
AIAA 05-7116
Spacecraft Relative Motion Estima-
tion using Visual Sensing Tech-
niques
Mark J. Monda and Hanspeter Schaub
Virginia Polytechnic Institute and State University, Blacks-
burg, VA 24061-0203

AIAA Infotech@Aerospace Conference
September 26–29, 2005 / Arlington, VA

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 22091
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Techniques

Mark J. Monda∗ and Hanspeter Schaub†

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0203

Precise relative navigation between an unmanned vehicle and a target, which
could be a stationary or a second moving vehicle, is an important capability. Possi-
ble applications include formation operations, as well as autonomous rendezvous and
docking of either spacecraft or aircraft. A test bed setup is described where unmanned
ground vehicles are used to simulate the physical motion of aerospace vehicles, and
provide the attached sensor packages with realistic relative motion in both indoor and
outdoor environments. Using an unmanned robotic ground vehicle, the visual servo-
ing problem is investigated and simulated using actual hardware in real world test
conditions. A simple camera and an onboard computer running a color statistical
pressure snake algorithm are employed to track a visual target within the camera im-
ages in real time. The images are used to estimate the relative position and motion
between the vehicle and the target. The effectiveness of the nonlinear visual servoing
algorithm is demonstrated through experimental hardware tests.

I. Introduction

MANY future space vehicle systems will require precise relative navigation between different vehicles. For ex-
ample, a small, unmanned, free-flying scout vehicle that is able to maintain precise formation with a larger

vehicle, such as the Space Shuttle or the International Space Station, could serve many purposes. The scout could fly
around the larger craft, inspecting for damage or unusual wear and tear. It could also act as a helper vehicle, assisting
astronauts performing space construction projects. Or, it could conduct repair or deployment operations in proximity
to the larger vehicle.

In all of these applications, precise centimeter-level accuracy relative navigation between the vehicles is required.
Many possible technologies have been suggested for achieving this type of precision navigation at extremely close
ranges. For example, differential GPS, optical beacon systems, or radio triangulation all show promise in certain
applications, but also have drawbacks. Differential GPS would be unable to guide vehicles in proximity to spacecraft
flying to the Moon or Mars. In Low Earth Orbits (LEOs) the differential GPS solution would also be susceptible
to extreme multi-path errors due to the very close proximity of the scout vehicle to the spacecraft. Optical Beacon
systems or radio triangulation require the addition of substantial hardware to the spacecraft, and are dependent on
active communication between the vehicles.1 However, such systems could function at very close ranges.

A novel visual sensing technique using active deformable contours2–5 is investigated in this paper. Here the scout
craft is equipped with a simple camera. Using the deformable contour technique to track a visual feature on the primary
spacecraft, the relative motion of the scout craft is estimated. This method has several exciting benefits: First, it does
not require any additional hardware on the primary vehicle, nor any active communication between the vehicles. In
addition, visual sensing works regardless of location (orbiting about a planet or underway between planets). Finally,
visual sensing tends to become more accurate at close ranges, when precise relative navigation is most important.

However, visual sensing techniques have drawbacks as well. It has proven difficult to develop methods that work
well in changing lighting conditions. Therefore, it can be difficult to extract precise relative navigation data when
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varying lighting conditions cause irregular reflection and high noise levels, especially near the target’s edges and
boundaries.6 In addition, visual sensing is usually rather computationally intensive, and thus challenging to use for
real-time control applications.

Much work in the field of computer vision has focused on developing relative motion visual sensing techniques.
The use of Kalman filtering in these algorithms has proven useful for mitigating the effects of lighting variation and
image noise.7 Many existing algorithms, though, are designed to analyze the motion of an object in an image flow
taken from a stationary observer.8 Matthies, Szeliski, and Kanade have shown that range to a target can be estimated
by prescribing a known camera motion.9 However, in many possible space scout vehicle applications, the opposite is
desired: Given an image flow taken from a moving drone vehicle, the relative range, orientation, and motion between
the vehicles is sought.

The use of the visual snake sensing technique is explored to extract relative navigation information from an image
flow. A collaborative, although non-communicative, target image fixed to the target vehicle is considered. Statistical
pressure snake algorithms are used to track the target and calculate properties such as center of mass, area, and side
lengths. A Kalman filter is developed to estimate and tune the target size/camera focal length calibration parameter
during maneuvers. The scout spacecraft operates in inertial free space and is able to measure its inertial motion through
an on-board IMU. The performance of this visual servoing technique is demonstrated in hardware simulations. In
Reference 10, a related velocity-based visual guidance law is presented with a constant feedback gain. The visual servo
control in this development will allow the feedback gain to be time dependent. This will allow estimator-covariance
dependent gain scheduling to be implemented. Compared to common robotic applications, this scout vehicle vehicle
is assumed to be free-flying about the primary craft. Any thrusting that occurs is measured using an accelerometer.

II. Visual Sensing using Color Statistical Pressure Snakes
The visual sensor hardware used in these relative navigation experiments consists of a digital camera, a frame-

grabber card, and an on-board PC-104 computer. The computer processes the images using a recent real-time statistical
pressure snake algorithm.4 Tracking a target in an image is a segmentation problem. Given the N ×M pixels of the
image, the task is to find a contour which will outline the desired target in each frame. How to perform this action in
an unstructured environment where the lighting conditions can vary is a very challenging problem which is actively
being researched in the computer science imaging community.

In 1987, Kass et al. proposed the original active deformable model to track targets within an images stream.11

Also referred to as a visual snake, the parametric curve is of the form

S(u) = I(x(u), y(u))′, u = [0, 1] (1)

where I is the stored image. This curve is then placed into an image gradient derived potential field and allowed
to change its shape and position in order to minimize the energy E along the length of the curve S(u). The active
deformable models can be divided into two groups:12 parametric models (snakes)11, 13 and level-set models (geometric
contours).14 The original Kass snake formulation is a parametric snake solution. However, it is very difficult to tune
and has several well documented limitations. For example, the target contours tend to implode in the presence of weak
gradients. While level-set models show excellent segmentation and robustness capabilities, they remain challenging to
implement in real-time applications. Instead, this current test bed setup uses a modified parametric snake formulations
proposed by Ivins and Porrill.2 Here a pressure function is introduced which computes the statistical similarity of
pixel values around a control point to create a pressure force which drives the snake towards the target boundaries.
The energy function is given by

E =
∫ 1

0

[
Eint(S(u)) +Epres(S(u))

]
du (2)

where the pressure energy function Epres is

Epres = ρ (∂S/∂u)⊥ (ε− 1) (3)

and ε is the statistical error measure of the curve S(u) covering the target. Perrin and Smith suggest replacing the Eint
expression with a single term that maintains a constant third derivative.13 This simplified formulation includes an even
snake point spacing constraint. The resulting algorithm does not contain the difficult to tune tension and curvature
force terms, yielding an easier to use and more efficient parametric snake algorithm.
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Numerical efficiency is critical when trying to apply visual snakes to the control of autonomous vehicles. A
fast snake point cross-over check algorithm is implemented which yields significant speed improvements for large
sets of snake points.5 The resulting visual snake implementation is referred to as the color statistical pressure snake
and is currently operational in the Virginia Tech Autonomous Vehicle Systems (AVS) Lab. The promising tracking
performance illustrated in Figure 1 has also been independently verified in Reference 15.

Target Center of MassEstimated Target Corners 

Active Contour Snake

Figure 1: Statistical pressure snake tracking a visual target. The snake, principal axes, and corner locations are
shown on the image.

Figure 1 shows an image capture where the visual snake algorithm is tracking a target. This tracking can be
performed at the full frame rate of 30 Hz, even with a relatively slow 800 MHz processor. No specialized DSP
chips are employed. Further, as will be discussed in Section III., the visual snake contour line can be used to extract
additional target features such as target image principal axes direction and size, centroid location,16 and even target
corners.17

III. Extracting Target Image Features
A. Calculating the Moments of a Parametric Curve

To extract the desired image shape features, it is required to compute the area moments Mij of the parameterized
curve. Given these moments, it is possible to compute the shape area, center of mass (C.M.), and shape eigenfactors.
Assume the snake is roughly outlining a shape as shown in Figure 1.

The ij-th area moments of the shape are defined as

Mij =
∫∫

xiyj dx dy (4)

where the area integral should be taken over the area defined by the closed snake curve. If the area A was defined
through a set of pixel coordinates (xn, ym), then it would be trivial to compute the various area moments through

Mij =
N∑

n=1

M∑
m=1

xi
nyj

m (5)

However, in the current problem setup the area A is defined through a parametric curve outlining this area. Recall
Green’s theorem which relates an area integral to a line integral through∫∫ (

∂Q

∂x
− ∂P

∂y

)
dx dy =

∮
Pdx + Qdy (6)

3 OF 14
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



Using this theorem, it is possible to avoid the lengthy area integral and simply compute a line integral along the snake
points. An optimized routine discussed in Reference 18 can be used to compute the moments of an area defined
through a discrete set of edge points.

Note that the area A of the target shape is simply the 00-th area moment:

A = M00 =
∫∫

dx dy (7)

The center of mass (xc, yc) of the shape is computed using the first area moments M10 and M01:

xc =
M10

A
=

1
A

∫∫
x dx dy (8a)

yc =
M01

A
=

1
A

∫∫
y dx dy (8b)

Since an area integral is used to compute the target C.M., this computation is rather insensitive to noise and minor
deviations between the snake contour and the actual target contour. Minor deviations along the snake typically cancel
each other and yield a steady and accurate C.M. estimate.

B. Computing the Shape Eigenfactors
Given the target shape area and C.M., we would like to determine the principal shape orientation and size. These

features are computed by evaluating the 2nd order moments. Here we assume that the coordinate system origin has
been translated to coincide with the computed target shape center of mass. Let the inertia-like matrix [I] be defined as

[I] =
[
M20 M11

M11 M02

]
=

[
Ixx Ixy

Ixy Iyy

]
(9)

Note that [I] is symmetric and positive definite. The principal orientation angle θ determines a coordinate system
rotation which will yield a diagonal inertia matrix [I ′]. Let [C] be the direction cosine matrix (rotation matrix)19 which
will map the coordinate axis orientations between the two coordinate frames.

[C] =
[

cos θ sin θ
− sin θ cos θ

]
(10)

The rotation matrix is defined such that the coordinate transformation

[C][I][C]T = [I ′] (11)

or [
cos θ sin θ
− sin θ cos θ

] [
Ixx Ixy

Ixy Iyy

]
=

[
I1 0
0 I2

]
︸ ︷︷ ︸

[I′]

[
cos θ sin θ
− sin θ cos θ

]
(12)

will result in a diagonal inertia matrix [I ′]. The inertias I1 and I2 of the diagonal matrix are called the principal
inertias. The angle θ is defined here as the orientation of the I1 inertia axis. Note that I1 and I2 are the eigenvalues of
the matrix [I], while the corresponding eigenvectors will determine the principal inertia axes orientations. Since [I] is
symmetric and positive definite, the eigenvectors are guaranteed to be orthogonal.

To compute the eigenvalues Ii of [I], we need to solve the quadratic equation

det
([

Ixx − Ii Ixy

Ixy Iyy − Ii

])
= (Ixx − Ii)(Iyy − Ii)− I2

xy = 0 (13)

The principal inertias I1 and I2 are then given by:

I1 =
1
2

(
Ixx + Iyy +

√
(Ixx − Iyy)2 + 4I2

xy

)
(14a)

I2 =
1
2

(
Ixx + Iyy −

√
(Ixx − Iyy)2 + 4I2

xy

)
(14b)
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Note that here we define I1 ≥ I2. Thus we can assume that I1 will always be the largest principal inertia of the target
shape.

To determine the eigenvectors of [I] we could solve the standard eigenvector problem. However, since we know
that for a symmetric, positive definite matrix the eigenvectors will be orthogonal unit vectors, we can take advantage
of this fact by simply solving for the angle θ in Eq. (12). Carrying out the matrix multiplications in Eq. (12) leads to
the four equations

cos θIxx + sin θIxy = I1 cos θ (15a)
cos θIxy + sin θIyy = I1 sin θ (15b)

− sin θIxx + cos θIxy = −I2 sin θ (15c)
− sin θIxy + cos θIyy = I2 cos θ (15d)

Multiplying Eq. (15a) by sin θ, Eq. (15b) by cos θ, and subtracting one from the other, leads to

sin θ cos θ(Ixx − Iyy) = (cos2 θ − sin2 θ)Ixy (16)

This equation can be solved for the desired angle θ in terms of the given inertias Ixx, Iyy and Ixy:

θ =
1
2

tan−1

(
2Ixy

Ixx − Iyy

)
(17)

When numerically evaluating the tan−1() function, it is important to use the atan2() function which takes both the
numerator and denominator as arguments. Doing so will then return the angle θ in the proper quadrant and without
singularities.

Given the principal axis orientation angle θ, it is now trivial to compute the desired eigenvectors (principal axis
unit direction vectors) using:

v1 =
(

cos θ
sin θ

)
(18a)

v2 =
(
− sin θ
cos θ

)
(18b)

Note that the eigenvector directions are only unique to within a sign. Both θ and θ + π would yield the proper
eigenaxis orientation angle. The snake algorithm currently keeps track of the previous primary eigenaxis angle and
make sure that no switching occurs between the two possible solutions.

C. Determining the Principal Axis Dimensions
Given the principal inertias I1 and I2 of the shape being tracked by the snake, it is possible to estimate some shape

dimensions if we can assume that the target is of a particular shape. For example, let the target area be a rectangular
shape with a half-height h and half-length l. Note that we are assuming here that l ≥ h. The principal inertias Ii are
then related to the box dimensions h and l through

I1 =
A

3
l2 (19)

I2 =
A

3
h2 (20)

where A = 4lh is the box area. These two equations can be trivially solved for the desired box dimensions:

l =

√
3I1

A
(21)

h =

√
3I2

A
(22)

If the true target shape is not a perfect rectangle, then this routine will approximate the equivalent box dimensions by
using the principal inertias. This is important when tracking non-collaborative visual targets with unknown shapes.
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The computed principal axis still provide information about the apparent image size, which can be used to estimate
the depth of the target.

Figure 1 illustrates the rectangular box dimensions being estimated from the snake area principal inertias. The
primary inertia axis is shown in red, while the secondary inertia axis is shown in blue. The target center of mass is
highlighted by a green circle. The yellow arc on the green circle illustrates the heading angle θ. Note that despite
the snake rounding off the box corners, the box dimensions are estimated rather accurately to within an image pixel.
This computation is robust to small shape errors because the area integral is only secondarily affected by these snake-
tracking errors.

This algorithm can be modified for any pre-defined two-dimensional shapes which are parameterized through two
coordiinates, as long as an analytical solution exists to extract the shape parameter from the principal inertias. If the
target shape is assumed to be nearly elliptical, then the semi-major axis a and semi-minor axis b are computed using

a =

√
4I1

A
(23)

b =

√
4I2

A
(24)

where A = abπ is the ellipse area.
Thus, besides tracking the visual target centroid, the visual snakes allow us to track other features such as the

principal axis or target area. This information can be used to determine further relative motion information beyond
the centroid heading. The following section discusses how the principal image axis are used to estimate depth/camera
parameters on the fly.

  

      

d

∆rf

h

Figure 2: Pin-Hole Camera Illustration

IV. Tracking Law with Time-Dependent Gain
Assume a craft is to move to a visual target with piecewise-constant or very slowly varying visual features, and

stop at a prescribed distance ∆rr. Using the visual snakes as the tracking method, the snake principal axes can be used
to determine the target distance.20 If the target has a known size d and the camera has a known focal length f , then
the principal semi-major axis can be used to determine the distance to the target. Consider the simple pin-hole camera
model in Figure 2. By measuring the the length of the target principal semi-major axis h, the distance is computed
using

∆r =
df

h
=

1
αh

(25)

where

α =
1
df

(26)
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Figure 3: Range Coordinates and Tracking Errors.

is piecewise-constant. Let α be the true value for a given camera and target combination. Using a calibration routine
an estimated value α̂ can be obtained. The corresponding estimated range to target is

∆r̂ =
1

α̂h
(27)

We assume for now that α is a known constant. Let ∆rr be a desired distance between the camera and the target as
shown in Figure 3. The target position relative to an inertial reference frame is rT , while the inertial camera position
is r. The current separation distance and rate between camera and target is

∆r = rT − r > 0 (28)
∆ṙ = ṙT − ṙ (29)

The range tracking error is then defined as

δr = ∆rr −∆r (30)
δṙ = ∆ṙr −∆ṙ (31)

Thus δr is the visual target tracking error in the separation distance control. The commanded vehicle velocity ṙ in
Reference 10 is

ṙ = −γ(t)f(δr) (32)

where f() is an odd, smooth bounding function and γ(t) is a time varying feedback gain. Let c > 0 be a finite constant
value, then f(δr) must satisfy

lim
δr→±∞

f(δr) = ±c (33a)

f(0) = 0 (33b)
f(δr)δr > 0 (33c)

For example, f(x) = arctan(x) could be used. For small tracking errors, this nonlinear steering law approximates
a classical proportional feedback control law, while for large tracking errors a smoothy saturated control signal is
produced. Further, the two kinematic control law gains γ and c have simple interpretations. The gain c should be set
less than the maximum vehicle velocity, while γ should be set to provide the desired regulator stiffness. Note that
having a time-dependent gain γ(t) makes the closed-loop dynamics time dependent, and thus the system has become
non-autonomous.
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To analyze the stability of this kinematic steering law, let us define the Lyapunov function

V (δr) =
δr2

2
(34)

Because this Lyapunov function does not explicitly depend on time, it is trivial to find time-independent functions
W1(δr) and W2(δr) such that W1 ≤ V ≤ W2. Thus this is a valid Lyapunov function V for a non-autonomous
system.

Let us assume that the target is inertially stationary and ṙT = 0. Taking the time derivative, the Lyapunov rate is

V̇ = δṙδr = −γ(t) δr f(δr) (35)

To show that the steering law ṙ in Eq. (32) is asymptotically stabilizing with a non-autonomous system, a positive
definite function W3(δr) must be found such that21

∂V

∂t
+

∂V

∂r
ṙ ≤ −W3(δr) (36)

The term ∂V
∂t is zero because a V (δr) is chosen which does not depend on time. If the time-dependent feedback gain

satisfies the lower-bound condition

γ(t) ≥ γ0 > 0 (37)

then setting

W3(δr) = γ0 δr f(δr) (38)

will satisfy the condition in Eq. (36), and the proposed range steering law ṙ is asymptotically stabilizing. The gains
can vary with time, and convergence is guaranteed as long as the gain never becomes zero.

To implement this control, the true α parameter is not available. Using the estimated α̂ value, the steering law then
becomes

ṙ = −γ(t)f
(

1
α̂h
−∆rr

)
(39)

If α̂ 6= α, then the steering law will not yield asymptotic convergence. The control is still stabilizing, but only the
estimated tracking errors δr̂ = ∆rr −∆r̂ will go to zero, not the actual tracking error δr.

V. Parameter Estimation
If the target has an unknown or changing physical size, or the camera focal length is not precisely known, we

would like to be able to estimate the parameter α on the fly. Note that this process assumes that the physical target size
is piecewise-constant throughout the vehicle motion. If the target is a flat rectangle, for example, then the target image
area and principal axes will depend on the viewing angle. It is assumed here that the craft will perform a straight-on
approach where the heading angle changes relative to the target will be small. In this case, image foreshortening
effects are negligible since they depend on second order terms of the heading miss-alignments.20

To estimate the target size/focal length relationship α, the Kalman update equation is used.22 This is essentially a
Kalman filter where no parameter dynamics are present (i.e. α̇ = 0).

Let y be the vector of M measured states, while x is the vector of N estimated parameters. The following notation
will be used. The x̂ symbol is used for estimated states, while hatless symbols x are the true states. The right subscript
denotes the current discrete time value of this estimate, while the right superscript± symbol indicates if a measurement
correction has been applied (+) or not (-). Thus, x−k is the estimate of the state vector x at time step k before any
measurement corrections were applied.

To estimate the parameter α, with a slight abuse of notation we set

x = α (40)

To estimate α using the Kalman update equation, we need α to appear linearly in our measurement vector. The target
principal semi-major axis d is measured through the image length h. This measurement and α are related through

1
h

= α∆r (41)
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where the desired parameter α appears linearly. If the distance ∆r between the vehicle and the target were known, then
this equation could be used as the measurement equation. However, the actual distance to the target is an unknown
state that we are attempting to determine using the visual snake information. Instead of using Eq. (41) directly, let us
write this equation at two different time steps k and k − 1:

1
hk

= α∆rk (42a)

1
hk−1

= α∆rk−1 (42b)

If we write the M -dimensional measurement vector yk as

yk =
1
hk
− 1

hk−1
= α (∆rk −∆rk−1) (43)

then we no longer need to know the actual distance to the target. Instead, the distance traveled toward the target
∆rk −∆rk−1 must be known. This information can be obtained from an IMU, or using the vehicle wheel encoders
along with dead-reckoning. A similar technique of extracting the camera/target parameters by performing known
motions is also discussed in Reference 23 where it is applied to the visual 6 degree-of-freedom control of a manipulator
end effector. For the visual control of the unmanned ground vehicle, it is of interest if the wheel encoder information
will be sufficient to effectively estimate the α parameter. The encoder derived vehicle motion will not be precise,
but should provide a reasonable estimate of the distance traveled. The goal of this control is not to achieve very
high positioning accuracy, but rather, to achieve a robust autonomous strategy which will reposition the vehicle in
an unstructured environment. Once the vehicle arrives in the proximity of the target, a human operator can provide
further guidance.

To use the Kalman update equations to estimate α during the vehicle motion, the following equations are used. Let
use define the M ×N matrix [H] as

[Hk] = [∆rk −∆rk−1] (44)

To current observation vector is then

yk = [Hk]xk (45)

Given a current state estimate x̂−k , applying the measurement update yields the corrected estimate:

x̂+
k = x̂−k + [Kk]

(
yk − [Hk]x̂−k

)
(46)

where [Kk] is the current Kalman gain matrix

[Kk] = [P−k ][HT
k]

(
[Hk][P−k ][Hk]T + [Rk]

)−1
(47)

The N × N matrix [P−k ] is the current, un-updated covariance matrix of the estimated states x̂k, while the M ×M
[Rk] is the covariance matrix of the measurement yk. To update the covariance matrix [Pk] we use22

[P+
k ] =

(
[IN×N ]− [Kk][Hk]

)
[P−k ] (48)

With a Kalman filter, the states would be updated between measurements using their differential equations. How-
ever, in this piecewise-constant parameter estimation problem, there are no differential equations. The only quantity
that must be updated between measurements is the covariance matrix. Let the N × N matrix [Qk] be the current
process noise matrix. The covariance matrix [Pk] is then updated using

[P−k+1] = [P+
k ] + [Qk]∆t (49)

where ∆t is the time between measurement updates. With a non-zero [Qk], the uncertainty of the current estimate
[Pk] will increase over time without measurement updates.
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VI. Hardware Simulation
The following hardware implementation is considered. The feedback gain γ(t) is set to be dependent on the

covariance matrix value. The higher the covariance P (state estimation uncertainty), the lower the feedback gain
should be. Thus, if the vehicle is very uncertain about its α estimation, then it proceeds with caution. Once the
confidence level of the α̂ value increases, so does the feedback gain and the vehicle response will be more aggressive.
The time dependent gain value is

γ(t) = γ̃

(
1− κ

P

Pmax

)
(50)

where Pmax is a maximum allowable covariance value, γ̃ is the nominal feedback gain value if the α̂ estimation has a
high confidence value, and 0 < κ < 1. Note that this γ(t) definition satisfies the gain stability condition in Eq. (37).
The larger κ is, the more conservative the steering law will perform if the target distance uncertainty is large.

To initialize the visual servo control, the α̂ covariance P is set to Pmax because the target size/focal length parameter
is not known initially. α̂ is initially set to

α̂ =
5
6

1
∆rrh

(51)

so that the control’s initial range estimation given by Eq. (27) is

∆r̂ =
6
5
∆rr (52)

This visual servoing procedure is initialized when the human operator double-clicks on the target in the screen. As-
suming the target size is unknown, the vehicle will not know if this is a large target far away, or a small target up close.
The outlined automatic initial parameter α̂ algorithm makes the craft assume that the range to target distance is only
20% too large. This ensures that the control begins to move toward the target cautiously. As the vehicle moves and the
α̂ parameter is estimated more accurately, the vehicle quickly learns how far away the target is.

Several cases are considered. These involve approaching a target that may change in size from various initial
ranges. However, in all cases, the same parameters are used, and are shown in Table 1. The ability to achieve reasonable
performance while using the same parameters in widely varying test cases shows the performance robustness of the
demonstrated sensing and control techniques.

Table 1: Simulation Parameters

Description Value
∆rr 1.00 meters
Pmax 30.00
Qk 0.15
Rk 0.15
κ 0.75
γ̃ 500
c 1000

A. Long Range Test
In this case, the vehicle starts from a range of 3.7 meters and approaches a target that remains a constant size

throughout the test. Figure 4 illustrates the results of this test case. If a constant feedback gain with a known α
is used, then the range will asymptotically approach the desired range throughout the maneuver. However, if the α
parameter is not well known, then such aggressive behavior will not be practical. Instead, the initial feedback errors
are small because of the initialization of α, and initial feedback gains are small because of the covariance-dependent
feedback gain. This results in the vehicle approaching the target slowly and cautiously at first. As the vehicle begins
to move, the estimate of the range ∆r̂ improves, and the covariance of the estimated α̂ value decreases, resulting in
a larger feedback gain. The resulting error dynamics after a few seconds of motion again resemble an exponential
decay. Figure 4(a) also shows the performance of the covariance dependent gain compared to a constant gain. The
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Figure 4: Range Regulator Maneuver Illustration

time dependent gain slows the initial vehicle response, resulting in a more cautious behavior as the vehicle begins to
move.

Note that α̂ 6→ α as t → ∞. This estimation technique does not provide any parameter convergence guarantees.
The final range tracking errors don’t converge to zero. But, because the α̂ estimate is close to the actual α, this tracking
error is small. However, the automatic α̂ initialization routine does provide the desired performance. Without requiring
stereo vision systems, the vehicle is able to move up to the target of unknown size and stop near the desired separation
distance.

The performance of these sensing and control techniques in the above case is quite good when the desired target
range is relatively small ( < 3 m.). However, at large target ranges (> 5 m.), limitations arise, and the control is
sensitive to noise in the estimated parameter α̂ and the target principal axes measurements. The exact limitations are
determined primarily by the target size and camera focal length, f. In these experiments, the target semi-major and
semi-minor axes were 15 and 8.5 cm., respectively, and the camera focal length f = 4.2 mm. Future work will attempt
to make this control strategy more robust at long ranges.

B. Changing Target Size
In this case, the vehicle again starts at a range of 3.7 meters, but this time there is a step-change in target size

during the test. As seen in Figure 5, the general behavior in both of the fixed-target-size segments matches that seen
in the simpler fixed target size case. At 2.6 seconds, the target area decreases by 45%. This very drastic scenario
represents part of the target being obscured during the test, or having the target rotated quickly. Because the target size
is instantly reduced, without any estimation of time varying parameters, the vehicle would assume that the target range
error drastically increased. As a result, it would rush forward and possibly collide with the target. However, with the α̂
estimation active, the vehicle is able to automatically tune its depth gain calculation in real time during the maneuver.
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Figure 5: Range Regulator Maneuver With Changing Target Size.

The craft does speed up slightly as the target size is changed. However, the craft also recomputes a new α̂ estimate
which ensures that it does not run into the target. Due to the short range left to maneuver to the desired target range,
the new α̂ estimation converges to a value with a larger error compared to the true value. However, the final range
error is still acceptable, and it is conservatively further away from the target, rather than closer. Again, this control
does not guarantee convergence of α̂. However, it does illustrate sophisticated and robust visual servoing capabilities
in real-world applications.

C. Close Range Test
In this case, the vehicle starts at a range of 0.95 meters, which is closer to the target than the desired 1.0 meter

range. Because α̂ is initially selected so that the estimated range is slightly greater than the desired range, the vehicle
will initially approach the target even though it is already inside the desired range. It is critical that the vehicle not
approach too close to the target. Figure 6 shows the results from this test. While the vehicle does move closer to the
target, it does not exhibit dangerous behavior near the target or approach too close. α̂ is approaching α, but because
the system is weakly observable for such small camera motions, the system is unable to obtain a very good estimate.
However, even in this challenging case, the control results in reasonable vehicle motions with the desired conservative
behavior.

VII. Conclusion
A visual target tracking control is presented which incorporates a Kalman update equation to obtain an estimate

of the target range during the maneuver. This self-tuning depth parameter makes the control more robust to target size
changes, as well as simpler to implement. No depth gain calibration is used. This parameter is tuned automatically
during the maneuver without requiring stereo vision cameras. The time varying feedback gain depends on the estimator
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Figure 6: Range Regulator Maneuver From Close Range

covariance and will reduce the vehicle’s feedback gains when it has little confidence in its range estimates. Using only
a single camera as opposed to a stereo system, this control will allow a UGV to approach a visual target of unknown
size and stop a prescribed distance away. The control does require some knowledge of the inertial vehicle motion,
which could be obtained from an IMU or the wheel encoders. The system modeled in these hardware experiments is a
free-floating spacecraft approaching a visual target. All craft are assumed to be in inertial, non-orbiting environments,
such as a scout craft controlling its relative motion with respect to an interplanetary craft. Future work will expand
this strategy to incorporate time varying targets positions, as well as orbiting environments.
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