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Abstract— Onboard density models are a key aspect of au-
tonomous closed-loop guidance systems for hypersonic flight.
Traditional approaches model density as a deterministic func-
tion of altitude, but a recent drive toward stochastic guidance
approaches motivates onboard uncertainty propagation. Ex-
isting solutions for efficient uncertainty propagation generally
treat density as an exponential function of altitude, but this
approach is limited in its ability to capture relevant disper-
sions. This work models density as a Gaussian random field
that is approximated by a Karhunen-Loève expansion, enabling
a relatively high-fidelity, finite-dimensional parametric repre-
sentation. Various normalization schemes are presented and
compared by their efficiency in capturing density variability
in a limited number of terms, and normalization by reference
dynamic pressure is shown to be the most compact approach.
The model alternatives are compared both by their approxima-
tions of density itself and their predictions of peak heat flux
for dispersed direct-entry and aerocapture trajectories. An
extension of this approach for modeling density as a function
of multiple independent variables is also presented and demon-
strated. Finally, it is shown that the density model can be
sequentially updated according to noisy density observations by
formulating the problem as a Kalman measurement function.
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1. INTRODUCTION
Hypersonic flight mechanics are characterized by nonlinear
dynamics and high sensitivity to variations in atmospheric
density. Furthermore, the behavior of planetary atmospheres
is complex and difficult to predict. Appropriate modeling of
density is thus key to the analysis of hypersonic trajectories,
including in the context of onboard modeling for closed-
loop guidance schemes. Autonomous guidance algorithms
typically treat density as a known function of altitude, either
in analytical form as an exponential function of altitude or
by interpolating from a table [1]. In-flight estimates of the
current density are available by measuring sensed accelera-
tion, and these observations are then incorporated by multi-
plying the nominal profile by the ratio of observed density
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to expected density [2], [3]. Recent work contributes more
sophisticated methods of incorporating in-flight observations,
such as machine learning or an ensemble correlation filter [4],
[5], [6]. However, these methods ultimately treat the density
as known and update a nominal profile.

Recent and ongoing works propose stochastic approaches
to closed-loop guidance with the aim of being robust to
uncertainties without taking an overly-conservative approach
[7], [8], and central to these methods is an onboard prediction
of state and environmental uncertainty. Several non-Monte
Carlo uncertainty quantification (UQ) techniques, including
polynomial chaos expansion and linear covariance analy-
sis [9], [10], [11], potentially enable onboard uncertainty
propagation for hypersonic flight vehicles. However, these
methods generally require a parametric, low-dimensional
representation of uncertainty [12], [13]. Recent studies have
explicitly incorporated a probabilistic atmosphere model into
UQ approaches [14], [15], [16]; however, these approaches
typically assume an exponential form for density and in-
corporate uncertainty by dispersing the atmospheric scale
height and surface density, a method that always results
in an exponential profile. The assumption of exponential
density significantly limits the ability of the model to capture
more complex perturbations due to its inability to capture
short-period perturbations or other deviations of the density
profile from the idealized exponential shape [17]. Semi-
empirical models such as the Global Reference Atmospheric
Models (GRAMs) from NASA provide much higher-fidelity
representations of the atmosphere and its response to external
factors, such as solar weather [18], but lack a convenient low-
dimensional and parametric form. Estimating uncertainty us-
ing these models typically requires generating a large number
of density profiles then computing statistics of the generated
dataset, rather than estimating variability directly. Thus,
GRAMs and similar models are not feasible for onboard
uncertainty propagation purposes.

This motivates the development of a reduced-dimensionality
model that retains the higher-fidelity properties of models like
GRAM, and a method for in-flight updates to this model.
Previous work by the authors treats density as a Gaussian
random field with altitude the sole independent variable, and
demonstrates a Karhunen-Loève expansion (KLE) for density
[17]. Reference [10] shows that linear covariance analysis in-
corporating this model closely matches Monte Carlo results.
This study expands on these results in the following ways.
Practical implementation of the KLE is explored in greater
detail, examining alternative methods of constructing the ex-
pansion. The efficiency of each approach in capturing density
variability is compared both directly and through statistics
of dispersed trajectories generated in Monte Carlo analyses
using each model. New work outlining and demonstrating an
expansion on the KLE model to treat density as a function
of multiple variables (e.g. altitude, latitude, and longitude)
is presented and its comparative utility is discussed. Finally,
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an approach to updating the KLE based on sequential noisy
density measurements is presented and demonstrated, and the
potential for onboard execution of this method is discussed.

2. REVIEW OF KARHUNEN–LOÈVE
EXPANSION

A random field is a function that maps a random outcome to
a continuous function across a (possibly multi-dimensional)
domain in space. Somewhat more formally: for some mea-
surable space (Ω,F) of sample space Ω and σ-field F of
subsets of Ω, a random field {Φ(z) : z ∈ Z ⊆ R} is a
collection of random variables (Xz)z∈Z with values that map
Ω 7→ R [19]. A Gaussian random field (GRF) Ψ(z) is a
random field for which any finite linear combination of the
random variables Xz results in a Gaussian random variable;
that is, at any point zi in the domain Z the probability density
function of the value of the field Ψ(zi) is Gaussian [20].
A GRF is fully characterized by its mean function µ and
covariance function Σ,

µ(z) = ⟨Ψ(z)⟩, (1)
Σ(z1, z2) = ⟨(Ψ(z1)− ⟨Ψ(z1)⟩)(Ψ(z2)− ⟨Ψ(z2)⟩)⟩, (2)

where ⟨⟩ is the expectation operator.

A Karhunen–Loève (also known as Kosambi-Karhunen–Loève)
expansion represents a random field through an infinite linear
combination of orthogonal basis functions (a Fourier expan-
sion), in such a way that, when truncated to a fixed number of
terms, the choice of the basis functions minimizes the mean-
square error [21], [22]. This definition is shown by Eq. (3)
where Φ is the random field, z is the independent variable,
and λi and ϕi(z) are the eigenvalues and eigenfunctions
of the covariance function of the random field Σ(z1, z2),
respectively, as shown in Eq. (4). Finally, each Yi is a random
variable described by Eq. (5).

Φ(z) = ⟨Φ(z)⟩+
∞∑
i=1

√
λiϕi(z)Yi (3)

∫ T

0

Σ(z1, z2)ϕi(z2)dz2 = λiϕi(z1) (4)

Yi =
1√
λi

∫ T

0

Φ(z)ϕi(z)dz (5)

In practice, the eigenvalues and eigenfunctions are sorted by
descending magnitude of the eigenvalues and then the sum
in Eq. (3) is truncated after some dK number of sufficient
terms. Determining the required dK is problem-dependent,
but in general it is chosen such that the mean-square norm of
the approximation is within some relative error of the exact
mean-square norm. Eq. (6) gives one heuristic method, where
k is some sufficiently large number and α is close to 1 based
on the desired level of permissible error (for a relative mean-
square norm error of (1− α)× 100%).

dK = min

{
j :

∑j
i=1 λi∑j+k
i=1 λi

≥ α

}
(6)

In the case where Φ(z) is a GRF Ψ(z), the Yi’s are all in-
dependent and identically distributed (i.i.d.) standard normal
random variables:

Y1, Y2, ... ∼ N (0, 1) i.i.d. (7)

Often a random field is not known exactly, but some suf-
ficiently large dataset is available. In this case the sample
covariance matrix is computed,

CZZ ≈ QZZ =
1

N − 1
ΨcΨ

T
c , (8)

where QZZ is the unbiased estimate of the sample covariance
matrix CZZ , Ψc ∈ Rn×m is a matrix such that each column
is an observation vector less the sample mean, n is the number
of datapoints per observation vector, and m is the number
of observation vectors in the dataset. Having computed a
covariance matrix, it is straightforward to find the eigenvalues
and eigenvectors of that matrix and sort them according to
descending order of the eigenvalues, and the results are the
λi and ϕ in Eq. (3), respectively. The discrete KLE form of
a GRF Ψ is thus summarized below:

Ψ ≈ ⟨Ψ⟩+
dK∑
i=1

√
λiϕYi, (9)

Yi, ..., Yd ∼ N (0, 1) i.i.d.

3. SIMULATION METHODOLOGY
This section briefly describes the methodology for trajectory
simulation used in this study and summarizes relevant ve-
hicle parameters. Trajectories are simulated by numerically
propagating the three degree-of-freedom equations of motion
for atmospheric flight about a rotating ellipsoidal planet via
explicit Runge-Kutta integration of order 4(5). Density is
modeled using MarsGRAM 2010 [18], interpolating from
a resulting table of density vs. altitude unless stated oth-
erwise. Mars is assumed to have gravitational parameter
µ = 4.305×104 km3 s−2, equatorial radius R = 3397.2 km,
oblateness spherical harmonic coefficient J2 = 0.001964,
and a planetary rotation period of ωp = 1.02595675 days
[23]. Mach number is defined as the ratio of vehicle speed
to the speed of sound M = v/a, where sound speed a
for the Martian atmosphere is interpolated from a nominal
tabular model [24]. Heat flux is modeled by computing
convective heat flux q̇ at the stagnation point assuming a fully
catalytic surface using the Sutton-Graves expression shown
in Eq. (10), where ρ is density and a value of the heating
coefficient k = 1.904 × 10−4 kg0.5/m is used based on
nominal atmospheric composition at Mars [25]. Dynamic
pressure q is defined by Eq. (11).

q̇ = k

√
ρ

Rn
V 3 (10)

q =
1

2
ρv2 (11)

There are two types of trajectories used as representative ex-
amples in this study. The first is a steep direct entry trajectory
at Mars for the Small High Impact Energy Landing Device, or
SHIELD, a small, mostly-passive probe under development
at NASA JPL intended for low-cost access to the Martian
surface [26]. Once reaching subsonic conditions, SHIELD
deploys a drag skirt, then jettisons the heatshield shortly
thereafter. The drag coefficient CD during each configuration
varies with Mach number and is linearly interpolated from
tabular data provided by the JPL SHIELD team. Ballistic
coefficient β = m/(CDA) describes the ratio of inertial
forces to aerodynamic forces, where m is vehicle mass and A
is reference area; the ballistic coefficient for SHIELD ranges
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Figure 1. Dynamic pressure and velocity magnitude vs.
altitude for reference SHIELD direct-entry trajectory

from about 20 kgm−2 shortly after entry to around 5 kgm−2

near the surface after drag skirt deployment and heatshield
jettison. SHIELD has a lift-to-drag ratio of L/D = 0, and
an assumed nose radius of Rn = 0.85m. The trajectory
considered in this study is defined by an entry velocity of
6 km/s and an entry flight-path angle (EFPA) of −18 ◦ at
the atmospheric interface altitude of 125 km, entering due-
East at 0 ◦ latitude and 0 ◦ longitude, where flight-path angle
is defined as the angle between the air-relative velocity of
the vehicle and the local horizontal. The reference SHIELD
direct-entry trajectory is shown in Fig. 1.

The other trajectory considered here is aerocapture at Mars
by a vehicle similar to the Mars Science Laboratory (MSL)
aeroshell. A ballistic coefficient of β = 130 kgm−2 and
lift-to-drag ratio of L/D = 0.24 are assumed [27], and the
vehicle flies full-lift-up for the duration of the trajectory. The
entry is again due-East at 0 ◦ latitude and longitude, in this
case with entry velocity of 5.8 km/s and EFPA of −11 ◦. A
nose radius of Rn = 1m is assumed, which conveniently
normalizes the value of q̇ for re-scaling to other vehicles. The
reference aerocapture trajectory is shown in Fig. 2.

4. COLUMNAR ATMOSPHERE MODEL
COMPARISON

In this section, atmospheric density is approximated as a
Gaussian random field as a function of only altitude. In
reality, atmospheres vary across 3D position and time, and
are affected by external factors such as space weather.
However, for applications like entry and aerocapture which
traverse tens of vertical kilometers within the atmosphere,
the dominant factor in density change is altitude. Thus, a
columnar atmosphere model is assumed in this section, such
that ρ(h, ϕ, θ, t) ≈ ρ(h) where ρ is density, h altitude, ϕ
latitude, θ longitude, and t elapsed time. See Section 5 for
a discussion of density variation with latitude and longitude.
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Figure 2. Dynamic pressure and velocity magnitude vs.
altitude for reference aerocapture trajectory

The additional assumption of Gaussian probability is justified
in Ref. [17] using Mars-GRAM 2010 data. It should also
be noted that, to avoid a nonzero probability of producing
a negative value, the density random field should in fact be
treated as a truncated Gaussian.

Because density exhibits approximately Gaussian probability
with correlation structure across a spatial domain, modeling
density as a GRF is theoretically appropriate [17], [28]. How-
ever, a GRF is an infinite-dimensional object, and the non-
Monte Carlo methods for onboard uncertainty propagation
discussed earlier required a parametric, finite-dimensional
representation of density variability [12], [13]. To obtain this
form, a KLE is constructed and truncated after an appropriate
number of terms. The sample covariance matrix is formed
from any sufficiently large dataset of density values vs. alti-
tude; typically, it is convenient to use simulated data from a
relevant model such as a GRAM.

Figure 3 shows the result of constructing a KLE from a
dataset of 5000 density profiles output by MarsGRAM, de-
noted KLE-ρ for shorthand. For the sake of later comparison,
a fixed number of dK = 15 terms is used for this and all
subsequent expansions in this section unless noted otherwise.
The horizontal axis of this plot shows normalized density
perturbation δρ, as defined in Eq. (12), rather than density
itself because this better captures variability even as the value
of density changes by orders of magnitude across this altitude
range:

δρ = ρ/ρ̄− 1. (12)

The thick dashed lines show the ±3σ bounds, where σ is
standard deviation. In the case of MarsGRAM these bounds
are computed directly from the sample profiles; for the KLE,
5000 separate realizations are generated and evaluated, then
standard deviation is computed from this generated dataset.
In addition, three sample profiles from each model are shown
in the thin solid lines.
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Figure 3. KLE vs. Mars-GRAM for KLE constructed
from density values; thick dashed lines are ±3σ bounds,

thin solid lines are sample profiles

Notably, the KLE 3σ bounds only align with the MarsGRAM
bounds up to about 35 km, badly underestimating variabil-
ity at higher altitudes. This occurs because the value of
density is much greater at low altitudes: for Mars, about
1 × 10−2 kg/m3 at the surface, order of 1 × 10−5 kg/m3

at 50 km, and order of 1 × 10−10 −1 × 10−9 kg/m3 at the
atmospheric interface of 125 km. The KLE is truncated
based on eigenvalue magnitude, and the variability at low
altitudes where density is high is prioritized as a result, even
though as a percentage of nominal density varies more at high
altitudes. For this reason, a KLE based on density values is an
inefficient way to capture normalized density perturbations at
high altitudes.

This shortcoming can be addressed by constructing the KLE
differently. While columnar density remains the quantity of
interest, the data can be pre-processed for KLE construction
in a variety of ways, with a converse post-processing step
recovering density values. For example, the KLE can be
constructed from normalized density perturbation values in
the following way. First, compute δρ values corresponding
to each value in the dataset, forming a mean vector and
covariance matrix for these δρ data. Second, construct a KLE
using the δρ mean and covariance. Third, treat the output
of this KLE as δρ values and re-arrange Eq. (12) to recover
density values. The result of a KLE constructed in this way
is shown in Fig. 4, denoted KLE-δρ.

Figure 4 shows a clear improvement for the KLE-δρ model in
terms of capturing overall density variability, and the sample
profiles now look similar to the GRAM output. However,
the 3σ bounds generally underestimate variability, and this
becomes much more pronounced at low altitudes below about
55 km. This expansion in some ways suffers from the
opposite problem as the KLE-ρ model: because normalized
density perturbations are smaller near the surface, this region
is poorly captured, whereas the model performs well at high
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Figure 4. KLE vs. Mars-GRAM for KLE constructed
from normalized density perturbations; thick dashed

lines are ±3σ bounds, thin solid lines are sample profiles

altitudes. That said, the KLE-δρ model is more compact,
meaning that for a given number of terms it gives a better
approximation of density variability with altitude.

However, it is important to keep the application of interest
in mind. The goal of these KLE approximations is not to
model the atmosphere as well as possible; the real goal is
to provide an atmosphere model that results in accurate tra-
jectory predictions when compared to trajectories predicted
using MarsGRAM directly. Recall that aerodynamic force
scales with dynamic pressure q. As seen in Fig. 1, for a
planetary entry trajectory dynamic pressure peaks at mid to
low altitudes, with the particular altitude depending on the
vehicle and trajectory. Above this altitude density is too low
for significant dynamic pressure, and below this altitude the
vehicle has slowed down to the point that dynamic pressure
greatly reduces. A similar phenomenon occurs in reverse
for launch vehicles. Therefore, it would be of interest to
form a KLE that prioritizes density variation where it matters
most for a given trajectory of interest; that is, where dynamic
pressure is highest.

To that end, Fig. 5 shows results for a KLE model built
from normalized density perturbations that are then scaled
by dynamic pressure along the reference SHIELD entry tra-
jectory, denoted KLE-q for convenience. Specifically, the
KLE is constructed by multiplying the δρ values by the
corresponding dynamic pressure at that altitude along the
SHIELD reference trajectory, and the output of the KLE is
then divided by that same dynamic pressure before converting
the normalized perturbation back to density. In effect, this
informs the KLE which altitude range is most important when
ordering and truncating the expansion. As seen in Fig. 5, the
3σ bounds computed by this KLE closely match GRAM from
about 60 km down to about 20 km, corresponding closely
to the dynamic pressure pulse shown in Fig. 1. Given the
fixed number of terms in the expansion, this comes at the
expense of accuracy outside of that altitude range, where this
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Figure 5. KLE vs. Mars-GRAM for KLE constructed
from normalized density perturbations scaled by

SHIELD dynamic pressure profile; thick dashed lines are
±3σ bounds, thin solid lines are sample profiles

expansion underestimates variability.

As previously mentioned, the quality test for these density
models is how well they predict dispersed trajectories com-
pared to GRAM. To that end, a 1000-trial Monte Carlo
analysis is performed for each of the three KLE models
and for GRAM, where the only dispersed parameter in each
analysis is density. A box plot comparing the statistics of
peak heat flux for each case is shown in Fig. 6. The KLE-
q model is by far the best match with the statistics pre-
dicted by GRAM directly, whereas the KLE-ρ and KLE-δρ
models significantly underestimate variability. These results
demonstrate that scaling normalized density perturbations by
reference dynamic pressure is the most compact of the models
considered here.

A similar scaling approach can be applied based on the
reference aerocapture trajectory. This process is slightly
more involved because during aerocapture the vehicle passes
through each relevant altitude twice, with differing dynamic
pressures, and has a minimum altitude well above the surface,
as seen in Fig. 2. Recall, however, that the reference dynamic
pressure is simply useful for re-scaling, and does not need to
be dynamically valid. Thus, the following approach is taken
in this study to form the reference dynamic pressure. Above
the minimum altitude of the reference trajectory, the dynamic
pressure during the descending portion of the trajectory is
used for scaling. For another 10 km below the minimum
altitude a constant value equal to the dynamic pressure at the
minimum altitude is used; this segment exists because some
dispersed trajectories will fly below the minimum altitude of
the reference. Finally, a small but nonzero value (0.01 in
this case) is used for scaling at more than 10 km below the
minimum altitude of the reference trajectory. The resulting
KLE model is shown in Fig. 7, and the corresponding peak
heat flux results for Monte Carlo analyses of the aerocapture
trajectory are shown in Fig. 8.
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Figure 6. Peak heat flux statistics for SHIELD

trajectories
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Figure 7. KLE vs. Mars-GRAM for KLE constructed
from normalized density perturbations scaled by

aerocapture dynamic pressure profile; thick dashed lines
are ±3σ bounds, thin solid lines are sample profiles
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Figure 8. Peak heat flux statistics for aerocapture
trajectories

Overall these results are similar to the corresponding results
for SHIELD direct-entry, in that the KLE most efficiently
captures density variation near the altitude of peak dynamic
pressure and the KLE-q model performs best when predicting
peak heat flux statistics. The altitude range where the aero-
capture KLE-q accurately matches the GRAM 3σ bounds is
shifted up by about 10 km compared to the SHIELD case due
to peak dynamic pressure occurring at a higher altitude for
the aerocapture trajectory.

These results demonstrate that the KLE-q model is the most
compact representation of the three considered here as mea-
sured by the ability to predict statistics of peak heat flux.
A relatively small number of terms (dK = 15) is used for
each KLE in order to highlight these differences. However,
note that any of the KLE models should perform well if the
number of included terms is sufficiently high, since the KLE
representation of a GRF is exact for an infinite number of
terms. For completeness, Fig. 9 shows the same results
as Fig. 8 but with dK = 50 terms included in each KLE
model. The KLE-q model still performs the best, but the per-
formance of the KLE-ρ and KLE-δρ models have improved
considerably, such that there is less distinction between the
three. The direct comparisons of density shown in Figs. 3–5
and 7 would also all improve with an increased dK . This
emphasizes an important point: any of these KLE flavors
(and other possibilities not considered here) would form a
valid density model if enough terms were included, but the
comparisons in this paper illustrate that some approaches are
more compact than others.

Furthermore, some differences in the density models are
poorly captured by comparisons of peak heat flux statistics.
Figure 10 directly shows density profiles for the altitude
range near minimum altitude for the aerocapture Monte Carlo
analyses using dK = 50 for each model. This reveals another
advantage to the KLE-q approach: because it captures density
variability more efficiently, that model is able to capture more
of the short-period oscillation behavior observed in GRAM
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Figure 9. Peak heat flux statistics for aerocapture
trajectories, with dK = 50 terms

than the KLE-ρ and KLE-δρ models. Finally, note that the
patterns that have been discussed here are somewhat tied to
the choice of random variable; since peak heat flux occurs at
mid-altitudes near peak dynamic pressure, the KLE-q model
will be particularly efficient in capturing those statistics. For
example, the landing locations for the SHIELD scenario and
the apoapsis radius for the aerocapture scenario are both
predicted reasonably well by the dK = 15 KLE-ρ model,
although the KLE-q model still performs better with the same
number of terms.

5. MULTI-DIMENSIONAL KLE MODEL
Although the columnar assumption is typical for onboard
models of density as previously discussed, in some cases it
may be of interest to represent density as a random function
of multiple independent variables. The KLE approximation
demonstrated in Section 4 can be straightforwardly extended
to model longitudinal and latitudinal variations in density as
well as in altitude. Thus, in this section the necessary steps for
constructing a multi-dimensional KLE are presented, models
are compared following the approach taken in Section 4, and
finally there is a brief discussion of the potential utility of
these models for onboard use.

Recall that the first step in forming a KLE approximation
from some discrete dataset is computing the sample covari-
ance matrix as shown in Eq. 8. The data matrix Ψc is
formed such that each column is one observation vector with
the sample mean subtracted. In the columnar KLE model,
the observation vectors are ordered such that they correspond
with a reference altitude vector. For the more general case,
however, the indexing of the data matrix Ψc need not refer to
a single independent variable. Rather, the index corresponds
to a specific variable being observed, whether that be defined
as density at 100 km or as density at 100 km, 20 ◦ E, and
40 ◦ N. Any arbitrary set of points in a multi-dimensional
domain can be uniquely identified via sequential indexing,
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Figure 11. Illustration of reshaping between an
arbitrary set of points in a multi-dimensional domain

and an observation vector

and then observations at these points can be reshaped into
a column vector following that ordering; this process is
conceptually illustrated in Fig. 11. The process of computing
the covariance matrix and constructing and evaluating the
KLE is unchanged. The original reshaping is then reversed
to reshape the column vectors produced by realizations of the
KLE to a set of values for each point in the multi-dimensional
domain.

As an example, MarsGRAM is used to generate 1000 density
values at each point in an evenly-spaced 2D grid going from
0 to 200 km in altitude, from 0 to 10 ◦ in longitude, and at 0 ◦

latitude. Figure 12 visualizes the resulting data as a heatmap
of the +3σ value of δρ; in other words, the heatmap values
correspond to the right dashed line in figures like Fig. 3.

Figure 13 shows the equivalent statistics for a KLE approxi-
mation of the 2D MarsGRAM data; in contrast to Section 4,
in this case a value of α = 0.99 is used to truncate the KLE
to dK = 884 terms. From visual inspection, these results are
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Figure 12. 3σ values of normalized density perturbation
from MarsGRAM dataset

virtually indistinguishable from the GRAM data in Fig. 12.

As before, the real test of the KLE approximation is its ability
to accurately predict trajectory dispersions. To this end, Figs.
14 and 15 show the peak heat flux statistics and a portion
of the density profiles, respectively, resulting from 1000-
trial Monte Carlo analyses of the same SHIELD direct-entry
trajectory previously considered. In each case except GRAM
1D, bivariate spline approximation is used to compute density
at the altitude and longitude of the vehicle based on a grid of
density values. Recall that the reference SHIELD trajectory
is ballistic and enters due-East, so the trajectory remains in
the equatorial plane and thus, for this scenario, this approach
is equivalent to computing density based on the 3D position
of the vehicle. The GRAM 2D case interpolates from a set
of density samples output by MarsGRAM directly, whereas
the KLE α = 0.99 case interpolates from values produced by
a realization of an 884-term KLE approximation. The KLE
dK = 50 case also uses a KLE approximation, but in this case
the expansion is limited to 50 terms. Finally, the GRAM 1D
case interpolates from the same MarsGRAM data but always
assumes a longitude of 0 ◦, corresponding to a columnar
assumption. This case should be exactly equivalent to the
GRAM results shown for SHIELD in Fig. 6, but is slightly
different. This occurs due to a quirk in how MarsGRAM
density perturbations are computed. Thus, in this section the
full 2D dataset is used but assuming a constant longitude of
0 ◦ in order to create an apples-to-apples comparison.

From Fig. 14, it is clear that the peak heat flux statistics
predicted by the 2D GRAM and 2D KLE (α = 0.99)
models are very similar, and Fig. 15 shows a characteristic
similarity between the density profiles predicted by these two
models. These results and the direct comparison of density
values in Figs. 12 and 13 demonstrate the successful use
of a multi-dimensional KLE to approximate density as a
function of both altitude and longitude. In contrast, the 50-
term KLE approximation performs very poorly, significantly
under-predicting both the mean and uncertainty of peak heat
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Figure 13. 3σ values of normalized density perturbation
from 2D KLE approximation
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flux. The expansion fails to capture much of the variability
in density, as is clear from Fig. 15. The KLE dK = 50
case performs worse than the KLE α = 0.99 case because
it has a much lower number of terms (50 vs. 884), and
the expansion is truncated before sufficiently capturing the
modes of variability present in the data.

These comparisons merit a broader discussion of the colum-
nar atmosphere approximation for onboard density modeling.
Figure 14 shows that the GRAM 1D case, which is equiv-
alent to a columnar atmosphere assumption, almost exactly
matches the 2D GRAM case in predictions of peak heat flux,
and from Fig. 15 the sample density profiles themselves
also appear to be very similar. This is not surprising when
considering Fig. 12, which shows no significant horizontal
gradient to indicate changes in density variability with longi-
tude. Note that, despite this uniformity in longitude, the KLE
requires roughly 10x as many terms to accurately predict
dispersed trajectories when constructed from the 2D density
data as opposed to the columnar atmosphere case. This
would require an increase in both memory and computational
expense for onboard use. Furthermore, to sample across
the entire 2D grid in altitude and longitude requires 8505
datapoints for the discretization used here, as compared to
405 datapoints for a columnar profile, further exacerbating
the onboard computational burden. These results suggest
that, based on the dataset used here, a columnar atmosphere
model is likely a good enough approximation for onboard
use, and is significantly less demanding of both memory and
computational effort than a multi-dimensional model.

This is decidedly not to say that regional variations in density
can be neglected. Density gradients occur due to a range
of factors including gravity waves, time of day, and winds,
and are relevant for both vehicle performance prediction
and trajectory reconstruction [29], [30], [31]. MarsGRAM
data is used in this study as an example only, and is not
necessarily well-suited to capturing these types of regional
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density variation. Any hypersonic vehicle using closed-loop
guidance would need to be simulated in a wide range of pos-
sible atmospheric conditions, regardless of the assumptions
used for the onboard density model. The resulting vehicle
performance, taken together with the relevant computational
limitations, is ultimately what determines whether or not the
onboard density model meets requirements.

Note also that, for a scenario where density is expected
to change significantly along the groundtrack of an entry
trajectory, a columnar model could be constructed using data
generated along the reference trajectory. In other words, the
raw data is generated along a 3D trajectory, but is then treated
as a function of only altitude in the KLE approximation.
This approach begins to fail if altitude is not monotonically
decreasing, such as in the case of aerocapture. However,
the procedure for onboard measurement updates presented in
the next section would potentially result in different density
predictions for the descending and ascending portions of the
trajectory, and this could partly mitigate the limitations of a
columnar model.

6. KALMAN MEASUREMENT UPDATES
During atmospheric flight, observations of estimated density
ρ∗(hk) are typically available by taking estimated sensed
accelerations measurements from an accelerometer or inertial
measurement unit (IMU) and rearranging the equation for
aerodynamic acceleration,

a(hk) =
v2(hk)

2β
ρ(hk) → ρ∗(hk) =

2βa∗(hk)

v2(hk)
, (13)

where estimates of the ballistic coefficient and current ve-
locity magnitude are known. Thus, for any onboard den-
sity model to be useful in practice, it should accommodate
some method of updating the model in real-time with noisy
measurements. It is well-demonstrated in literature and
in practice that appropriate onboard density estimation can
significantly improve targeting performance [2].

The novel benefit of a KLE density model is the represen-
tation of both a nominal density profile and associated un-
certainty. Therefore, it is desirable to formulate an approach
that updates both the mean and covariance represented by
the KLE. Furthermore, this should be done in a way that
respects the correlation structure assumed in the pre-update
model, as opposed to replacing a single diagonal element of
the covariance matrix. For clarity, this section returns to the
columnar atmosphere assumption.

In this work a Bayesian approach for sequential estimation is
applied, such that the mean and covariance of density from
the previous update (or the initial model) form the prior,
and these are updated with the noisy density measurement
to form the posterior mean and covariance of density. The
density estimates are assumed to be corrupted by additive
white Gaussian noise, based on the assumption that some pre-
processing removes artifacts such as IMU drift; note that this
also implies accurate estimates for ballistic coefficient and
velocity magnitude. The state uncertainty is also Gaussian
based on the earlier assumption treating density as a Gaussian
random process. Finally, density estimates are assumed to ar-
rive at altitude points included in the original a priori density
model, either by judiciously timing measurement updates or
by interpolating multiple measurements.

Based on the above assumptions, density can be optimally

estimated by the Kalman measurement update via the follow-
ing formulation [32]. Take the series of density values at each
altitude to be the state vector. The dynamic equation is trivial,
since the density profile is assumed not to vary in time, so the
state propagation step from the Kalman filter is unnecessary.
The measurement equation is simply a direct observation of
a single state component and is thus linear. Therefore, the
optimal estimate of the vector of atmospheric density at each
altitude ρ̂+ ∈ Rn and its covariance P+

k ∈ Rn×n can be
computed according to a scalar noisy density measurement
ρ∗k ∈ R according to the following equations:

ρ̂+ = ρ̂− +K(ρ∗k −Hkρ̂
−), (14)

P+ = P− −KHkP
−, (15)

K = P−H⊺
k

(
HkP

−H⊺
k +R

)−1
, (16)

Hk = [δ1k, δ2k, ..., δnk], (17)

where K ∈ Rn×1 is the Kalman gain matrix, Hk ∈ R1×n

is the measurement matrix, R ∈ R is the measurement noise
variance, δij is the Kronecker delta, n is the number of dis-
crete altitudes considered, and k is the index of the altitude at
which density is currently being observed. Notably, because
only one density is measured at a time the bracketed term in
Eq. (16) is a scalar, so taking its inverse is computationally
inexpensive.

For notational clarity, consider an example where the dis-
cretization of density values is from 100 to 0 km in altitude
steps of 0.5 km, in descending order, resulting in n = 201.
Then ρ̂− and ρ̂+ are the prior and posterior 201-vectors, re-
spectively, containing density values at each altitude. Assume
the scalar density measurement ρ∗k is at an altitude of 80 km,
such that k = 41 (indexing from 1 in this notation). Then, Hk
becomes a row matrix with all elements equal to zero except
in the 41st column, which is equal to one.

Equations (14) – (17) can be applied to sequentially ingest
noisy density measurements and update the onboard model
of the density profile and its covariance. By re-solving
for the eigenvalues and eigenvectors of the P+, the KLE
representation can be updated accordingly. This process is
demonstrated in Figs. 16 and 17; here, the prior mean
and covariance are formed from a dataset of 3000 density
profiles from MarsGRAM, where density perturbations are
normalized by the sample mean and thus the normalized prior
mean falls exactly along 0. The true profile to be estimated is
also computed by MarsGRAM, but is not included in the prior
dataset. Five density values are observed, corrupted by mea-
surement noise with a standard deviation of 1×10−9 kg/m3,
a value selected purely for illustrative purposes. In this
example the assumed measurement noise R is equal to the
true noise value, but note that this can instead be treated as a
tuning parameter in practice and need not be the same value
at each altitude.

Note that the posterior mean passes nearly through each
observation (with one exception), but reverts to the mean
for altitudes above and below the observation altitudes. The
posterior uncertainty bounds are also only weakly affected
at these higher and lower altitudes. This occurs because
the correlation structure in the prior covariance dictates the
degree to which new information at one altitude affects the
estimated density at another altitude; since in this model
density perturbation at 80 km is only weakly correlated with
density perturbation at 50 km, the posterior mean has reverted
to nominal by that lower altitude. This can also be achieved
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Figure 16. Mean and 3σ bounds for prior and posterior density profiles, given five sequential noisy observations
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Figure 17. Zoomed-in view of Fig. 16

by exponentially correlating a corrective scale factor that is
estimated onboard, but the approach presented here has two
advantages. First, the correlation length is inferred from the
prior model (MarsGRAM in this case) rather than defined by
the user, and second, the correlation length is not necessarily
constant with altitude.

The reason that the posterior mean passes more closely
through the lower three measurements than the first two is
related to how measurement noise was defined. Measurement
noise is applied to the density values directly and is constant
across all altitudes, but the data is then converted to normal-
ized density perturbations for estimation and visualization.
Thus, at higher altitudes where nominal density is signifi-
cantly lower, the measurement noise has a more significant
effect, and the filter tends to trust the prior. This is also
observable by the much wider posterior uncertainty bounds
for the higher-altitude measurements. At lower altitudes the
same measurement noise has relatively less effect and the
situation is reversed; since the actual measurement noise and
the value used by the filter are the same, this also means the
lower-altitude measurements fall closer to the truth values.
It should be reiterated that the assumption of a measurement
noise constant with altitude is made here for demonstration
purposes and is not required.

The application of a Kalman measurement update demon-
strated here provides a way of updating the mean and covari-
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ance for atmospheric density based on noisy measurements,
which could inform onboard predictions of state uncertainty
for the purpose of closed-loop guidance. A significant draw-
back of this approach, however, is the requirement to re-solve
the eigenvalues and eigenvectors after each measurement
update in order to obtain the updated KLE representation.
This adds significant computational expense to the update
process, potentially to the point of infeasibility for onboard
computation, depending on the resolution of the density
profile and the choice of flight hardware. This motivates
an approach that updates the eigenvectors and eigenvalues
directly in a way that approximates the result of the Kalman
measurement update at a lower computational expense. Such
a method could take advantage of the fact that the covariance
matrix is low-rank, meaning there is approximately zero co-
variance between altitudes more than a certain distance apart.
Approaches such as low-rank partial Hessian approximations
or sequential updates to singular value decompositions of
a matrix provide potential pathways to significant computa-
tional efficiency improvement [33], [34]; this remains an area
for future work.

7. CONCLUSIONS
This work presents the mathematical foundation and prac-
tical implementation for modeling density as a KLE. For
the direct-entry and aerocapture scenarios considered here, a
KLE constructed by scaling normalized density perturbations
by the reference dynamic pressure is shown to be the best
predictor of peak heat flux. Directly forming the KLE from
density or normalized density perturbations is less compact
but also gives accurate predictions, and could be the more
straightforward approach if the necessary number of terms
is allowable based on computational limitations. A KLE
formed over a multi-dimensional domain is demonstrated, but
for the MarsGRAM data considered here the gains compared
to a columnar model are unlikely to outweigh the additional
computational expense. Finally, a Kalman measurement
update is used to update the density covariance matrix based
on new density measurements, and the example results show
promising behavior. However, further work is necessary to
improve the computational efficiency of this approach for
onboard implementation.
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