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SPACE-TO-SPACE BASED RELATIVE MOTION ESTIMATION
USING LINEARIZED RELATIVE ORBIT ELEMENTS

Trevor Bennett⇤ and Hanspeter Schaub†

Many methods of relative motion estimation involve the direct estimation of time-
evolving position and velocity variables. Proposed is an alternate approach where
the constants of integration in the Clohessy-Wiltshire equations are considered as
the state variables. The mapping and equations of motion are developed for the
new state variables which accommodate perturbation and control accelerations.
The under-determined angles-only relative orbit Extended Kalman filter (EKF)
navigation approach is used to estimate non-dimensional linearized relative orbit
elements (LROEs). Estimating LROEs enables the relative orbit geometry to be
directly determined. For the angles-only implementation, the relative orbit scale is
undetermined, but the proposed non-dimensional LROEs elegantly allow for the
relative orbit shape to be estimated.

INTRODUCTION

There is an increasing interest in space-based space situational awareness around satellite assets
in the tracking of orbital debris or target objects. The relative position of the target object can be
estimated using relative motion description estimation or inertial methods such as ground based
estimation and inertial differencing with GPS measurements.1, 2 Of particular interest is the space-
based tracking of objects near critical circular orbit regimes, for example near the Geostationary
belt or the International Space Station. This manuscript addresses estimation of the relative motion
about circular chief orbits.

Researches have investigated estimation of the relative motion through a variety of state descrip-
tions. One approach is to difference the orbit elements to derive new parameter sets.1, 3 Expressing
the relative motion estimation in polar coordinates has also been considered.4 More common rela-
tive motion descriptions such as the Clohessy-Wiltshire (CW) equations describe the motion using
time-varying Cartesian or curvilinear coordinates.5 Research into using the CW equations for rela-
tive motion estimation has led researchers to derive new parameterizations.3, 6–8 The observability
of estimating the Cartesian state using the CW formulation has also been considered demonstrating
the restrictions in applying the equations directly in estimation.9 Further exploration has utilized
curvilinear and nonlinear transformations of the linearized motion, however the formulations suffer
from the same drawbacks of other relative motion descriptions.10 However, to date the estimation
methodology has assumed a Cartesian or orbit element difference state vector as outlined in11 in-
cluding time-varying additional term derivations. Proposed is a novel relative motion state vector
derived from the invariants of motion that reside in the classical Clohessy-Wiltshire equations.

⇤Graduate Research Assistant, Aerospace Engineering Sciences, University of Colorado.
†Professor, Department of Aerospace Engineering Sciences, University of Colorado, 431 UCB, Colorado Center for As-
trodynamics Research, Boulder, CO 80309-0431
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and the orbit element description will be used. The spacecraft formation
flying nomenclature used in this chapter is as follows. The simplest type of
spacecraft formation flying geometry is the leader-follower type of formation
flying shown in Fig. 14.1. Here the two spacecraft are essentially in identical
orbits, but are separated only by having different anomalies. If this orbit is cir-
cular, then the spacecraft separation will remain fixed because both vehicles
are always moving at the same orbital speed. If the orbit is elliptic, then the
spacecraft separation will contract and expand, depending on whether the
formation is approaching the orbit apoapsis or periapsis.

The satellite about which all other satellite motions are referenced is
called the chief satellite. The remaining satellites, referred to as the deputy
satellites, are to fly in formation with the chief. Note that it is not necessary
that the chief position actually be occupied by a physical satellite. Sometimes
this chief position is simply used as an orbiting reference point about which
the deputy satellites orbit.

The inertial chief position is expressed through the vector rc(t), while the
deputy satellite position is given by rd(t). To express how the relative orbit
geometry is seen by the chief, we introduce the Hill coordinate frame [2].
Its origin is at the chief satellite position and its orientation is given by the
vector triad {ôr , ôu, ôh} shown in Figs. 14.1 and 14.2. The vector ôr is in
the orbit radius direction, while ôh is parallel to the orbit momentum
vector in the orbit normal direction. The vector ôu then completes the right-
hand coordinates system. Mathematically, these O frame orientation vectors
are expressed as

ôr ¼
rc

rc
(14:1a)

ôu ¼ ôh " ôr (14:1b)

ôh ¼
h
h

(14:1c)
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Fig. 14.1 Illustration of a leader–follower type of a two-spacecraft formation.
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Figure 1. Local vertical local horizontal rotating Hill frame for formation flying.

Linearized Relative Orbit Elements (LROEs) employ invariants of the linearized relative motion
provided by the CW equations. Present in the CW equations are shape parameters that describe the
size and location of the relative orbit. The present study uses these constant shape parameters, or
LROEs, as the state vector for the estimation scheme. An inverse mapping and the equations of
motion are available for these parameters using variational equation techniques.12 The LROE dif-
ferential equations enable the relative orbit to be directly propagated including perturbation forces
such as differential drag and coulomb formations studied by other authors.13, 14 Implementing a
relative motion filter with a set of constants mimics an epoch state filter which has been studied
in low-Earth orbit (LE0) applications.15 There also exists substantial evaluation techniques for the
covariance of epoch state filters.16 With support of epoch state Kalman filtering methodology, uti-
lization of the invariant-inspired relative motion parameters exhibits exciting applications in relative
motion sensing and control.

This paper provides the development of the LROE based extended Kalman filter for estimation
of relative motion about a circular chief. The challenging angles-only relative motion estimation
problem studied in References 1 and 9 is not fully observable. It is impossible to distinguish with
angles-only measurements between 2 relative orbits that differ only by a common scaling factor.
Therefore, it is of interest to showcase the geometric-insight advantages of the LROE formulation
within the challenges of angles-only estimation problems. Of interest is how the angle-only problem
can be reformulated using non-dimensional LROE’s to make the relative orbit shape, not the scale,
observable. The motivation for such work is that it allows for elegant relative orbit control laws to
be developed in terms of LROE that directly control the relative trajectory shape. Several CubeSat
missions have implemented relative motion control schemes that would benefit from the presented
estimation approaches.17–19 For example, the control of a drifting safety-ellipse needs to strongly
control the oscillatory out-of-plane and in-plan oscillatory motion, but only looses needs to control
the along-track drift rate. With LROE estimation simple feedback controls are enabled to selectively
control relative orbit shape aspects.

LINEARIZED RELATIVE ORBIT ELEMENTS

The relative motion of two satellites can be described by the inertial state vector difference in the
deputy, or target, and chief. Consider the Hill frame20 defined in Figure 1. The relative position is
given by the inertial difference

⇢ = rdeputy � rchief (1)
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The relative position ⇢ and the relative velocity ⇢̇ are the desired parameters for relative motion
estimation. For small relative positions that reside within 1 km of the chief orbit, the relative motion
can be linearized about the chief orbit. The linearized form can be further reduced to the well known
Clohessy-Wiltshire (CW) equations by further assuming the chief orbit is circular and solving for the
analytic solution. The CW equations provide a convenient form for directly prescribing the relative
orbit and are often utilized for geometric insight. The Hill frame position vector components are
given by20, 21

x(t) = A
0

cos(nt + ↵) + xoff (2a)

y(t) = �2A
0

sin(nt + ↵)� 3

2
ntxoff + yoff (2b)

z(t) = B
0

cos(nt + �) (2c)

where A
0

and B
0

are the amplitudes of the cyclic in-plane and out-of-plane motion, ↵ and � are the
associated phase angles, and xoff and yoff are the orbit radial and along-track offsets. The relative
state vector is characterized by the 6 invariants (A

0

, ↵, B
0

, �, xoff, yoff) of the unperturbed motion.
These invariants, or Relative Orbit Elements (ROEs), provide convenient scaling and phasing terms
enable direct shaping of the relative orbit. It is the intuitive nature of these constants that motivates
the following development. Other ROEs could be used such as the initial Hill frame position and
velocity coordinates, but this paper will focus on ROEs that provide very convenient geometric
insight into the relative orbit geometry. As this set of ROEs is derived from the linearized relative
motion solution, the invariant vector of the CW equations is referred to as a Linearized ROE or
LROE.

If the elliptical invariant A
0

or B
0

are zero in Eq. (2), then the angles ↵ and � are ambiguous and
lack influence.12 Without modification, the CW equations therefore are unable to provide a unique
solutions to some cases including the Leader-Follower configuration. A non-singular CW equation
form is introduced in 12 that avoids ambiguity.

NONSINGULAR MODIFICATION TO THE LROE SET

A slight modification to the CW equations removes the ↵ and � ambiguity and largely preserves
the inherent insight.12 The modified set of LROEs that utilizes the trigonometric expansions

A
0

cos(↵ + nt) = A
0

cos(↵) cos(nt)� A
0

sin(↵) sin(nt)

A
0

sin(↵ + nt) = A
0

sin(↵) cos(nt) + A
0

cos(↵) sin(nt)

B
0

cos(↵ + nt) = B
0

cos(↵) cos(nt)� B
0

sin(↵) sin(nt)

where the new shape constants A
1

, A
2

, B
1

, and B
2

are defined as

A
1

= A
0

cos(↵) A
2

= A
0

sin(↵) B
1

= B
0

cos(↵) B
2

= B
0

sin(↵) (4)

The ambiguity of the linear combination of A
0

and ↵, or B
0

and �, is removed in place of two
perpendicular scaling terms. The modified non-singular LROE set therefore becomes

x(t) = A
1

cos(nt)� A
2

sin(nt) + xoff (5a)

y(t) = �2A
1

sin(nt)� 2A
2

cos(nt)� 3

2
ntxoff + yoff (5b)

z(t) = B
1

cos(nt)� B
2

sin(nt) (5c)
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LROEs both in the traditional and nonsingular forms provide the relative motion geometry in the
absence of perturbation. In the absence of perturbations, these parameters remain constant. In the
presence of perturbations, a Lagrangian Bracket formulation may be used to generate the specific
LROE evolution equations.12

LROE DYNAMICS USING LAGRANGIAN BRACKETS

The dynamics of the state vector are required for navigation filter applications. As described, the
LROE set is considered to be invariant while the spacecraft pairs are influenced only by two-body
gravitational effects. However, more accuracy to the dynamic modeling and filter applicability re-
quires additional forces or perturbations to drive the LROE evolution. First derived in Reference 12,
the dynamics of the LROE state can be obtained by applying Lagrange Brackets to the non-singular
LROE equations. This approach is analogous to Lagrange’s planetary equations in that the LROE
set becomes osculating to match the perturbed relative orbit. The nominally invariant LROE set X ,
defined as

X = (A
1

, A
2

, B
1

, B
2

, xoff, yoff) (6)

evolves according to Eq. (7) where a
d

is the disturbance acceleration in the Hill frame.12

Ẋ =

2

6666666664

�7 sin(nt)

n

�2 cos(nt)

n

0
�7 cos(nt)

n

2↵2 cos(nt)�6(nt�1) sin(nt)

n

0

0 0 � sin(nt)

n

0 0 cos(nt)

n

�4 sin(2nt)

n

18

n

0
↵2+2+↵1(cos(2nt)�sin(2nt))

n

�3↵2+4+2↵2(cos(2nt)+sin(2nt))

n

0

3

7777777775

| {z }
B(X,t)

2

4
a
x

a
y

a
z

3

5 (7)

where the simplifying terms ↵
1

and ↵
2

are defined as

↵
1

= 3nt � 4 (8a)
↵
2

= 3nt + 4 (8b)

Eq. (7) is the variational equation of the non-singular LROE set, and is the relative motion equivalent
of Gauss’ variational equation for inertial orbital motion. Any perturbation or control accelerations
can be applied to propagate the LROE variations. Recall that the CW equations already account
for two-body motion, so the differential perturbation accelerations can include drag, solar radiation
pressure, and higher order gravity.

LROE FILTER FORMULATION

Using the non-singular LROE set as the state variables, the relative orbit can be determined
through a sequential estimation scheme. An extended Kalman filter (EKF) is applied to estimating
the LROE set to provide the relative orbit at any time. Motivated by the prevalence of visual cameras
in satellites, bearings only measurements are used. The goal of this study is to formulate the LROE-
based relative motion estimation problem, and study the observability of the LROE state.
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State and Measurement Models

The non-singular LROE set defined in Eq. (6) is used as the state vector for relative motion estima-
tion. Because the LROE relative orbit coordinates are invariants of linearized unperturbed motion,
the proposed unperturbed filter formulation is an epoch state filter where the current measurement
provides information that is mapped to a prescribed epoch. This filter considers the initialization
time as the prescribed epoch. The measurement equations include the time dependence allowing
the state to remain constant. The bearing measurement model used is shown in Eq. (10). The bear-
ing measurements can also be written in terms of the state vector variables by using the mappings
provided by Eq. (5).

Az = arctan

✓
y(t)

x(t)

◆
(9)

El = arctan

 
z(t)p

x2(t) + y2(t)

!
(10)

The measurements and truth trajectory are generated from the output of an inertial frame simu-
lation. The dynamics include only two body effects for the present study, however both the filter
and the LROE formulation are capable of more complicated dynamical models. The truth state is
perturbed slightly at every time step using an error provided by a random sampling of the process
noise matrix propagated simultaneously with the truth state.

X true
k

= X true
k,nominal + sample(Q

k

) (11)

The noise on the measurements appears from 3 sources. The state has unmodeled dynamical
error and therefore the true measurements will contain a representative error not included in the
propagated filter model. A set of two first order Gauss-Markov variables are propagated and added
onto the bearing measurements. The final error is introduced as a Gaussian zero-mean white noise
process. Therefore the true azimuth measurement is computed by Eq. (12) and similarly for eleva-
tion.

Az = Azexact + �GM

Az + wAz (12)

The inclusion of the Gauss-Markov process more accurately represents the expected performance
of a visual navigation camera and the white noise provides the random noise source. The first order
Gauss-Markov random walk process is propagated using the form

�̇ = �BGM� + W
k

(13)

where the B matrix provides the time-constant-drive decay of the current variable value. The white
noise process matrix W

k

is a randomly sampled value from a camera specific error covariance W .
The time constants for the camera considered are 15 minutes such that the Gauss-Markov B matrix
is given by

BGM =


1/⌧Az 0
0 1/⌧El

�
(14)

The W matrix is the diagonal covariance of the camera white noise with elements wcam. The
camera considered in this study is a 5 mega-pixel, np = 5⇥ 106, camera. The noise w

p

is assumed
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to be about 1 pixel for 1� error. The camera is assumed to have a more narrow field of view with a
half angle of ↵ = 10�. This gives the radian noise magnitude of

wcam =
w
p

np
⇤ 2↵ (15)

The noise parameters provides a more realistic baseline for the LROE EKF formulation.

Extended Kalman Filter Formulation

The EKF formulation is a nonlinear approach to a linearized problem. The sequential Kalman
filter is suitable for estimating the LROE state vector from a series of bearing measurements mo-
tivated by satellite based tracking and estimation. The use of an EKF allows the state estimate to
update the current LROE estimate rather than updating a correction term to the initial LROE guess.
This is desired for the estimation of constants where the a priori is either poor or nearly unknown.

The filter state is propagated forward in time using Eq. (16) where F are the modeled forcing
functions. The dynamics are not constrained to be two-body admitting perturbations in the presented
filter formulation. The LROE variational equations in Eq. (7) introduce a time-varying LROE set
with filter-modeled perturbation forces

Ẋ
k

= F (X(t
k

), t
k

) = B(X(t
k

), t
k

)a
d

(16)

The linearized dynamics matrix A is given as the state partials of the modeled forcing function F
evaluated at the current LROE set. The A matrix is forcing function dependent and might require
numerical approximation for some dynamical models.

A =


@F (X, t)

@X

�⇤
(17)

The presented filter results use two-body unperturbed dynamics and so the A matrix is all zero. The
filter does not assume a zero A matrix as seen in the covariance propagation. The state covariance
matrix is propagated forward using the state transition matrix form in Eq. (18) with the addition of
process noise.

P̄
k

= � (t
k

, t
k�1

)P
k�1

�T (t
k

, t
k�1

) + S(t) (18)

The process noise matrix S is added at every time step to prevent filter saturation. The process noise
for the current step is given by Eq. (19) where Q is the process noise covariance matrix.

Ṡ = AS + SA + Q (19)

The linearized filter utilizes the partials of the measurements and of the dynamics to the provided
state vector. The linearized measurment model given by H is given by

H̃ =


@G(X, t)

@X

�⇤

i

=

"
@Az
@X

@El
@X

#
(20)

The Kalman filter uses the time-varying measurement partials matrix H̃ to map the current LROE
state into the measurements. The H̃ matrix using the non-singular LROE form using the definitions
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in Eq. (5) is

H̃
1,1

(t) = �x2(t)

✓
2 sin(nt)

x(t)
� �y(t) cos(nt)

x2(t)

◆
/

1

(21a)

H̃
1,2

(t) = �x2(t)

✓
2 cos(nt)

x(t)
+

�y(t) sin(nt)

x2(t)

◆
/

1

(21b)

H̃
1,3

(t) = 0 (21c)

H̃
1,4

(t) = 0 (21d)

H̃
1,5

(t) = x2(t)

✓
y(t)

x2(t)
� 3nt

2x(t)

◆
/

1

(21e)

H̃
1,6

(t) = x(t)/
1

(21f)

H̃
2,1

(t) = �z(t) (2x(t) cos(nt)� 4y(t) sin(nt)) /2
1


2

(21g)

H̃
2,2

(t) = z(t) (2x(t) sin(nt) + 4y(t) cos(nt)) /2
1


2

(21h)

H̃
2,3

(t) = cos(nt)/
2

(21i)

H̃
2,4

(t) = � sin(nt)/
2

(21j)

H̃
2,5

(t) = (�z(t)(2x(t)� nty(t))) /2
1


2

(21k)

H̃
2,6

(t) = �2z(t)y(t)/2
1


2

(21l)

where


1

= x2(t) + y(t)2 (22a)


2

=
p


1

✓
z2(t)


1

+ 1

◆
(22b)

The Kalman gain is assembled using

K̄
k

= P̄
k

H̃T

k

⇣
H̃

k

P̄
k

H̃T

k

+ R
k

⌘�1

(23)

where the measurement error matrix is given by

R = k
R

W = k
R


wcam 0
0 wcam

�
(24)

The R matrix is intentionally under-weighted by a factor k
R

to encapsulate the unmodeled error
sources represented by the Gauss-Markov process and random process in the truth measurements.

The state covariance is updated using the Joseph formulation as shown in Eq. (25). The Joseph
formulation of the covariance matrix is more consistently symmetric.

P
k

=
h
I � K

k

H̃
k

i
P̄
k

h
I � K

k

H̃
k

i
T

+ K
k

R
k

KT

k

(25)

The LROE EKF formulation and measurement equations are presented. The derived form can be
easily expanded to include additional dynamics perturbations. The advantage of using LROEs in
the relative orbit estimation problem is the observability of the state.
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Non-Dimensional LROE Set

One of the challenges with bearings-only estimation is the lack of observability of the full relative
motion state.4, 9 The observability grammian

OT

N

O
N

= HT

0

H
0

+
NX

k=1

�T

k�1,0

HT

k

H
k

�
k�1,0

(26)

provides the observability for the noise-free system. For the unperturbed LROE filter case this
simplifies to

OT

N

O
N

=
NX

k=0

HT

k

H
k

(27)

For the angles-only relative motion sensing cases the unperturbed noise-free observability gram-
mian for the LROE EKF is not full rank and thus the full LROE state suffers the classical lack of
convergence as seen in other formulations. Consider the family of relative 2:1 ellipses as an ex-
ample. The bearings measurement history is the same for the family of ellipses defined by scaling
all LROE terms by a common constant. This lack of knowledge regarding the scale factor is what
produces the rank deficient observability grammian.

To address this issue of estimating aspects of the relative motion with angles-only, a non-dimen-
sionalized LROE set is defined by dividing all the elements by a reference LROE element. Note
that since all non-singular LROE elements have units of distance, this non-dimensionalization is
trivial to perform. Without loss of generality, the A

1

term is selected for scaling for the following
examples to yield the reduced order 5⇥ 1 non-dimensional LROE set

X̂ =
1

A
1

2

66664

A
2

B
1

B
2

xoff
yoff

3

77775
=

2

666664

Â
2

B̂
1

B̂
2

x̂off
ŷoff

3

777775
(28)

The non-dimensionalized non-singular set generates a rank 5 observability grammian which demon-
strates that the shape of the relative motion can be fully determined without knowing the scale factor.
Including range information would resolve the relative motion scale factor. The non-dimensional
measurement sensitivity matrix drops the non-dimensionalizing term, in this case the A

1

column,
of Eq. (21) and the inputs are the non-dimensional positions x̂(t),ŷ(t), and ẑ(t) given by

x(t) = cos(nt)� Â
2

sin(nt) + x̂off (29a)

y(t) = �2 sin(nt)� 2Â
2

cos(nt)� 3

2
ntx̂off + ŷoff (29b)

z(t) = B̂
1

cos(nt)� B̂
2

sin(nt) (29c)

This approach assumes that the non-dimensionalizing term is non-zero. If the filter does not know
which terms are zero, a mixed-method of experts filtering approach would provide evidence of the
correct formulation.
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ILLUSTRATIVE LROE ESTIMATION CASES

The LROE extended Kalman filter formulation is implemented in a numerical simulation to
demonstrate the feasibility of estimating the relative orbit shape without the scale information. The
two satellites are inertially propagated with the full nonlinear two-body dynamics. The observations
are extracted every 3 seconds using the true positions and are then altered by the addition of sensor
noise. The filter propagates and estimates the LROE set and at each time step, the Gauss-Markov
process is added to the LROE state. The continual perturbation of the LROE set help move the esti-
mation of a constant towards the truth when the measurement noise begins to dominate the Kalman
update. The measurement noise under-weighted to 5 times the true noise value. The chief spacecraft
is initialized with a semi-major axis of 7500 kilometers and all other orbit elements as zero. The
true relative orbit is initialized with X true and the filter is given the initial conditions X true +�X .

The filter covariance is given by P
0

= 103 ⇥ diag[1, 1, 1, 1, 0.1, 1] which is sufficiently large
but is bounded by the 1 km range of applicability inherent in the CW equations. The true state
process noise and the filter process noise is

Qest = diag[3E�2, 3E�2, 3E�2, 3E�2, 1E�6, 1E�6] (30)

The magnitude of the process noise is sufficiently large such that the covariance bounds in the
estimate encapsulate the state errors. The camera noise is defined in Eq. (15) and has a value of
1.5⇥ 10�4 radians. The LROE filter is applied to two cases: a drifting target and a relative ellipse.
Both cases are not among the angles-only unobservable cases.

The LROE filter is applied to a drifting target satellite. The initial conditions and filter state error
for the drifting case are

X true =

2

6666664

A
1

A
2

B
1

B
2

xoff
yoff

3

7777775
=

2

6666664

100
0

200
0
20

-2.5

3

7777775
[m] �X =

2

6666664

10
-2
-7
2
5
-5

3

7777775
[m] (31)

The true drifting relative orbit over the half-orbit simulation time is shown in Cartesian Hill frame
coordinates in 2.

Relative Orbit Estimation using the Full Set of Dimensional LROE

Given the parameter values specified and the relative motion defined, the dimensional 6⇥1 LROE
filter provides the state estimate and covariance shown in Figure 3. The final state estimate error
after one orbit is Xerror = [1.34, �0.11, 2.71, 0.08, 0.29, �0.08] meters. However, the error
values are misleading as the solution is one of an infinite number of solutions because of the lack
of observability. The lack of observability is visible in the continuous jitter in the estimate for the
duration of the simulation. This example demonstrates that the LROE EKF cannot estimate the full
6 ⇥ 1 state uniquely using angles-only measurements. The second case uses the non-dimensional
form to obtain the geometry without knowledge of the scale factor.

Relative Orbit Estimation using the Reduced Non-Dimensional LROE Set

A second simulation uses the same initial conditions and covariance as the previous case, but
non-dimensionalizes the LROE with A

1

. The following example shows the convergence to the un-
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(a) Relative orbit, planar projection.

H
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(b) Relative orbit, XZ projection.

Figure 2. Hill frame relative orbit for the drifting relative ellipse example case. Start
at o, finish at o about the chief.

scaled relative geometry. The final state estimate error after one orbit is already reduced to Xerror =
[0.01, 0.00002, 0.006, �0.00005, 0.02] meters. The results illustrate that a non-dimensional
LROE EKF can estimate the relative motion shape using angles-only with increasing accuracy.
This demonstrates the convenient geometric insight obtained when performing relative motion esti-
mation using the LROEs.

CONCLUSIONS

The presented analytical development and numerical simulations show that a non-singular lin-
earized relative orbit element (LROE) extended Kalman filter is capable of estimating the relative
orbit shape using angles only measurements. The presented non-dimensional LROE approach in
particular provides a full-rank estimation problem where the unobservable relative orbit scale infor-
mation is elegantly excluded. Future work will apply the same LROE approach to a curvilinear set
to remove linearization error and to address the range ambiguity.
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Figure 3. LROE estimated state error and covariance envelopes demonstrating the
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Figure 4. LROE estimated state error and covariance envelopes demonstrating the
boundedness of the along-track offset relative ellipse estimate with large initial error.
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