Reduction Three-Sphere VMSM Model Errors, (—) 3 Whole Shells,
(—) 15 m Shell, (—), 14m Shell, (—) 12 m Shell

is fit to single shells at radii of 12, 14 and 15 m. The model voltage is set to 30 kV, and a self-
capacitance constraint of 336.14 pF is imposed. The accuracy of these models are compared with
each other and to the three-sphere constrained model generated using three whole shells. The re-
sulting shell-averaged force, torque, and average error plots when compared with the SMSM model
are shown in Figures 11(a)-11(c). These results show negligible differences in force and torque
accuracy near the target, while the model fitted to the 12 m radius shell shows degraded accuracy
far from the target. Accuracies of models fit to three whole shells and to 14 m and 15 m shell radii
are nearly identical. The practical impact of the degraded accuracy for the model fitted to the 12 m
shell is very small; however, for high accuracy at large distances from a target, a model should be
fitted to at least one shell with a larger radius.

The performance impact of reducing the number of shells is analyzed by recording the number
of function calls required to generate each model. The results are shown in Figure 12. These results
show that there is not a significant gain in performance from just reducing the number of shells used
in the optimization process; however, a significant gain does arise when using single shells closer to
the target geometry. The number of function calls required to generate a three-sphere VMSM model
of the box-and-panel using a single 12 m shell is significantly less than half the number of function
calls required to generate the same model using a single 15 m shell or 3 shells. The performance
increase comes with degraded accuracy at large distances, so the requirements of the model must be
considered before using shell reduction.
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Figure 12. Total Function Calls for Three-Sphere Models Generated with Shell Reduction

Table 4. Initial and Final States for Three-Sphere 4DOF VMSM Model Optimization

Initial | Final

Ry [m] | 1.000 | 2.051
Ry [m] | 1.000 | 1.299
Rs [m] | 1.000 | 1.106
21 [m] | 0.000 | -0.004
y1 [m] | 0.000 | -0.004
2z [m] | 0.000 | -0.136
25 [m] | 0.000 | 0.038
yo [m] | 1.400 | 1.385
2z [m] | 6.000 | 4.788
25 [m] | 0.000 | -0.028
ys [m] | 1.400 | 1.534
23 [m] | 9.000 | 8.993

MODELING USING GENERAL 4 DEGREE-OF-FREEDOM MSM SPHERES

Previous work focuses on simple geometries that have high levels of symmetry, like the cylinder
model. For geometries like these, the number of MSM optimization parameters can be reduced
significantly by specifying, for example, that the cylinder MSM spheres must lie on the symmetry
axis. As geometric complexity increases, so does the effort required to find symmetries to exploit
and analytically parameterize them. Using general MSM 4 degree-of-freedom (4DOF) modeling
allows each MSM sphere to have 3 location and one radius degree of freedom. This avoids the need
to find symmetry and allows for optimization in a 4N dimension search space. Each parameter
associated with a VMSM model sphere is found through optimization, and the up-front human-
involvement cost of generating a model is reduced.

A three-sphere VMSM model of the box-and-panel geometry is generated using data in shells
with radii of 15, 20 and 25 m. A self-capacitance constraint is enforced using a value of 336.14 pF.
The model voltage is set to 30 kV. The initial conditions for the 4DOF fitting problem are shown
in Table 4. The force and torque accuracy of the 4DOF model with respect to the box-and-panel
SMSM model is compared to three-sphere 3DOF models using three whole shells and one half shell
at 15 m in Figures 13(a) and 13(b). The model with the least accuracy is the 3DOF model fitted
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Figure 13. 4DOF Force and Torque Error Comparison, (—) Three-Sphere Model
Three Whole Shells, (—) Three-Sphere Model One Half Shell, (—) Three-Sphere
Model One Whole Shell (4DOF)

Table 5. Total Function Calls for 4DOF Model Comparison

Model Total Function Calls
4DOF 1471866
3DOF 3 Shells 2640779
3DOF 1 Half Shell 875643

to one half shell of data. The 4DOF model’s accuracy resembles the 3DOF model fitted to three
whole shells. Since the optimizer knows nothing about the symmetry of the box-and-panel model, a
whole shell of data must be used to generate an accurate model when 4DOF is used. Total function
calls for each of the models shown in Figure 13 are shown in Table 5. Surprisingly, the 4DOF
modeling method results in nearly half the function calls of the 3DOF three shell or 3DOF one 15
m shell models. Unsurprisingly, the best model from a computation perspective is the 3DOF one
half shell model. These results show that 4DOF modeling using E-field fitting is promising from
both an accuracy and performance perspective.

FUTURE WORK

The ultimate test of this fitting method is a comparison between the generated VMSM model
forces and torques and numerically generated force and torque data from FEM software. SMSM
models produce very accurate force and torque data when compared to Maxwell 3D, and it is
promising that the F-field fitting technique produces VMSM models that not only match a SMSM
model’s electric field to high accuracy, but also match SMSM predicted forces and torques. Nev-
ertheless, future research will be conducted to verify that VMSM models generated using electric
field fitting do match FEM data to high accuracy.

The performance of the E-field matching method suggests that the results of the cost function
analysis can be extrapolated to higher dimension search spaces; however, more research into the
convergence properties of the F-field fitting technique should be carried out. Although a self-
capacitance constraint is imposed in this work, other appropriate constraints might be found to
further reduce the dimension of the search space and aid performance. Research into the conver-
gence properties of the F-field matching method might lead the way to fully autonomous model
generation using 4DOF VMSM models.
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The selected target geometry represents a particular target of interest that might be found at
GEO. The box-and-panel target geometry is not representative of all objects of interest, and VMSM
modeling of more complicated geometries should be investigated. These geometries should be
selected to represent a healthy cross section of potential targets at GEO. An assumption is made in
this work that the target is a perfect conductor, but many objects of interest have dielectric properties.
Extension of this work to model dielectrics is a worthwhile pursuit.

CONCLUSION

Using E-field matching and VMSM sphere populations provides highly accurate fits with re-
spect to SMSM models with lower computational burden than previously explored methods. The
presented E-field matching fits to smooth, analytically generated data, does not rely on probe ge-
ometry and has a simpler cost function that easily leverages self-capacitance constraints to increase
computational efficiency, improve force and torque fits far from a target and reduce the amount of
data required for optimization. The improvements with F-field matching over previously studied
methods is apparent int he more rapid convergence of two and three-sphere VMSM models of a
box-and-panel spacecraft. The proposed FE-field matching method provides a more suitable ap-
proach for complicated spacecraft geometries and higher degree-of-freedom optimizations due to
reduced computational time and improved fit accuracy. F-field matching provides a fast and simple
means of generating VMSM models for electrostatic modeling of spacecraft and debris.
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