
(Preprint) AAS 23-163

SPACECRAFT DYNAMICS ANALYSIS USING POINT-MASS
MODEL OF HUMAN MOTION

Galen Bascom*, Leah Kiner†, and Hanspeter Schaub‡

As concepts for spacecraft with larger populations of humans aboard emerge, the
need for an implementable model of the effects of human and cargo motion grows.
A point-mass model for that motion is created, and the effects on spacecraft rota-
tional and translational motion derived. Using a back-substitution method devel-
oped in previous work on multi-body dynamics, an efficient and modular software
implementation of the dynamics is presented. The moving point mass along a
spinning spacecraft hub is simulated, demonstrating complex attendant behaviors.
The sensitivity of the effects on the hub to both the mass and speed of the moving
object are investigated.

INTRODUCTION

The presence of humans and moving cargo aboard a spacecraft inevitably affects its motion, as
the spacecraft hub experiences reactive forces and torques. These effects have long been recog-
nized, with researchers since the 1960s working to investigate and quantify the effects of astronaut
motion on spacecraft.1, 2 In many cases, that early work focused on determining the stability of
the ensuing multi-body systems. Other research has centered on experimental determination of the
magnitudes of the forces and torques induced by human motion aboard the ISS and the Mir space
station.2, 3 These approaches provide useful insight that can be complemented by the development
of an efficient and easily implemented software model for human motion in space.

New concepts for space missions are emerging that involve not only the actions of a few astro-
nauts aboard a space station but also larger populations of humans living and working in space. For
example, Blue Origin and Sierra Space have announced plans for a low-earth orbiting commercially
owned space station.* Axiom Space plans to install new modules on the ISS as soon as 2025.† The
motions of only a few humans aboard relatively large spacecraft result in correspondingly minor
effects. However, those effects become more substantial when larger numbers of humans and heavy
cargo are considered.
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Figure 1. Artist’s concept image of Axiom Station.*

This work revisits the problem of moving masses aboard spacecraft, first developing a dynamic
model of the motion. It implements software modules for modeling those effects within an archi-
tecture designed to achieve modularity and computational efficiency. This allows the investigation
of the effects of moving masses on large space stations. In particular, it helps to determine what
magnitude of disturbances are caused by such motion, such as wobbles in the spin axis or shifts
of the space station center of mass. Expanding the capability to simulate human activity and other
complex multi-body dynamics will enable future work to evaluate stability, quantify disturbances,
and design concepts for humans and other moving masses aboard large habitats in space.

DYNAMICS

The analytical approach taken here begins with the full derivation of the equations of motion for
the coupled multi-body system. The linear and angular momentum of the system as a whole are
conserved in the absence of external forces, but moving masses cause forces and torques on the
rigid space station. Researchers have developed sophisticated models of the dynamics of a human
body in space, including complex changes to the body’s moment of inertia.4, 5 Adding additional
degrees of freedom greatly increases complexity both for deriving the equations of motion and for
specifying the motions in particular simulations. Here, the model chosen for the moving mass is a
point mass with negligible inertia. This serves as a useful first approximation for both human and
cargo motion aboard the space station that is orders of magnitude larger.

The basic problem setup consists of a system of two masses, one rigid spacecraft hub and one
mass whose motion is prescribed relative to the hub using reaction forces against the hub. The
schematic for the two masses is shown in Figure 2. This latter is designated the moving mass,
although of course both masses move. The rotational and translational motion of the hub are affected
by the moving mass’s prescribed motion, that is the specified position, velocity and acceleration of
the mass with respect to the hub. A full derivation of the six-degree-of-freedom dynamics for
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Figure 2. Geometry and coordinate frames.

prescribed motion and the attendant software implementation are given in a forthcoming paper,6

with relevant steps described here.

Frame Definitions

The inertial frame is definedN : {N, n̂1, n̂2, n̂3}, as well as a hub-fixed frameB : {B, b̂1, b̂2, b̂3}.
The point B can be any body-fixed point, with Bc the known hub center of mass. The moving-mass
fixed frame is F : {F, f̂1, f̂2, f̂3}, with Fc the known center of mass. In this study F coincides
with Fc, as the human or cargo is assumed to be a point mass. For the same reason, the frame F
is not a consideration because the orientation is held fixed in this study. But for the full dynamics
derivation, this frame is necessary to describe relative orientation. Finally, the particle motion is
described relative to a second body-fixed frameM : {M, m̂1, m̂2, m̂3}. This is done for conve-
nience, as the primary body frame B is not always the most convenient reference frame in which to
express the particle motion.

The prescribed parameters are rF/M , the position of the mass relative to the intermediate frame,
r′

F/M , the body-frame velocity of the mass, and r′′

F/M its body-frame acceleration. Prime notation
refers to body frame derivatives, with dot notation representing inertial derivatives. Because the B
andM frames are fixed relative to each other, with both are fixed to the body,

Bd(·)
dt

= (·)′ =
Md(·)

dt
(1)

Note that the full derivation also includes prescribed attitude, rate of rotation, and rotational accel-
eration of the moving mass; those quantities are omitted here, as we assume negligible inertia.

Translational Motion

The derivation of the translational dynamics begins with Newton’s second law:7

mscr̈C/N = msc(r̈B/N + c̈)F ext (2)
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The notation rC/N denotes the location of point C with respect to N , and F ext the sum of the
external forces. The vector c is defined as the overall system center of mass:

c = rC/B =
mhubrBc/B +mPrFc/B

msc
(3)

Note that
rFc/B = rF/B = rF/M + rM/B (4)

and, as a consequence:
r

′

F/B = r
′

F/M + r
′

M/B = r
′

F/M (5)

This in turn gives us the simplified form of the body-frame derivative of c:

c
′

=
mPr

′

F/M

msc
(6)

After intermediate steps and simplification to express r̈C/N in terms of known quantities, it can
be shown6 that the translational equations of motion can be written as:

mscr̈B/N +msc[ ˙̃ωB/N ]c = F ext −mPr
′′

Fc/B
− 2msc[ω̃B/N ]c

′ −msc[ω̃B/N ]2c (7)

The notation [ω̃B/N ] represents a cross-product equivalent matrix for the rotational rate of frame B
with respect to frame N . For the point mass a further simplification is possible:

r
′′

Fc/B
=
(

[ω̃
′

F/B] + [ω̃F/B]2
)
rFc/F + r

′′

F/M = r
′′

F/M (8)

yielding the equation:

mscr̈B/N +msc[ ˙̃ωB/N ]c = F ext −mPr
′′

F/M − 2msc[ω̃B/N ]c
′ −msc[ω̃B/N ]2c (9)

Rotational Motion

The rotational equations of motion are derived in similar fashion, starting from first principles:7

Ḣsc,B = LB +msc(r̈B/N × c) (10)

where Hsc,B is the angular momentum about B and LB is the net torque about B.

The angular momentum vector about point B can be shown6 (with some substitutions and sim-
plifications) to take the form:

Hsc,B = [Isc,B]ωB/N + [IP,Fc ]ωF/B +mP[r̃Fc/B]r
′

Fc/B
(11)

Inertia quantities are denoted [Isc,B] for the moment of inertia of the full system about point B, for
example. Body frame derivatives of inertia quantities denoted the same way as for vector quantities
with ′ symbols. For the point mass, this equation simplifies:

Hsc,B = [Isc,B]ωB/N +mP[r̃Fc/B]r
′

F/M (12)
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After additional intermediate steps to differentiate the angular momentum vector and express all
terms as known quantities, the rotational equations of motion are found:6

msc[c̃]r̈B/N + [Isc,B]ω̇B/N = LB −mP[r̃Fc/B]r
′′

Fc/B
−
(

[I
′
sc,B] + [ω̃B/N ][Isc,B]

)
ωB/N

−
(

[I
′
P,Fc

] + [ω̃B/N ][IP,Fc ]
)
ωF/B − [IP,Fc ]ω

′

F/B − mP[ω̃B/N ][r̃Fc/B]r
′

Fc/B
(13)

For the point mass, further simplifications can be made:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N = LB −mP[r̃Fc/B]r
′′

F/M−(
[I

′
sc,B] + [ω̃B/N ][Isc,B]

)
ωB/N − mP[ω̃B/N ][r̃Fc/B]r

′

F/M (14)

SOFTWARE IMPLEMENTATION

Prior work by Allard and Schaub in multi-body spacecraft dynamics uses a back-substitution
method to retain the fully coupled dynamics of spacecraft with moving parts while achieving com-
putational efficiency.8, 9 The back-substitution method involves computing the contributions to the
hub equations of motion by the other body in the coupled system, solving that reduced form of the
problem, and then substituting the results back into the equations for the other body. This work
employs that same technique. The equations of motion for the point mass coupled with a rigid
spacecraft hub, Equations 9 and 13, are implemented in Basilisk,* a software architecture that uses
back-substitution to be both modular and efficient.

The moving mass dynamics are implemented in a state effector Basilisk dynamics module, which
communicates with the spacecraft as the states are integrated in time. The prescribed point mass
kinematics are read in as an input message at each module time step, and the acceleration is held
constant over the integration period. In order to prescribe the motion, separate flight software pro-
filer modules were written to define the position, velocity, and acceleration of the moving particle
at each moment in time.

Figure 3. Basilisk module interconnections for simulation setup.

Linear Motion Profiler

The linear motion profiler takes as parameters the starting and ending positions of the moving
mass, as well as a maximum acceleration a_max and a maximum speed v_max. It calculates the

*https://hanspeterschaub.info/basilisk
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direction of motion:
∆r = rF/M (tf )− rF/M (ts) (15)

With a user-specified starting time ts, the logic of the module determines the amount of time
spent in an acceleration phase t_accel to reach v_max and the amount of time spent in a coast
phase. The time to decelerate is also t_accel.

Define ts as the starting time, t1 as the time when acceleration turns off, t2 as the time when
deceleration begins, and tf as the time when the motion is complete. During the acceleration phase,

rF/M (t) = rF/M (ts) +
1

2
am(t− ts)2∆r (16)

r
′

F/M (t) = am(t− ts)∆r (17)

r
′′

F/M (t) = am∆r (18)

The position increases quadratically, and the direction is in a straight line between the starting and
ending positions.

During the coast phase, the velocity is constant while the position increases linearly:

rF/M (t) = rF/M (t1) + vm(t− t1)∆r (19)

r
′

F/M (t) = vm(t− t1)∆r (20)

r
′′

F/M (t) = 0 (21)

This phase does not affect the motion of the hub, as there is no acceleration by the moving mass.

During deceleration, the acceleration is negative, velocity decreases linearly, and the position
increases as concave downward quadratic:

rF/M (t) = rF/M (t2) +

(
vm(t− t2)−

1

2
a(t− t2)2

)
∆r (22)

r
′

F/M (t) = (vm − a(t− t2)) ∆r (23)

r
′′

F/M (t) = −a∆r (24)

Circular Motion Profiler

The circular motion profiler assumes the particle is undergoing a circular motion relative to a
body-fixed point. It takes as parameters the starting position of the moving mass and the overall
circlar distance to be traveled, with the direction assumed to be circular and about the f̂3 axis in the
F frame (which stays aligned with the B frame for the point mass case). Like the linear profiler,
it also has a configurable maximum tangential acceleration and maximum speed. The tangential
motion follows essentially the same profile as in the linear case. However, the position and velocity
directions are calculated based on the overall angular displacement over time. Scalar linear terms
for the position, velocity and acceleration are calculated. During acceleration, these are:

r(t) = rs +
1

2
am(t− ts)2 (25)
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v(t) = am(t− ts) (26)

a(t) = am (27)

During coast, they become:
r(t) = r1 + vm(t− t1) (28)

v(t) = vm (29)

a(t) = 0 (30)

And during deceleration:

r(t) = r2 + vm(t− ts)−
1

2
am(t− t2)2 (31)

v(t) = vm − am(t− t2) (32)

a(t) = −am (33)

These scalar quantities are then used to calculate the overall vector quantities:

∆θ(t) =
r(t)

R
(34)

rF/M (t) =

cos(θs + ∆θ(t))
sin(θs + ∆θ(t))

zs

 (35)

r
′

F/M (t) = v(t) ·

− sin(θs + ∆θ(t))
cos(θs + ∆θ(t))

0

 (36)

r
′′

F/M (t) = ac(t) + a(t) ·

− sin(θs + ∆θ(t))
cos(θs + ∆θ(t))

0

 (37)

The centripetal acceleration is calculated using the radius of motion R as:

ac(t) = −v(t)2

R

rF/M (t)

||rF/M (t)||
(38)

RESULTS

Simulation Setup

The simulation is of a large cylindrical space station in deep space, not affected by any other
gravitational bodies or perturbations. Its initial state is freely spinning in a stable manner about a
principal axis, and it is not otherwise controlled. The moment of inertia and mass of the station hub
are set by assuming a cylinder diameter of 25 m, a height of 50 m, and calculating a rough mass
and density that would correspond to a large metal structure of those dimensions. The intent is to
demonstrate order of magnitude effects of translational and rotational perturbations and provide a
basis of comparison. The final space station mass is taken to be 2.0 ×106 kg, with an inertia of:

Ihub =

5.0× 108 0.0 0.0

0.0 5.0× 108 0.0

0.0 0.0 1.6× 108

 kg ·m2 (39)
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(a) Particle Position rF/B (b) Hub Position rB/N

(c) Particle Velocity r′F/B (d) Hub Attitude σB/N

(e) Particle Acceleration r′′F/B (f) Hub Angular Velocity ωB/N

Figure 4. Kinematic states of moving mass and space station hub for the linear motion case.

The spacecraft hub’s initial angular rate is taken to be 0.01 radians per second (about 0.57 degrees
per second) about the b̂3 axis.

The moving mass is assumed to be some object, such as humans or cargo, moving along a linear
or circular track inside an elevator or similar structure. The particle mass varies between 200 to
2000 kg. It maximum acceleration is 1.0 m/s2, and its maximum speed varies between 0.5 and 5.0
m/s. TheM frame is taken to be identical to the B frame.

Simulation Results for Fixed Parameters

The overall effects on the spacecraft are examined for two scenarios (1) moving from the top to
the bottom along the b̂3-axis (from -25.0 m to 25.0 m with the B frame origin at the cylinder center
of mass) and (2) walking in a circular path around the circumference at a height of 0 m. In all
cases, the starting b̂1 position is 12.5 m and the starting b̂1 position is 0.0 m. The chosen variable
parameters for the initial simulation result use a mass of 2000 kg and a maximum speed of 5.0 m/s.

For the case of linear motion from the bottom to the top of the cylinder, shown in Figure 4, the
profiles are of the constant-acceleration body-frame motion described by the linear profiler. The b̂1
and b̂1 positions do not change, while the b̂3 position varies from -25.0 to 25.0 m by parabolic arcs
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(a) Particle Position rF/B (b) Hub Position rB/N

(c) Particle Velocity r′F/B (d) Hub Attitude σB/N

(e) Particle Acceleration r′′F/B (f) Hub Angular Velocity ωB/N

Figure 5. Kinematic states of moving mass and space station hub for the circular motion case.

connected by a linear portion. The velocity is linearly increasing and decreasing during periods of
nonzero constant acceleration. As for the effects on the hub, small changes in the linear position on
the order of 5.0 × 10−3 m are seen. Without the moving mass, the positions would stay at 0.0 for
all time. The attitude, shown as modified Rodrigues parameters (MRPs), would have zero change
in σ2 and σ3, and a linear increase in σ1 until the MRP switch happened after half a revolution.
Similarly, the angular rates would stay constant, but instead slight variations in the direction can be
seen during the motion.

For the case of circular motion about the circumference of the cylinder, the body-frame motion is
somewhat more complex. For uniform circular motion, the position and velocity would be perfect
sine and cosine functions; instead, the effects of the tangential acceleration are also seen. While
the tangential acceleration has a maximum magnitude, 1.0 m/s2, there is no maximum magnitude
to the centripetal acceleration needed to keep the motion circular, and indeed the magnitude of the
acceleration is high during the coast period due to the high body-frame velocity. The acceleration
and deceleration periods are marked by the discontinuities in the acceleration profile. The position
of the hub is also affected in the n̂1 and n̂2 components by the motion around the circle (note that
originally, the N frame is aligned with the B frame). Also, during the counterclockwise motion of
the moving mass, the positive b̂3-axis spin is noticeably reduced.
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Figure 6. Norm of the hub position change as mass and maximum speed vary for linear motion.

Varying Mass and Speed Parameters

To look at the sensitivity of the effects on the hub to some of the moving mass parameters, the
mass was varied from 200 to 2000 kg and the maximum speed from 0.5 to 5.0 m/s. It would also be
of interest to investigate changing the shape and dimensions of the spacecraft hub, as well as more
complex motions and paths. For these purposes, however, varying the mass and maximum speed
give some indication of the relative magnitude of the effects. For the linear motion described, the
simulation was run for 120 seconds, allowing the motion to fully complete for all cases, and the
overall hub position evaluated. For both the linear and circular motion, the change in the angular
acceleration was evaluated at its peak, just after the completion of the acceleration of the moving
mass.

For the change in the overall position due to linear motion, shown in Figure 6, the maximum
speed has no effect. This is because, if the mass and distance traveled are held fixed, and knowing
that the overall system center of mass does not change, the hub position must always change the
same amount to compensate for the moving mass. Of course, the maximum speed changes how
quickly this translational motion happens. As expected, increased mass has a bigger effect, up to
the order of 5 mm.

When it comes to the change in the magnitude of the angular acceleration from the linear path
along the b̂3 axis, shown in Figure 7, the maximum speed is now as relevant as the mass. For the
maximum speed and mass chosen, the effect on the norm was on the order of 0.01 degrees per
second. This is substantial, in particular noting the original angular velocity norm is 0.57 degrees
per second.

Finally, for the change in the magnitude of the angular acceleration when the mass was moving
about the circumference, shown in Figure 8, the maximum effects were even larger. The direction
chosen was always the same, so these effects when to decrease the spin magnitude. Of course, if the
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Figure 7. Norm of the change to the hub angular velocity as mass and maximum
speed vary for linear motion.

mass were moving in the other direction, the angular acceleration would be expected to increase.

CONCLUSION

A model of human and cargo motion aboard spacecraft was developed, and the full dynamics
derived. Those dynamics were implemented in software and a spacecraft hub with a moving mass
following prescribed motion simulated. For both linear and circular motion and for the parameters
chosen, nontrivial effects on the hub position and angular velocity were demonstrated. Future work
involves varying additional parameters of the simulation, looking at the effects while the spacecraft
is in orbit, and investigating more complex spacecraft geometries and moving mass trajectories.
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