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Relative motion estimation finds application in space-based space situational aware-
ness and proximity operations. Prior work demonstrates the capability and insight
provided by a relative motion state vector chosen to be the Clohessy-Wiltshire in-
tegration constants, referred to as Linearized Relative Orbit Elements (LROEs).
This study develops a curvilinear coordinate state vector and compares the esti-
mation performance to both dimensional and non-dimensional rectilinear state es-
timation approaches. An Extended Kalman Filter (EKF) is developed to estimate
the rectilinear and curvilinear LROE state and tested in an inertial simulation with
bearings-only measurements and compared to bearings-plus-range filters. The
curvilinear formulation demonstrates observability and improved estimation per-
formance for the presented relative orbits. All LROE estimation approaches pre-
serve much of the geometrical insight of the relative orbit while accommodating
large initial condition errors.

INTRODUCTION

The growing utilization of Earth’s orbits drives an increasing interest in and need for space sit-
uational awareness (SSA) and improved utilization. Satellite operators desire real-time knowledge
of Earth-orbiting spacecraft and debris facilitated by quality measurements and robust propaga-
tion models. State information for orbiting objects can be acquired from inertial methods includ-
ing ground based estimation and inertial differencing with GPS measurements1, 2 and space-fence
installations. However, object measurements can also be captured by orbital platforms such as
the Geosynchronous Space Situational Awareness Program (GSSAP) recently de-classified by the
United States Air Force. In both ground-based and space-based systems, the goal of improved mea-
surements and state estimation remains. In addition, several CubeSat missions have implemented
relative motion control schemes that would benefit from the presented estimation approaches.3–5

Direct estimation of the relative motion finds application in both SSA and proximity operation ap-
plications.

Exemplified by the GSSAP constellation, space-based observation platforms provide a comple-
mentary source of measurements for SSA applications. The space-based platforms utilize the more
accurate knowledge of the observing craft and relative motion measurements to obtain the target
object’s state information. Prior work investigates the estimation of the relative motion through a
variety of state descriptions. For example, one approach is to difference the orbit elements to de-
rive new parameter sets.1, 6 Expressing the relative motion estimation in polar coordinates has also
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been considered.7 Further exploration has utilized curvilinear and nonlinear transformations of the
linearized Cartesian motion. However, the formulations suffer from the same drawbacks of other
relative motion descriptions.8 To date the estimation methodology has assumed a Cartesian or orbit
element difference state vector as outlined in Reference 9 including time-varying additional term
derivations.

Critical circular orbit regimes, including the Geostationary belt or the International Space Sta-
tion orbit, require great SSA attention. In cases where either observer or target is in a circular
orbit, the Clohessy-Wiltshire (CW) equations describe the motion using time-varying Cartesian or
curvilinear coordinates.10 Research into using the CW equations for relative motion estimation
has led researchers to derive new parameterizations.6, 11–13 An alternate approach to using the CW
equations utilizes the invariants of the linearized CW equations as the state vector.14 This method
provides a constant relative motion state vector, or Linearized Relative Orbit Elements (LROEs),
where the invariants provide relative orbit shape, orientation, and size. A relative motion estimation
filter with a constant state vector benefits from epoch state filter efforts studied in Low-Earth Orbit
(LEO) applications with substantial quality analysis techniques for the covariance.15, 16 Utilization
of the invariant-inspired relative motion parameters exhibits exciting applications in relative motion
sensing and control.

The angles-only relative motion estimation problem studied in References 1 and 17 is not fully
observable using Cartesian formulations. Research in space-based observation in the GEO region
highlights linearization error in the along-track relative coordinates.18 Reference 19 discusses how
curvilinear coordinates are superior to rectilinear coordinates in along-track estimation applica-
tions. First used for relative motion estimation in Reference 20, the present study extends the use
of LROEs to curvilinear coordinates to combat the linearization error and improve observability.
This following sections provide the development and demonstration of the LROE based extended
Kalman filter for estimation using curvilinear LROE coordinates. Through inertial simulation and
relative motion estimation, the non-singular LROEs and non-dimensional LROEs introduced in
Reference 20 are compared to the presented curvilinear development. Considered are bearings-only
measurement cases that demonstrate the weak observability gained by curvilinear coordinates and
the bearings and range estimation required by the Cartesian formulation. Presented are the respec-
tive state vectors, filter formulations, and numerical simulations exhibiting the advantages of LROE
state estimation and several state vector choices.

NONSINGULAR LROE SET

The relative motion of two satellites can be described by the inertial state vector difference in the
deputy, or target, and chief. Consider the Hill frame defined in Figure 1.21 The Clohessy-Wiltshire
relative orbit equations can be derived from the Cartesian coordinates shown in Figure 1.10 The
state vector for Linearized Relative Orbit Element (LROE) estimation are the invariants of the CW
equations. A slight modification to the CW equations removes the α and β ambiguity and largely
preserves the inherent insight.14 The ambiguity of the linear combination of A0 and α, or B0 and
β, is removed in place of two perpendicular scaling terms. The modified non-singular LROE set

2



and the orbit element description will be used. The spacecraft formation
flying nomenclature used in this chapter is as follows. The simplest type of
spacecraft formation flying geometry is the leader-follower type of formation
flying shown in Fig. 14.1. Here the two spacecraft are essentially in identical
orbits, but are separated only by having different anomalies. If this orbit is cir-
cular, then the spacecraft separation will remain fixed because both vehicles
are always moving at the same orbital speed. If the orbit is elliptic, then the
spacecraft separation will contract and expand, depending on whether the
formation is approaching the orbit apoapsis or periapsis.

The satellite about which all other satellite motions are referenced is
called the chief satellite. The remaining satellites, referred to as the deputy
satellites, are to fly in formation with the chief. Note that it is not necessary
that the chief position actually be occupied by a physical satellite. Sometimes
this chief position is simply used as an orbiting reference point about which
the deputy satellites orbit.

The inertial chief position is expressed through the vector rc(t), while the
deputy satellite position is given by rd(t). To express how the relative orbit
geometry is seen by the chief, we introduce the Hill coordinate frame [2].
Its origin is at the chief satellite position and its orientation is given by the
vector triad {ôr , ôu, ôh} shown in Figs. 14.1 and 14.2. The vector ôr is in
the orbit radius direction, while ôh is parallel to the orbit momentum
vector in the orbit normal direction. The vector ôu then completes the right-
hand coordinates system. Mathematically, these O frame orientation vectors
are expressed as

ôr ¼
rc

rc
(14:1a)

ôu ¼ ôh " ôr (14:1b)

ôh ¼
h
h

(14:1c)
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Fig. 14.1 Illustration of a leader–follower type of a two-spacecraft formation.
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Figure 1. Local vertical local horizontal rotating Hill frame for formation flying.

therefore becomes

x(t) = A1 cos(nt)−A2 sin(nt) + xoff (1a)

y(t) = −2A1 sin(nt)− 2A2 cos(nt)− 3

2
ntxoff + yoff (1b)

z(t) = B1 cos(nt)−B2 sin(nt) (1c)

The LROE form provides the relative motion geometry in the absence of perturbation. In the absence
of perturbations, these parameters remain constant. The nominally invariant nonsingular LROE state
vectorXNS, is defined as

XNS = (A1, A2, xoff, yoff, B1, B2) (2)

In the presence of perturbations, a Lagrangian Bracket formulation may be used to generate the spe-
cific LROE evolution equations.14 The dynamics of the state vector are required for navigation filter
applications. As described, the LROE set is considered to be invariant while the spacecraft pairs are
influenced only by two-body gravitational effects. However, more accuracy to the dynamic model-
ing and filter applicability requires additional forces or perturbations to drive the LROE evolution.
First derived in Reference 14, the dynamics of the LROE state can be obtained by applying La-
grange Brackets to the non-singular LROE equations. This approach is analogous to Lagrange’s
planetary equations in that the LROE set becomes osculating to match the perturbed relative orbit.
The nonsingular state vector in Eq. (2) evolves according to Eq. (3) where ad is the disturbance
acceleration in the Hill frame.14

ẊNS =
1

n



− sin(nt) −2 cos(nt) 0
− cos(nt) 2 sin(nt) 0

0 2 0
−2 3nt 0
0 0 − sin(nt)
0 0 − cos(nt)


︸ ︷︷ ︸

B(X,t)

axay
az

 (3)

Eq. (3) is the variational equation of the non-singular LROE set, and is the relative motion equiv-
alent of Gauss’ variational equation for inertial orbital motion. Any perturbation or control accel-
erations can be applied to propagate the LROE variations. Recall that the CW equations already
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account for two-body motion, so the differential perturbation accelerations can include drag, solar
radiation pressure, and higher order gravity. Furthermore, the form in Eq. (3) is valid for both the
rectilinear and curvilinear LROE formulations discussed in this manuscript. The matrix is derived
from the CW form that all LROE state vectors utilize. Propagating the nonsingular Cartesian and
curvilinear forms differ in the coordinitization of the acceleration vector.

REDUCED ORDER NON-DIMENSIONAL LROE SET

One of the challenges with bearings-only estimation is the lack of observability of the full relative
motion state.7, 17 An example of the degenerate cases is the family of relative 2:1 ellipses where the
bearings measurement history is the same for ellipses that only differ by a scale factor. This lack
of knowledge regarding the scale factor is what introduces the lack of observability. Therefore, a
non-dimensionalized LROE set is defined by dividing all the elements by a reference LROE ele-
ment.20 Without loss of generality, the A1 term is selected for scaling to yield the reduced order
non-dimensional LROE set20

X̂ =
1

A1


A2

B1

B2

xoff
yoff

 =


Â2

B̂1

B̂2

x̂off
ŷoff

 (4)

Provided only the bearing measurements, the state vector provides the shape and orientation of the
relative motion. Including range information would resolve the relative motion scale factor and
provide the relative orbit size. The non-dimensional state equations follow as

x(t) = cos(nt)− Â2 sin(nt) + x̂off (5a)

y(t) = −2 sin(nt)− 2Â2 cos(nt)− 3

2
ntx̂off + ŷoff (5b)

z(t) = B̂1 cos(nt)− B̂2 sin(nt) (5c)

with the non-dimensional state vectorXND, defined as

XND = (Â2, x̂off, ŷoff, B̂1, B̂2) (6)

This approach assumes that the non-dimensionalizing term is non-zero. If the filter does not know
which terms are zero, a mixed-method of experts filtering approach would provide evidence of the
correct formulation.

CURVILINEAR LROE COORDINATES

To help address the linearization errors and observability losses that plague the rectilinear form,
the CW equations can also utilize a curvilinear formulation. Following the analytical form for
rectilinear coordinates, the solution for the curvilinear position coordinates as a function of time is

δr(t) = C0 cos(nt+ α) + δroff (7a)

rcδθ(t) = −2C0 sin(nt+ α)− 3

2
ntδroff + rcδθoff (7b)

z(t) = B0 cos(nt+ β) (7c)
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Using the trigonometric expansion introduced in Reference 14, the nonsingular curvilinear posi-
tion equations assume the form in Eq. (8) which is similar to the form in Eq. (1).

δr(t) = C1 cos(nt)− C2 sin(nt) + δroff (8a)

δs(t) = rcδθ(t) = −2C1 sin(nt)− 2C2 cos(nt)− 3

2
ntδroff + rcδθoff (8b)

z(t) = B1 cos(nt)−B2 sin(nt) (8c)

The advantage of the curvilinear coordinates is the nonlinear mapping back to Cartesian space
that captures the arc of the orbit path. The ability to account for a curved path introduces weak
observability for bearings-only estimation where the rectilinear formulation is not fully observable.
For convenience, the chief orbit radius rc is assumed known and the arc length curvilinear variable
δsoff = rcδθoff is used. Utilizing the LROE approach, the curvilinear state vectorXC, defined as

XC = (C1, C2, δroff, δsoff, B1, B2) (9)

EXTENDED KALMAN FILTER FORMULATION

An extended Kalman filter (EKF) is selected for the LROE state estimation. The choice of a
nonlinear filter enables the nominal LROE set to vary more dramatically and converge given poor
or no a priori. Furthermore, the EKF is a widely used filter and can be illustrative as a benchmark
for the implementation of new relative orbit parameters.

General Filter Description

The LROE filter state is propagated forward in time using Eq. (10) where F are the modeled
forcing functions. The dynamics are not constrained to be two-body admitting perturbations in
the presented filter formulation. The LROE variational equations, for one state shown in Eq. (3),
introduce a time-varying LROE set with filter-modeled perturbation forces

Ẋk = F (X(tk), tk) = B(X(tk), tk)ad (10)

where B(X(tk), tk) is defined by Eq. (3) and the disturbance acceleration is ad. The state covari-
ance matrix is propagated forward using Eq. (11) requiring the state transition matrix Φ (tk, tk−1)
and the addition of process noise S(t).

P̄k = Φ (tk, tk−1)Pk−1Φ
T (tk, tk−1) + S(t) (11)

The process noise matrix S is added at every time step to prevent filter saturation. The process noise
for the current step is given by Eq. (12) where Q is the process noise covariance matrix.

Ṡ = AS + SA+Q (12)

The state covariance is updated using the Joseph formulation as shown in Eq. (13). The Joseph
formulation of the covariance matrix is more consistently symmetric.

Pk =
[
I −KkH̃k

]
P̄k

[
I −KkH̃k

]T
+KkRkK

T
k (13)
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Consistent with published EKF formulations, the measurement sensitivity matrix H is obtained by
taking the partials of the observation with respect to the state vector.

H =

[
∂G(X, t)

∂X

]∗
i

=


∂Az
∂X

∂El
∂X

∂ρ
∂X

 (14)

whereG(X, t) is the current vector of observations andX is the current LROE state.

An important implementation difference in the presented filter from the published EKF formu-
lation is the inclusion of a perturbation to the estimated constant state.15, 22 Common between the
epoch state filter and the LROE estimation filter is that the estimated state vector is constant. The
concern with estimating a constant state vector is that the numerical implementation of the filter
is capable of sticking to a particular, and often incorrect, state vector. Therefore, a full state of
Gauss-Markov variables are propagated alongside the LROE state vector and are summed onto the
LROE state immediately following the time update filter step. This perturbation is achieved from
a random sample of a propagated Gauss-Markov process covariance and provides small magnitude
alterations. The Gauss-Markov process is initialized from a random sample of the process noise
covariance matrix.

Rectilinear State Measurement Model

The rectilinear filter implementation uses bearing and range measurement models described by

Azexact(t) = arctan

(
y(t)

x(t)

)
(15a)

Elexact(t) = arctan

(
z(t)√

x2(t) + y2(t)

)
(15b)

ρexact(t) =
√
x(t)2 + y(t)2 + z(t)2 (15c)

The bearing and range measurements can also be written in terms of the state vector variables by
using the mappings provided by Eq. (1) for rectilinear coordinates. The H matrix using the non-
singular rectilinear LROE form using the definitions in Eq. (1) for the azimuth measurement type is
presented here with the partials for elevation and range measurements in the Appendix. The azimuth
partials are

H1,1(t) = (−2x(t) sin(nt)− y(t) cos(nt)) /κ1 (16a)

H1,2(t) = (−2x(t) cos(nt) + y(t) sin(nt)) /κ1 (16b)

H1,3(t) =

(
y(t)− 3ntx(t)

2

)
/κ1 (16c)

H1,4(t) = x(t)/κ1 (16d)

H1,5(t) = 0 (16e)

H1,6(t) = 0 (16f)

where

κ1 = x2(t) + y(t)2 (17a)

κ2 =
√
κ1
(
κ1 + z2(t)

)
(17b)
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TheH matrix is the same for both rectilinear implementations of the filter with the non-dimensionalizing
term column removed and the range row removed for the non-dimensional bearings-only case. The
nominal EKF utilizes all 6 LROE states and has azimuth, elevation, and range measurements. How-
ever, the second case does not utilize range resulting in a 2× 6 H matrix observability Grammian,
HTH , with only rank 5. Thus, the bearings-only filter formulation uses the 5 normalized states.

Curvilinear State Measurement Model

The curvilinear measurement equations require a nonlinear mapping from curvilinear coordinates
to Cartesian coordinates as shown in Eq. (18). The mapping is not linearized. When introduced into
the bearing measurement equations, the nonlinear curvilinear to rectilinear mapping is the source
of obtaining weak observability. If Eq. (18) is linearized, then the curvilinear coordinates would
not be fully observable. The mapping rcδθ = y would make the observation sensitivity matrix for
curvilinear coordinates reduce to the rectilinear form which would suffer from rank deficiency in
the observability matrix.

x(t) = (δr + rc) cos(δθ)− rc (18a)

y(t) = (δr + rc) sin(δθ) (18b)

Using the mapping in Eq. (18) and the time evolution of the curvilinear state in Eq. (8) , the mea-
surement equations is written in terms of curvilinear coordinates.

Azcurv(t) = arctan

(
(δr + rc) sin(δθ)

(δr + rc) cos(δθ)− rc

)
(19a)

Elcurv(t) = arctan

(
z(t)√

(δr + rc)2 − 2rc(δr + rc) cos(δθ) + r2c

)
(19b)

ρcurv(t) =
√

(δr + rc)2 − 2rc(δr + rc) cos(δθ) + r2c + z(t)2 (19c)

The curvilinear state introduced in Eq. (9) contains sufficient nonlinearity to enable a rank 6 H
matrix observability Grammian with bearings-only measurements. The curvilinear azimuth mea-
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surement sensitivity is captured in

Hcurv
1,1 (t) =

(
− cos

(
δs

rc

)
[2(δr + rc)x(t) sin(nt) + rcy(t) cos(nt)]

+ sin

(
δs

rc

)
[rcx(t) cos(nt)− 2(δr + rc)y(t) sin(nt)]

)
/rcκ1

(20a)

Hcurv
1,2 (t) =

(
− cos

(
δs

rc

)
[2(δr + rc)x(t) cos(nt)− rcy(t) sin(nt)]

− sin

(
δs

rc

)
[rcx(t) sin(nt) + 2(δr + rc)y(t) cos(nt)]

)
/rcκ1

(20b)

Hcurv
1,3 (t) =

(
− cos

(
δs

rc

)
[3ntx(t)(δr + rc) + 2rcy(t)]

− sin

(
δs

rc

)
[3nty(t)(δr + rc)− 2rcx(t)]

)
/2rcκ1

(20c)

Hcurv
1,4 (t) = (δr + rc)

(
x(t) cos

(
δs

rc

)
+ y(t) sin

(
δs

rc

))
/rcκ1 (20d)

Hcurv
1,5 (t) = 0 (20e)

Hcurv
1,6 (t) = 0 (20f)

where the terms x(t) and y(t) in both the H matrix and κ definitions are computed using Eq. (18).
The elevation measurement sensitivity is detailed in the Appendix. However, the nonlinearity is
small in the curvilinear H matrix which in turn requires large observational baselines to numeri-
cally capture the full rank of H . For small orbit trajectory curvature, the curvilinear measurement
sensitivity collapses to the rectilinear form.

MEASUREMENT NOISE MODELS

Capitalizing on the LROE formulations, the proposed unperturbed filter formulation is an epoch
state filter where the current measurement provides information that is mapped to a prescribed
epoch. This filter considers the initialization time as the prescribed epoch although the epoch can
be altered and reset as necessary. The noise on the measurements is accumulated from two sources.
Simulating camera noise, a set of two first order Gauss-Markov variables are propagated and added
onto the bearing measurements. In general practice, Gaussian white noise is added to all measure-
ment types. Therefore the measurements provided to the filter are computed by Eq. (21).

Az = Azexact + σGMAz + wAz (21a)

El = Elexact + σGMEl + wEl (21b)

ρ = ρexact + wρ (21c)

The inclusion of the Gauss-Markov process more accurately represents the expected performance
of a visual navigation camera and the white noise provides the random noise source. The first-order
Gauss-Markov random walk process is propagated using the form

σ̇ = −BGMσ +Wk (22)

where the B matrix provides the time-constant-drive decay of the current variable value. The white
noise process matrix Wk is a randomly sampled value from a camera specific error covariance W .
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The time constants for the camera considered are 15 minutes such that the Gauss-Markov B matrix
is given by

BGM =

[
1/τAz 0

0 1/τEl

]
(23)

The W matrix is the diagonal covariance of the camera white noise with elements wcam. The
camera considered in this study is a 5 mega-pixel, np = 5× 106, camera. The noise wp is assumed
to be about 0.05 pixels for 3σ error. The camera is assumed to have a more narrow field of view
with a half angle of α = 10◦. This gives the radian noise magnitude of

wcam =
wp
np
∗ 2α (24)

The measurement noise for the azimuth and elevation measurements are computed similarly with
the range error scaled by the observational baseline.

waz = wel =
wm
np
∗ 2α (25a)

wρ = ρ ∗ tan

(
wr
np
∗ 2α

)
(25b)

where wm is 0.3 pixels for 3σ error and wr is 1.5 pixels for 3σ error. These levels of accuracy
are possible with modern camera technology and enable the curvilinear formulations. The noise
parameters included provide a more realistic benchmark for the LROE EKF formulation.

ILLUSTRATIVE RECTILINEAR LROE ESTIMATION CASES

Of interest is the ability to estimate the relative motion of a target orbital object from a series
of space-based observations. The Linearized Relative Orbit Element (LROE) set is well suited to
the space-based observation application because the formulation is derived from formation flying.
The LROE extended Kalman filter formulation is implemented in a numerical simulation to demon-
strate the feasibility and simplicity of estimating the LROE relative orbit given minimal sensor
information. Motivated by observations of orbital platforms, one case compares bearings-only mea-
surements with the case augmented by object centroid range measurements. The observations are
extracted every 3 seconds from simulated true positions and are then altered by the addition of sen-
sor noise as described in previous sections. The camera noise is defined in Eq. (24) and has a value
of 1.56× 10−5 radians and a nominal range error of 2 centimeters at 200 meter range. To improve
filter behavior, a measurement noise under-weighted to 5 times the true noise value as a preliminary
filter tuning. The two satellites are inertially propagated with the full nonlinear two-body dynamics
and are currently without perturbations. However, additional perturbations are easily included given
the LROE dynamics provided by the Lagrangian Brackets.

The chief spacecraft is initialized with a semi-major axis of 7500 kilometers and all other orbit
elements as zero. The true relative orbit is initialized with X true and the filter is given the initial
conditions X true + ∆X . The LROE filter is applied to a drifting target satellite defined by the
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Figure 2. Hill frame relative orbit for the drifting relative ellipse example case. Start
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Cartesian initial conditions and filter state error as

X true =



A1

A2

xoff
yoff
B1

B2

 =



100
0
20

-2.5
200
0

 [m] ∆X =



10
-2
5
-5
-7
2

 [m] (26)

The true drifting relative orbit over a simulated full orbit is shown in Cartesian Hill frame coordi-
nates in Figure 2 with the filter cutoff at 0.3 orbits shown in red. The presented Hill frame relative
orbit is the basis for comparing three numerical simulation cases. The first case demonstrates the
bearings and range LROE estimation. The second case demonstrates bearings-only with the non-
dimensional LROE set. The final case introduces curvilinear bearings-only estimation and compares
the resulting quality to the two rectilinear cases.

LROE Relative Orbit Estimation using Bearings and Range

Recall that the CW equations provide the relative motion of a target in Cartesian coordinates as
a function of the LROE state. The full LROE state estimation requires bearings and range mea-
surements as required to maintain full rank in the observation sensitivity matrix H . Consider first
the case where the full rectilinear state is estimated with bearings and range measurements. In the
absence of perturbations, the LROE state is constant and can therefore converge with large initial
condition errors. To allow for large initial condition errors, such as the 200% error on yoff term,
the initial filter covariance is exaggerated to P0 = 1010 × diag[1, 1, 1, 1, 1, 1] which also pro-
vides ample buffer with the 1 km range of greatest validity inherent in the CW equations. The filter
process noise is

Qest = 0.005× diag[1, 1, 10, 1, 1, 1]

The magnitude of the process noise is sufficiently large such that the covariance bounds in the
estimate encapsulate the state errors.20 The process noise term on the xoff term is increased to an
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order of magnitude larger than the terms for other states. This linearization required to obtain the
CW equations in the Cartesian frame introduce most of the truncation error into the xoff term and
so the filter will require greater estimate flexibility in this state variable.

The EKF LROE filter using bearings and range with the initialized state and error detailed in
Eq. (26) achieves a final state error of

∆Xfinal ≈ [−0.0009, 0.04, 0.007, −0.001, −0.04, −0.09] [m]

after only 0.3 orbits. The convergence of each state variable over the 0.3 orbits is shown in Figure 3.
As desired, the covariance remains sufficiently open due to the larger initial covariance, sufficient
process noise, and the camera Gauss-Markov time constant of 15 minutes. Due to the visualized
scale, the covariance pinch at 0.25 orbits is not clearly visible in the A1 state shown in Figure 3(a)
and the B2 state shown in Figure 3(f). However, the presence of the narrowed covariance around
0.25 orbits suggests a filter that has a reasonable process noise magnitude.

The pre- and post-fit residuals for the estimated LROE state are shown in Figure 4. Inspection of
the pre-fit residuals reveals the desired trend towards residual noise at the magnitude of the visual
sensor capability. The lack of definitive character in the residuals confirms the state estimate is
reasonable and is unlikely to be refined further.

The presented LROE filtering pass only utilizes 0.3 relative orbits to converge to a reasonable
answer. This speed of convergence from large initial condition errors is advantageous for space-to-
space based observations because only fractions of an orbit are required to achieve the estimate. The
filter results presented in Figures 3 and 4 demonstrate the capability of a LROE state vector in rela-
tive motion estimation. However, the range observation may not always be possible or may not be of
sufficient accuracy. This leads to estimation approaches that consider bearings-only measurements.

Relative Orbit Estimation using the Reduced Non-Dimensional LROE Set

Consider the case where the range measurement cannot be accurately determined from visual
sensor data. This is possible when the filter possesses a poor target object geometrical or light-
ing model to compare against the visual observation. Therefore, the LROE state is applied to the
bearings-only sensor scenario. A numerical simulation of the non-dimensional LROE set with A1

as the non-dimensionalizing term. The following example shows the ability to estimate the shape
and orientation of the relative orbit using bearings-only measurements.

The initial filter covariance is given by P0 = 103 × diag[1, 1, 1, 1, 1] which is sufficient for the
states that have been normalized by relative orbit size. The filter process noise is

Qest = 0.005× diag[1, 10, 1, 1, 1]/|A1|

where the xoff term retains the order of magnitude increase in process noise. Given the linearization
error and the larger process noise requirements for xoff, it is recommended that the non-dimensional
LROE state not use xoff as the non-dimensionalizing term.

The non-dimensional estimation output is re-dimensionalized by the A1 scaling term to better
illustrate the convergence and compare against other filter outputs. In general, the filter does not
have knowledge of the scaling term and converges to the correct non-dimensional LROE states.
The final state estimate error after 0.3 chief orbits is reduced to

∆Xfinal = [0.003, −0.09, 0.007, 0.006, 0.09] [m] (27)
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Figure 3. LROE estimated state error and covariance envelopes demonstrating full
relative motion estimation for LROEs.
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Figure 4. Estimation pre- and post-fit residuals for the full rectilinear LROE set.

after 0.3 orbits. The re-dimesionalized filter state estimates over the considered 0.3 orbits are shown
in Figure 5. The A1 term is used for normalization and therefore is not included in the filter formu-
lation other than to re-dimensionalize the state estimate. The covariance envelopes are sufficiently
open during the initial observations to accommodate large initial condition errors and then suffi-
ciently reduces for the estimate to converge on the truth. As can be seen in all states in Figure 5,
the better observational geometry in B2 that reduces the covariance in Figure 5(d), lends to the
convergence of all states. This supports that the observational window must be large enough to
get significant geometry change despite the speed of convergence on the LROE state that is not as
apparent in the full state estimation shown in Figure 3. In general, the LROE state will require more
than 0.25 orbits to pass through critical observational geometry points. The filter state estimate is
quite accurate with errors on the order of the full state estimate. The convenient geometric insight
obtained when performing relative motion estimation using the LROEs although is limited by lack
of scale knowledge. Recall, given the non-dimensional states in Eq. 6 the output estimate describes
the relative orbit shape and orientation but not size.

The measurement residuals for the non-dimensional LROE state estimation are shown in Figure 6.
As desired, the pre-fit residuals tend towards zero-mean noise at the resolution of the sensor noise.
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Figure 5. LROE estimated state error and covariance envelopes demonstrating
bearings-only relative motion estimation for non-dimensionalized LROEs after re-
dimensionalizing by the A1 scaling term.
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Figure 6. Estimation pre- and post-fit residuals for the non-dimensional rectilinear
LROE set after re-dimensionalizing by the A1 scaling term.

The non-dimensional residuals are more compact than the full state residuals shown in Figure 4.
Two factors that contribute to the improved non-dimensional residuals are that the state is non-
dimensional and that the filter is fitting to fewer measurements that are bearings-only.

The results provided by the non-dimensional bearings-only and the dimensional rectilinear state
estimation simulations clearly demonstrate the feasibility of using LROEs for space-to-space based
relative motion estimation. The rectilinear examples shown only demonstrate feasibility within a
range of 1 kilometer from the chief. Recall that the CW equations make linearizing assumptions to
obtain the desired form thereby limiting use over larger relative orbits. As detailed previously, the
curvilinear form of the CW equations provides a solution valid over large relative orbits.

CURVILINEAR LROE RELATIVE ORBIT ESTIMATION

The validity of the curvilinear form over large relative orbits strongly justifies use of the curvi-
linear LROE state. Further, as described in the development of the EKF, the curvilinear form also
benefits from a full rank measurement sensitivity matrix with bearings-only measurements. To cap-
ture the full rank measurement sensitivity, the relative motion baseline is increased such that the
drifting target is initialized with the state

X true =



C1

C2

δroff
δsoff
B1

B2

 =



10000
0

2000
-250

20000
0

 [m] ∆X =



1000
-200
500
-500
-700
200

 [m] (28)

The relative state is initialized to be approximately 100 times the rectilinear case such that the
curvature of the relative orbit becomes significant. The relative orbit is shown for a single chief
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Figure 7. Hill frame relative orbit for the curvilinear drifting relative ellipse example
case. Start at o, finish at o about the chief.

orbit period in Figure 7. There is sufficient change in geometry in the Hill frame plane, however,
the flattening of the out-of-plane motion will influence the relative motion filter performance.

The initial filter covariance is given by P0 = 1017× diag[1, 1, 1, 1, 1] which is largely inflated
for the scale of the relative orbit problem. The filter process noise is

Qest = 0.25× diag[1, 1, 10, 10, 1, 1]

producing the final state estimate error after 0.3 chief orbits of

∆Xfinal = [337.1, 5.9, 74.4, 40.2, 643.0, −1.0] [m] (29)

The filter state estimates over the considered 0.3 orbits are shown in Figure 8. Most notable is the
lack of estimate improvement in theB1 term. Referring back to Figure 7, the flattening of the out-of-
plane motion manifests in poor measurement geometry forB1, shown in Figure 8(f), during the first
0.3 chief orbits. However, additional estimation time would improve this result as the target object
would move closer and provide better observational geometry as the target approached the half-orbit
point. Inspection of Figure 8(a) reveals that the estimate approaches the covariance envelope bound.
The combination of these two estimates suggests that the EKF is approaching numerical implemen-
tation challenges. The scale of the curvilinear relative orbit estimation problem approaches the limit
of the numeric validity of the EKF. The large length scales and accurate measurements may cause
numeric instability in the propagation of the covariance and therefore the state update.22 Alternate
filter types that implement square root covariance propagation, such as the square root information
filter, may provide greater numerical stability over a larger range of curvilinear state vectors.

Not surprisingly, the measurement residuals demonstrate some underlying character that is not
purely noise. Considering that the filter estimate did not completely converge due to numerical limi-
tations and observational geometry, the residuals suggest that the estimate is approaching reasonable
but requires further refinement.

The curvilinear LROE state estimate is shown to provide an overall reduction in large initial
condition errors and is applicable to both large and small relative states. In the case where the
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Figure 8. LROE estimated state error and covariance envelopes demonstrating full
relative motion estimation for LROEs.
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Figure 9. Estimation pre- and post-fit residuals for the curvilinear LROE set.

relative orbit dimension approaches the length scale of the rectilinear cases presented, the numerical
or measurement precision is not accurate enough to retain the full rank measurement sensitivity.
Therefore, the curvilinear form should be reserved for large relative orbits and the more simple
rectilinear form for small relative orbits. The curvilinear form does provide further capability in that
the state is fully observable with bearings-only measurements. To take advantage of this capability,
the relative orbit must be large or the measurement capability precise to take advantage of the
curvilinear form. However, if the curvilinear form is used significantly larger relative orbits, a more
stable covariance update formulation is required.

CONCLUSIONS

The presented Linearized Relative Orbit Element (LROE) state derived from the Clohessy-Wiltshire
equations provides an insightful and elegant propagation formulation that is applicable to filter. An
extended kalman filter (EKF) is formulated for LROE estimation and several numerical examples
demonstrate the feasibility of an LROE approach. The EKF rectilinear relative motion estimates
provide centimeter to millimeter level accuracy in fractions of the chief relative orbit. To address the
lack of range measurements and the challenge of bearings-only measurements, a non-dimensional
LROE state and filter results are presented. For larger relative orbits, the curvilinear LROE form
provides full state observability with bearings-only measurements and greater fidelity with addi-
tional measurements. If the relative orbit size exceeds the dimension presented in this manuscript,
an alternate to the EKF should be implemented.
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APPENDIX

Rectilinear Measurement Sensitivity

The rectilinear elevation partials are

H2,1(t) = −z(t) (2x(t) cos(nt)− 4y(t) sin(nt)) /2κ1κ2 (30a)

H2,2(t) = z(t) (2x(t) sin(nt) + 4y(t) cos(nt)) /2κ1κ2 (30b)

H2,3(t) = (−z(t)(2x(t)− nty(t))) /2κ1κ2 (30c)

H2,4(t) = −2z(t)y(t)/2κ1κ2 (30d)

H2,5(t) = cos(nt)/κ2 (30e)

H2,6(t) = − sin(nt)/κ2 (30f)

The rectilinear range partials are

H3,1(t) = (x(t) cos(nt)− 2y(t) sin(nt)) /2ρ (31a)

H3,2(t) = (−x(t) sin(nt)− 2y(t) cos(nt)) /2ρ (31b)

H3,3(t) = (2x(t)− 3nty(t)) /2ρ (31c)

H3,4(t) = y(t)/ρ (31d)

H3,5(t) = z(t) cos(nt)/ρ (31e)

H3,6(t) = −z(t) sin(nt)/ρ (31f)

(31g)

Curvilinear Measurement Sensitivity

The curvilinear elevation partials are

Hcurv
1,1 (t) = −

(
cos

(
δs

rc

)
[rcx(t) cos(nt)− 2(δr + rc)y(t) sin(nt)]

+ sin

(
δs

rc

)
[rcy(t) cos(nt)− 2(δr + rc)x(t) sin(nt)]

)
/rcκ2

(32a)

Hcurv
1,2 (t) = z(t)

(
cos

(
δs

rc

)
[2(δr + rc)y(t) cos(nt) + rcx(t) sin(nt)]

+ sin

(
δs

rc

)
[rcy(t) sin(nt)− 2(δr + rc)x(t) cos(nt)]

)
/rcκ2

(32b)

Hcurv
1,3 (t) =

(
z(t) cos

(
δs

rc

)
[3nty(t)(δr + rc)− 2rcx(t)]

− z(t) sin

(
δs

rc

)
[3ntx(t)(δr + rc) + 2rcy(t)]

)
/2rcκ2

(32c)

Hcurv
1,4 (t) = (δr + rc)z(t)

(
x(t) sin

(
δs

rc

)
− y(t) cos

(
δs

rc

))
/rcκ2 (32d)

Hcurv
2,5 (t) = cos(nt)/κ2 (32e)

Hcurv
2,6 (t) = − sin(nt)/κ2 (32f)
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