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ANALYTIC APPROXIMATIONS OF ORBIT GEOMETRY IN A
ROTATING HIGHER ORDER GRAVITY FIELD

Ethan R. Burnett∗ and Hanspeter Schaub†

This paper introduces new analytic approximations of the orbital state for a subset
of orbits in a rotating potential with gravitational harmonics C20 = −J2 and C22.
An analytic expression for the orbit radius is first obtained, then used to obtain
expressions for 3 other quantities, which may be combined with equations for
the right ascension of the ascending node and inclination to fully characterize the
orbital state. The approximations are fully developed for near-circular orbits with
initial mean motion n0 around a body with rotation rate c. The approximations
are shown to be valid for values of Γ = c/n0 > 1, with accuracy decreasing as
Γ→ 1, and singularities at Γ = 1. The methodology in this paper can be adapted
to approximate eccentric orbits in more general asymmetric potentials, and the
necessary modifications are discussed.

INTRODUCTION

Orbital motion in uniformly rotating irregular gravity fields is generally non-integrable, greatly
complicating the task of characterizing and studying the system behavior without relying on numer-
ical simulation. Because orbits about asteroids and other small bodies can often be well-understood
by considering the effects of C20 and C22 (along with solar radiation pressure and third-body ef-
fects in some situations),15 studying motion in this particular truncated gravitational potential is a
topic of significant interest for astrodynamicists and other scientists who research such bodies. An-
alytical developments in this problem lend useful insight for the study of orbital mechanics in the
complex gravity fields of asteroids and other small bodies, which are growing targets for scientific
exploration.

By ignoring the effect of sectoral harmonics such as C22 (suitable in some situations for orbits
about planets), the time-varying aspect of the gravitational potential is removed. This sub-problem
is far simpler and more relevant to planetary orbiters and Earth satellites. Thus, there has been a lot
of work in analyzing orbital motion in the axisymmetric potential of an oblate planet. Particularly
noteworthy are the influential works of Brouwer4 and Kozai,10 as well as Vinti,17 who approximates
the effects of the axisymmetric gravity field using his intermediary potential. Some more recent
work is also relevant to this discussion, including work by Martinusi et al.11, 12 using an averaging
technique and Brouwer-Lyddane theory to approximate the motion of low-Earth orbiting satellites,
and exploiting the superintegrability of equatorial orbital dynamics under the influence of even zonal
harmonics to obtain analytic expressions in terms of elliptic integrals.
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Plenty of analysis has been dedicated to the problem of motion in a second degree and order grav-
ity field in the primary body-fixed rotating frame.7 Work has also been done to analyze this complex
problem from the perspective of the perturbed osculating orbit in a non-rotating frame,15, 16 and nu-
merical studies have investigated the problem in the inertial frame.6 However, explicit analytic
approximations of the orbit radius have not yet been obtained. In this paper, the variations in the or-
bit radius in a rotating second degree and order gravity field are described for a subset of orbit cases
in a manner analytic in time or an angle. The kinematics of the osculating orbit are used to obtain an
approximate scalar differential equation for the orbit radius r, which is rendered as a time-varying
differential equation in r alone to first order in small variations. This is done using the existence
of conserved quantities. In the case of the C20-only potential, the orbit energy is used, while the
Jacobi integral is used for the case of the rotating potential with nonzero C20 and C22. The resulting
approximate solutions are shown to be highly accurate in the applicable parameter space, while also
enabling additional analytical descriptions of variations in other elements, to fully characterize the
orbital state.

Combining the results of the orbit radius and argument of latitude θ (and their rates) with the
analytic approximations of the right ascension of the ascending node Ω and inclination i, the orbital
state can be fully described. This paper explores how to consider the first-order effects of the rotating
gravity field to obtain analytic descriptions that are explicit functions of initial conditions and either
time or an angle, and the approach can be adapted to higher order in a perturbative approach. This
paper presents an approximate solution of the orbital state for the problem of near-circular orbits
in the rotating potential, and also includes a discussion of refinements of the analytical approach to
treat eccentric orbits as well.

The approximate solutions in this paper could find use in mission design and in astrodynamics re-
search. In particular, analytic approximations of orbit behavior in rotating higher-order gravity fields
will provide an additional tool of analysis for a problem that typically forces the astrodynamicist
to rely almost exclusively on numerical simulation. The form of terms in the approximate solution
should also provide some insight into the dynamics of orbits about quickly rotating asteroids.

ORBITS IN A ROTATING GRAVITY FIELD

In this section, the dynamical problem of interest is introduced: orbital motion about a uniformly
rotating body with nonzero ellipticity captured by the C22 coefficient. The problem geometry is
given, followed by discussion of the analytical challenges of obtaining analytic approximations of
orbital motion in this potential.

Problem Geometry

Relevant geometry for this problem is reproduced in Figure 1. The main orbit equation of interest
for this work is the motion of a spacecraft in orbit in a rotating primary body-fixed second degree
and order gravity field:15

r̈ = aC00 + aC20 + aC22 (1)

aC00 = −µ r
r3

(2)

aC20 =
3µC20R

2

2r4

[(
1− 5 (êr · â3)2

)
êr + 2 (êr · â3) â3

]
(3)

aC22 =
3µC22R

2

r4

[
−5
(

(êr · â1)2 − (êr · â2)2
)
êr + 2 (êr · â1) â1 − 2 (êr · â2) â2

]
(4)
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where r is the radial vector to the orbiting satellite and â1 and â2 are aligned with the minimum and

Figure 1. Problem Geometry1

intermediate principal axes of inertia for a body in a stable spin state. This analysis does not consider
more complicated spin states. Cij are coefficients from a spherical harmonics series expansion of
the gravitational potential, and C20 = −J2 is due to the oblateness of the body while C22 is due to
the ellipticity. These two second degree and order coefficients are typically on the order ofO(10−3)
for planets and up toO(10−2) for asteroids. For asteroids, they are typically the dominant secondary
values in the gravitational potential after the bulk mass C00 ≡ 1 contribution.

Instead of describing the state of the orbit using the orbit position r and velocity ṙ , the orbit can
be described with the set of classical orbit elements, a, e, i, ω,Ω, f (semimajor axis, eccentricity,
inclination, argument of periapsis, right ascension of the ascending node, true anomaly), where
θ = ω + f is the argument of latitude. For unperturbed circular orbits, this orbit angle varies with
the mean motion n =

√
µ/a3. Of course, under the presence of orbit perturbations, all of the orbit

elements are generally time-varying. Note that the angle ψ is the rotation angle of the primary body,
which rotates with a constant velocity c about an axis that points in a fixed direction in space.

Analytic Challenges

This paper is focused on two major challenges of approximating the orbital behavior in the given
situation. The first challenge is the general increase in complexity from the zonal problem intro-
duced by the rotating gravity field. The time-varying nature of the potential results in the classical
orbit energy term E = 1

2v
2 − U(r) not being conserved. Only the more complex Jacobi integral

is conserved. Furthermore, the disparate behaviors of the perturbed orbit and the uniform rotation
of the body also lead to analytical difficulty. Namely, the problem dynamics are determined by the
orbit plane configuration, the primary body orientation angle ψ (which is linear in time in this anal-
ysis), and by an orbit latitude or anomaly which is generally quite nonlinear in time for eccentric
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orbits, and is itself affected by perturbations of the rotating body. To analytically describe solu-
tion behavior in terms of initial conditions and a single independent variable, the different angular
behaviors must be reconciled.

For cases with a consistently near-circular orbit, additional challenges are introduced. In such
cases, the behavior of the argument of latitude is approximately linear in time, θ ≈ θ0 + nt, but
the classical orbit description in terms of an osculating ellipse becomes less useful. In particular,
the classical elements of eccentricity, argument of periapsis, and true anomaly oscillate rapidly in a
manner that cannot be approximated by considering small variations about a mean or initial value.
The eccentricity also appears as a small divisor in the formulas for the argument of periapsis and
true or mean anomalies. These difficulties can be removed by considering alternate element formu-
lations in terms of the troublesome classical elements, such as the equinoctial elements3 or Poincaré
canonical elements. By the same manner, these alternate elements are not subject to large and rapid
variations due to perturbations, and are thus potentially more suitable as a choice of coordinates in
these situations than the classical elements. However, the variational equations for the equinoctial
elements must typically be numerically integrated using Kepler’s equation at each integration step,3

an unfortunate property of the independent variable for the purposes of this work. For the perturbed
near-circular orbit problem, one would expect more mathematical simplicity instead of complexity.8

A concise analytic approximation demands a simpler choice of coordinates. The approach in this
paper uses the classical elements Ω and i to describe the orientation of the perturbed orbit plane, and
polar coordinates (r, θ, ṙ, ωn) to parameterize the remaining state elements. This treatment avoids
any direct use of the eccentricity, argument of periapsis, or true anomaly, and any associated diffi-
culties of using elements explicitly derived from these. It also remains well-defined for equatorial
orbits simply by redefining θ as the rotation from γ̂ instead of the undefined ascending node. While
particularly well-suited for the small eccentricity problem, this approach can also be used with more
eccentric orbits.

The first contribution in this paper is to obtain a scalar nonlinear differential equation for the orbit
radius that is explicit in the argument of latitude, θ, and body orientation angle, ψ, using assumptions
about orbit plane kinematics and conservation of an integral. This equation is a good approximation
for bound orbits with reasonably small eccentricity (e.g. e < 0.3). It can be solved directly in a
perturbative manner without directly considering the variations in any other elements. The analytic
orbit description in this paper is obtained using a first-order perturbative approach to study small
deviations from the initial radius r0 for near-circular orbits. The extension to higher-order solutions
is discussed, along with other approximation approaches.

EXPRESSIONS FOR THE PERTURBED ORBIT RADIUS

It is possible to isolate the behavior of the orbit radius by balancing the centripetal acceleration
with the radial component of the perturbation accelerations. This begins by equating the accelera-
tion in local radial (along êr), transverse (êt), and normal (ên) components with the gravitational
acceleration terms, noting ( )′ =

Hd
dt (time-derivative in the orbiter-fixed rotatingH frame), and ωO

is the instantaneous angular velocity of the orbiter:

r′′ + 2ωO × r′ + ω′O × r + ωO × (ωO × r) = aC00 + aC20 + aC22 (5)

The instantaneous angular velocity is given below,5, 9 followed by the analytical rates of the per-
turbed Ω and i, obtained using Gauss’ form of the variational equations:1

ωO = (Ω̇ sin i sin θ + i̇ cos θ)êr +
(
θ̇ + Ω̇ cos i

)
ên (6)
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Ω̇ =
3µR2

hr3
(
C22 sin (2(Ω− ψ)) sin 2θ + [C20 + 2C22 cos (2(Ω− ψ))] cos i sin2 θ

)
(7)

i̇ =
3µR2

hr3

(
2C22 sin (2(Ω− ψ)) cos2 θ sin i+

1

4
[C20 + 2C22 cos (2(Ω− ψ))] sin 2θ sin 2i

)
(8)

In this paper, let ωn denote the “angular rate” around the orbit, ωn = ωO · ên. This is related to the
argument of latitude rate by θ̇ = ωn − Ω̇ cos i, where the second term is due to the deviation and
regression of the node from which θ is measured.13 The angular rate ωn is one of the six chosen
state quantities, while the argument of latitude rate θ̇ is not. Note that the velocity of the orbiter in
the orbit plane is defined as v =

√
ṙ2 + r2ω2

n, because the êr component of ωO does not contribute
to the orbital velocity.

The angular rates Ω̇ and i̇ are of the following scale or smaller, assuming |C20| ≥ |C22|:

Ω̇, i̇ = O

(
C20

(
R

r

)2( 1

ρ3

)
n2

ωn

)
(9)

where ρ = r/a, ωn = O(n), and it is assumed |C20(R/r)
2| � 1. In orbits for which this assump-

tion holds, if the eccentricity is reasonably small, then |ωn| � |Ω̇|, |i̇|.
Substituting Eq. (6) into Eq. (5) and dotting the vector equation by êr, the following is obtained:

r̈ −
(
θ̇2 + 2θ̇Ω̇ cos i+ Ω̇2 cos2 i

)
r = − µ

r2
+RC20 +RC22 (10)

where RCij = aCij · êr, and all terms containing the angular rates are quadratic in these terms. No
approximations of the original problem are made to obtain Eq. (10).

Substituting θ̇ = ωn − Ω̇ cos i, Eq. (10) simplifies to the following:

r̈ − ω2
nr = − µ

r2
+RC20 +RC22 (11)

The following time-varying differential equation is obtained for the orbit radius by substituting the
radial components of the disturbance accelerations:

r̈ − ω2
nr = − µ

r2
+
µ

r4

(
3

2
C20R

2
(
1− 3 sin2 i sin2 θ

)
+ 3C22R

2

(
3 sin (2 (Ω− ψ)) cos i sin 2θ

− 3

4
cos (2 (Ω− ψ))

(
1 + 3 cos 2θ − 2 cos 2i sin2 θ

)))
(12)

To isolate the dynamics of the orbit radius, the currently unknown ωn term in Eq. (12) must
be rewritten. This is done by isolating the ωn terms in an integral of motion and re-arranging to
obtain an expression for ωn that is a function of only r, ṙ, θ, Ω, i, ψ, and the conserved value of
that integral of motion. In the expression for ωn, functions of quantities Ω and i primarily appear
pre-multiplied by small parameters that are functions of C20 and C22. Then, the assumption that
Ω̇ and i̇ are “small” equivalently results in using the initial values Ω0 and i0 in these terms. In the
following sections, this equation will be solved using conservation of energy for the case C22 = 0
for all inclinations, and it will be solved for an expression accurate for inclinations below a critical
value for C22 6= 0 using conservation of the Jacobi integral.
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Approximate Solution Using Conservation of Energy for Near-Circular Orbits

To introduce the perturbative procedure for approximating the orbit radius, the simpler C20-only
zonal problem is first solved. For the case of negligible influence by C22, using the orbit energy and
the substitutions r(t) ≈ r0(1 + ξ(t)) where ξ ∼ O(1/r0) and ṙ ≈ r0ξ̇, it is possible to approximate
the behavior of Eq. (12) with a simpler differential equation that is an explicit function of time.
Below, the total orbit energy (only conserved when either C22 or c are zero) is given, where U(r) is
the gravitational potential:

E =
1

2
v2 − U(r) (13)

U(r) = U(r, θ, ψ) =
µ

r
+
µ

r3

[
C20R

2

(
3

4
sin2 i (1− cos 2θ)− 1

2

)
+ 3C22R

2

(
1

2
sin2 i cos (2(Ω− ψ)) + cos4

(
i

2

)
cos (2(Ω + θ − ψ))

+ sin4

(
i

2

)
cos (2(Ω− θ − ψ))

)] (14)

The orbit energy is written in terms of ωn:

E =
1

2

(
r2ω2

n + ṙ2
)
− U(r) (15)

When C22 = 0, E = E0 ∀t and the following may be written:

ω2
n =

2
(
E0 + Ũ(r)

)
− ṙ2

r2
(16)

where Ũ(r) contains only the C00 and C20 components of the gravitational potential.

Using the substitution r(t) = r0(1 + ξ(t)), and substituting ω2
n using Eqs. (14) - (16), Eq. (12) is

expanded about ξ = 0, retaining terms quadratic in ξ for now, just to illustrate the structure:

ξ̈+

(
2

(
µ

r30
+
E0

r20

)
− 4

µ

r30
f

)
ξ −

(
µ

r30
+ 2

E0

r20
− µ

r30
f

)
+

((
−3

µ

r30
− 2

E0

r20

)
+ 10

µ

r30
f

)
ξ2 + ξ̇2 = 0

(17)

where f is a function associated with the C20 component of the gravitational potential:

f(t) = C20
R2

r20

(
3

4
sin2 i0 (1− cos 2θ)− 1

2

)
(18)

Thus, the problem has been transformed to a study of (assumed small) variations about the initial
value r(0) = r0, an approximation which significantly simplifies the problem. The following
change of time variables enables the subsequent non-dimensionalization of Eq. (17):

τ =

(
µ

r30

)1/2

t,
d
dt

=

(
µ

r30

)1/2 d
dτ

(19)
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ξ′′+
(

2

(
1 +

E0r0
µ

)
− 4f

)
ξ −

((
1 + 2

E0r0
µ

)
− f

)
+

((
−3− 2

E0r0
µ

)
+ 10f

)
ξ2 + ξ′2 = 0

(20)

Note that ( )′ = d/dτ ( ). The change of time variables renders ξ(τ), ξ′(τ), and ξ′′(τ) to all be of
the same order. In this derivation, it is assumed that ξ and f are both similarly small (e.g. 10−2),
denoted O(ε). This derivation could be modified to accommodate different relative scales. The
smallness of ξ depends on the orbit not deviating drastically from the unperturbed geometry, and
the scale of f depends on the altitude and the size of C20.

Based on the assumed scales of ξ and f , the fξ2 term in Eq. (20) is significantly smaller than the
others. Neglecting this term leads to the following differential equation for ξ:

ξ′′+
(

2

(
1 +

E0r0
µ

)
− 4f

)
ξ −

((
1 + 2

E0r0
µ

)
− f

)
−
(

3 + 2
E0r0
µ

)
ξ2 + ξ′2 = 0 (21)

This system can be initiated (without loss of generality) with θ0 = 0, then substitution of θ ≈ n0t,
n0 =

√
µ/a30, renders the function f as an explicit function of time t. Note that non-circular orbit

angular frequency variations would appear pre-multiplied by other small terms (i.e. terms involving
C20), and are thus neglected. Finally, the substitution t =

(
µ/r30

)−1/2
τ renders them functions of

the dimensionless time: θ =
(
r30/a

3
0

)1/2
τ :

ξ′′+
(

2

(
1 +

E0r0
µ

)
− 4f

)
ξ −

((
1 + 2

E0r0
µ

)
− f

)
−
(

3 + 2
E0r0
µ

)
ξ2 + ξ′2 = 0 (22)

Identifying the small parameters ξ and f as O(ε), the O(ε) part of Eq. (22) is linear in ξ:

ξ′′ + 2

(
1 +

E0r0
µ

)
ξ =

(
1 + 2

E0r0
µ

)
− f (23)

To first order, ξ(t) obeys simple sinusoidal dynamics with an oscillatory forcing term due to the
negative of the C20 component of the potential. This first-order equation can be solved using the
method of undetermined coefficients, noting that the harmonic forcing term has different frequencies
from the homogeneous solution. The solution of Eq. (23) is the sum of the homogeneous and
particular solutions given below:

ξh(τ) = D cos
(√

2η1τ
)

+ E sin
(√

2η1τ
)

(24)

ξp(τ) = A cos (ωpτ) +B sin (ωpτ) + C (25)

where the quantities η1 and ωp are given:

η1 = 1 +
E0r0
µ

, ωp = 2n0

(
µ

r30

)−1/2
(26)

Substituting the particular solution into Eq. (23), the following equations are obtained in terms of
the undetermined coefficients A, B, and C:

A
(
2η1 − ω2

p

)
=

3

4
C20

R2

r20
sin2 i

B = 0

2η1C = 1 + 2
E0r0
µ

+
1

2
C20

R2

r20

(
1− 3

2
sin2 i

) (27)
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Letting α = C20(R/r0)
2 ∼ O(ε), the following values are obtained:

A =
3

4
α

(
sin2 i

2η1 − ω2
p

)
, B = 0, C =

1

4
α

(
1− 3

2 sin2 i

η1

)
+

1

2η1

(
1 + 2

E0r0
µ

)
(28)

The first initial condition is r(0) = r0 (1 + ξ(0)) = r0. The next initial condition on ξ is given from
the following expression:

r′(0) =

(
µ

r30

)−1/2
ṙ(0) =

(
µ

r30

)−1/2
r0ξ̇(0) = r0ξ

′(0) (29)

ξ′(0) =

(
µ

r30

)−1/2 ṙ0
r0

= E
√

2η1 (30)

Thus, D and E are obtained from the initial conditions:

D = −A− C, E =

(
µ

r30

)−1/2 ṙ0
r0

(
1√
2η1

)
(31)

The approximate solution for ξ(τ) is given by the sum of Eqs. (24) and (25) with the coefficients
given in Eqs. (28) and (31), thus approximating r(τ) = r0 (1 + ξ(τ)) to first order:

ξ(τ) = A cos (ωpτ) + C +D cos
(√

2η1τ
)

+ E sin
(√

2η1τ
)

(32)

This simple equation is reasonably accurate for sufficiently small initial eccentricity (e0 ∼ 10−3)
and for all inclinations. Accuracy is less dependent on the osculating eccentricity, which can gener-
ally grow to larger values (10−2) at some points in the orbit.

WhenC22 6= 0, this procedure can still be applied for cases where the primary body is sufficiently
slowly rotating (ψ̇ = c � n). With the slow gravity field rotation, the orbit energy will be nearly
conserved on the time scale of a single orbit, and this analysis can be extended to approximate
variations in r(t) for several orbits. However, this scenario is somewhat rare in nature, and a less
restricted solution is sought.

Approximate Solution Using Jacobi Integral for Near-Circular Orbits

With the introduction of the time-varying potential terms due to C22, energy is no longer con-
served in the inertial frame for this system. However, there is still a conserved quantity that can be
used, existing for general uniformly rotating gravitational potentials.2 Given a general smooth and
continuous orbit potential U(r), the Lagrangian is given below, along with the conjugate momenta:

L =
1

2
‖r′ + ωB/N × r‖2 + U(r) (33)

p =
∂L
∂r′

= r′ + ωB/N × r (34)

where ωB/N is the angular velocity of the primary body-fixed rotating frame and r′ is the velocity
seen in that frame. The Hamiltonian is given below:

HJ = p · r′ − L = p · (p− ω × r)− 1

2
p2 − U (35)
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This may be written in the following form in terms of the angular momentum L, and it is noted that
HJ has no explicit time dependence. Thus the derivative along any orbit dHJ/dt vanishes and HJ

is thus an integral, called the Jacobi integral:2

HJ =
1

2
p2 − U − ωB/N · (r × p) = H − ωB/N ·L (36)

Using the celestial mechanics convention p = v and L = h, Eq. (36) is adapted to the notation
in this paper by writing ωB/N = câ3. Then the Jacobi integral is recognized in the following form
for the second degree and order gravitational potential:14, 15

J =
1

2
v2 − µ

r
− hc cos i− U2(r) = J0 (37)

where U2(r) isolates the C20 and C22 components of the gravitational potential given in Eq. (14),
h = r2ωn is the angular momentum, and c is the primary body rotation rate. Because it has been
shown that this integral exists for any uniformly rotating potential, the procedure used in this paper
can in principal be extended to more complex gravitational fields.

Below, the Jacobi integral is written in terms of ωn:

J =
1

2

(
r2ω2

n + ṙ2
)
− µ

r
− cr2ωn cos i− U2(r) = J0 (38)

Re-arranging equation (38), an equation for ωn is found in terms of r and ṙ:

ωn = c cos i±

√
c2 cos2 i−

(
ṙ2

r2
− 2

r2

(µ
r

+ U2(r) + J0

))
(39)

where the sign is negative for prograde orbits and positive for retrograde orbits. The equations are
subsequently developed for prograde orbits. Eq. (39) highlights the close relationship between ωn

and c. Note that as c → 0, the Jacobi integral simply becomes the orbit energy, aligning with the
expectation that the conservation of energy derivation in the previous section would also be valid
for very slowly-rotating bodies with C22 6= 0. There is one additional complication for this more
general case: the small variations in the inclination must be accounted for in any term that is larger
than O(ε). In this paper, that turns out to mean any term not linear in C20 or C22. In particular,
these are the c cos i terms in Eq. (39).

To obtain an expression of sufficient accuracy for the O(ε) derivation in this paper, one may
integrate Eq. (8) with the following first-order approximation:

i ≈ i0+
3µR2

h0r30

∫ t

0

(
2C22 sin (2(Ω0 − ψ)) cos2 θ sin i0 +

1

4
[C20 + 2C22 cos (2(Ω0 − ψ))] sin 2θ sin 2i0

)
dt

(40)
where ψ = ct, by construction, from the freedom of choice in defining the arbitrary reference
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direction γ̂. In the case of near-circular orbits, θ ≈ θ0 + n0t, and the result is given below:

i(t) ≈ i0 +
3µR2

4n0h0r30
C20 (sin (θ − θ0) sin (θ + θ0)) sin 2i0

+
3µR2

h0r30
C22

(
1

8c(c− n0)(c+ n0)

(
− 2
[
2(c− n0)(c+ n0) cos 2Ω0 + c(c− n0) cos (2(Ω0 − θ0))

+ (c+ n0)
(
c cos (2(Ω0 + θ0)) + 2(n0 − c) cos (2(Ω0 − ψ))− c cos (2(Ω0 + θ − ψ))

)
+ c(n0 − c) cos (2(Ω0 − θ − ψ))

]
sin i0 + c

[
(c− n0) cos (2(Ω0 − θ0))− (c+ n0) cos (2(Ω0 + θ0))

+ (c+ n0) cos (2(Ω0 + θ − ψ)) + (n0 − c) cos (2(Ω0 − θ − ψ))
]

sin 2i0

))
(41)

Writing this as i(t) ≈ i0 + δi(t), for which δi(t) is the small time-varying deviation in inclination due
to the gravity field, δi2 is assumed negligible in this derivation, and the cos i term in Eq. (39) becomes
cos i0 − sin i0δi(t).

Substituting Eq. (39) and reusing the change of variables r(t) = r0(1 + ξ(t)) and non-dimensionalization
of time τ =

(
µ/r30

)1/2
t, the following dimensionless equations are obtained from Eq. (12):

ξ′′ − r30
µ

(
ω2
nr

r0

)
= − 1

(1 + ξ)2
− 3

(1 + ξ)4
f(t) (42)

r30
µ

(
ω2
nr

r0

)
= 2c2

(
r30
µ

)(
cos2 i0 − 2 cos i0 sin i0δi

)
(1 + ξ)

− c
(
r30
µ

)1/2

(cos i0 − sin i0δi)

[
4c2
(
r30
µ

)(
cos2 i0 − 2 cos i0 sin i0δi

)
(1 + ξ)2

− 4

(
ξ′2 − 2

(
1

1 + ξ
+

1

(1 + ξ)
3 f +

J0r0
µ

))]1/2
−
[
ξ′2

1 + ξ
− 2

1 + ξ

(
1

1 + ξ
+

1

(1 + ξ)3
f +

J0r0
µ

)]
(43)

where f is a function associated with the second degree and order components of the gravitational potential,
now including C22:

f(t) = C20
R2

r20

(
3

4
sin2 i0 (1− cos 2θ)− 1

2

)
+ 3C22

R2

r20

(
1

2
sin2 i0 cos (2(Ω0 − ψ))

+ cos4
(
i0
2

)
cos (2(Ω0 + θ − ψ)) + sin4

(
i0
2

)
cos (2(Ω0 − θ − ψ))

) (44)

Noting that ξ and f are O(ε), Eq. (43) is reduced to an expression that is linear in ξ and f . This is done by
factoring and binomial expanding the square root term and the (1 + ξ)k terms. The final result for this term
is reproduced below:

r30
µ

(
ω2
nr

r0

)
≈ 2

(
γ1 −

√
γ1(γ1 − 1)

(γ1 + 2γ2)1/2
− J0r0

µ
− 2

)
ξ

+ 2

(
1 + f +

J0r0
µ

+
(

(γ1 + 2γ2)1/2γ4 − 2γ3

)
δi

)
+

(
2γ1 − 2

√
γ1

(
(γ1 + 2γ2)1/2

(
1 +

f − γ3δi
γ1 + 2γ2

))) (45)
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where the γi terms are defined below:

γ1 = c2
(
r30
µ

)
cos2 i, γ2 = 1 +

J0r0
µ

, γ3 = c2
(
r30
µ

)
cos i0 sin i0, γ4 = γ3/

√
γ1 (46)

The remaining terms in Eq. (42) are more easily simplified. The O(ε) part of Eq. (42) is linear in ξ, and the
final expression for the linear ODE is reproduced below:

ξ′′ + 2η2ξ = 2η3 − ϕf + ϑδi (47)

η2 = γ2 +
√
γ1

(
γ1 − 1

(γ1 + 2γ2)1/2

)
− γ1 (48)

η3 = γ2 −
1

2
−
√
γ1(γ1 + 2γ2) + γ1 (49)

ϕ = 1 + 2
√
γ1

(
1

(γ1 + 2γ2)1/2

)
(50)

ϑ = 2

((√
γ1

γ1 + 2γ2
− 2

)
γ3 + (γ1 + 2γ2)1/2γ4

)
(51)

Thus, Eq. (12) has been approximated by a linear constant-coefficient ODE in terms of the small parameter
ξ(τ), where r0ξ(t) represents the time-varying deviation from the orbit radius at epoch.

Eq. (47) bears some structural resemblance to Eq. (23) from the previous section. Both equations are linear
oscillators with forcing terms due to the perturbations. In this case, Jacobi integral-dependent terms appear
instead of energy, along with the addition of the γi terms. This ODE is solved in the same way as the previous
section, but the new f must first be defined succinctly in terms of τ . Without loss of generality, the epoch
time t = 0 can be defined at an instant when the first body principal axis aligns with the current line of nodes,
â1 · Ω̂ = 1. One may define γ̂ to point in this initial direction for all time, so Ω0 = 0 by construction. Then
ψ = ct and θ ≈ θ0 +n0t render f and δi as explicit functions of time t. Other initializations are possible, but
this is convenient because all initial system configurations may be captured by just two initial angles: i0 and
θ0. Note that the resulting equations using this convention may be simplified further for equatorial orbits, so
for the special case of i0 = 0, there is no need for repeating the general derivation that follows.

The substitution t =
(
µ/r30

)−1/2
τ renders f and δi as functions of the dimensionless time, where θ = θ0+(

r30/a
3
0

)1/2
τ and ψ = c

(
µ/r30

)−1/2
τ . The simplified expressions are given below, where α = C20 (R/r0)

2

and β = C22 (R/r0)
2:

f(τ) = α

[
−1

2
+

3

4
sin2 i0(1− cos 2θ0 cosω4τ + sin 2θ0 sinω4τ)

]
+ 3β

[
cos4

(
i0
2

)
(cos 2θ0 cosω1τ − sin 2θ0 sinω1τ)

+ sin4

(
i0
2

)
(cos 2θ0 cosω2τ − sin 2θ0 sinω2τ) +

1

2
sin2 i0 cosω3τ

] (52)

δi(τ) =
3

8
α

µ

n0h0r0

[
sin 2i0 (cos 2θ0 (1− cosω4τ) + sin 2θ0 sinω4τ)

]
+

3

4
β

µ

ch0r0

(
1

c2 − n20

)[
− cn0 sin 2i0 cos 2θ0 − 2

(
c2 cos 2θ0 + (c2 − n20)

)
sin i0

+
1

2
c(c+ n0) (sin 2i0 + 2 sin i0) (cos 2θ0 cosω1τ − sin 2θ0 sinω1τ)

− 1

2
c(c− n0) (sin 2i0 − 2 sin i0) (cos 2θ0 cosω2τ − sin 2θ0 sinω2τ)

+ 2(c2 − n20) sin i0 cosω3τ

]
(53)
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ω1 = 2(n0 − c)

√
r30
µ
, ω2 = 2(n0 + c)

√
r30
µ
, ω3 = 2c

√
r30
µ
, ω4 = 2n0

√
r30
µ

(54)

Eq. (54) shows that the differential equation for ξ is forced by four distinct frequencies if n0 6= c. The
solution to Eq. (47) is obtained in exactly the same way as in the previous section, with the final result given
below, in terms of these four forcing frequencies and the oscillator natural frequency:

ξ(τ) =

4∑
i=1

Ai cosωiτ +

4∑
i=1, i 6=3

Bi sinωiτ + C +D cos
√

2η2τ + E sin
√

2η2τ (55)

A1 = −3β cos 2θ0

(
cos4

(
i0
2

)
ϕ− µ

8(c−n0)h0r0
(sin 2i0 + 2 sin i0)ϑ

2η2 − ω2
1

)
(56)

A2 = −3β cos 2θ0

(
sin4

(
i0
2

)
ϕ+ µ

8(c+n0)h0r0
(sin 2i0 − 2 sin i0)ϑ

2η2 − ω2
2

)
(57)

A3 = −3

2
β

(
sin2 i0ϕ− µ

ch0r0
sin i0ϑ

2η2 − ω2
3

)
(58)

A4 =
3

4
α cos 2θ0

(
sin2 i0ϕ− µ

2n0h0r0
sin 2i0ϑ

2η2 − ω2
4

)
(59)

Bi = −
(

sin 2θ0
cos 2θ0

)
Ai, i = 1, 2, 4 (60)

C =
α

4η2

(
1− 3

2
sin2 i

)
ϕ+

η3
η2

+
3α

16

(
µ sin 2i0 cos 2θ0

n0h0r0η2

)
ϑ (61)

D = −
4∑
i=1

Ai − C, E =
1√
2η2

√r30
µ

ṙ0
r0
−

4∑
i=1, i 6=3

Biωi

 (62)

Note the resonance condition ω2
h = 2η2 = ω2

i captured by the denominators of Ai and Bi for i = 1, 2, 3, 4.
Interestingly, these results also imply periodicity of ξ(τ), δi(τ), and f(τ) if the resonance condition is avoided
and ωi/ωj ∈ Q ∀i, j and ωi/ωh ∈ Q ∀i, where Q denotes the set of rational numbers.

The behavior of the orbit radius may be approximated as r(τ) = r0(1 + ξ(τ)) using Eq. (55) with the
constants and frequencies defined above, and the transformation τ =

√
µ/r30t may be used to yield r(t)

explicitly. This and the previous constant-coefficient time-explicit expressions are analyzed and tested later
in the paper with nonlinear truth model data.

EXPRESSIONS FOR REMAINING ORBIT PARAMETERS

With the inclination and orbit radius both approximated to O(ε) by Eqs. (41) and (55) respectively, the
approximations of variations in the other elements are now developed. Recall that in this paper, the orbit is
parameterized by Ω, i, θ, r, ωn, ṙ.

Some of the variations are direct results or analogs of the previous analysis. In particular, note that ṙ is
simply approximated by r0ξ̇, where ξ̇ is given below:

ξ̇(τ) =

√
µ

r30

(
−

4∑
i=1

Aiωi sinωiτ +

4∑
i=1, i 6=3

Biωi cosωiτ −D
√

2η2 sin
√

2η2τ

+ E
√

2η2 cos
√

2η2τ

) (63)
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The angular rate ωn is already given in Eq. (39), and can be explicitly obtained by substitution of the
approximations for i, r, and ṙ into Eq. (39), while using θ ≈ θ0 + n0t in U2(r). Only O(ε) terms should be
kept for consistency with the other approximate variations. The result is given below:

ωn = c cos i0 − υ +

(
c2 cos i0 sin i0

υ
− c sin i0

)
δi(t) +

3µ+ 2J0r0
r30υ

ξ(t)− µ

r30υ
f(t) (64)

where υ is a function of initial conditions:

υ =

√
2 (µ+ J0r0)

r30
+ c2 cos2 i0 (65)

The variation in Ω is captured to O(ε) in the same manner as the inclination:

Ω ≈ Ω0 +
3µR2

h0r30

∫ t

0

(
C22 sin (2(Ω0 − ψ)) sin 2θ + [C20 + 2C22 cos (2(Ω0 − ψ))] cos i0 sin2 θ

)
dt (66)

Reusing the free constraint Ω0 = 0 from the approximation of the orbit radius, the equation for the variation
in Ω is given below for near-circular orbits:

Ω(t) ≈ 3µR2

h0r30

(
C20

cos i0
2n0

(θ − θ0 − cos θ sin θ + cos θ0 sin θ0)

− C22
1

2c(c− n0)(c+ n0)

(
c (n0 cos 2θ sin 2ψ − c (cos 2ψ sin 2θ − sin 2θ0)))

+ cos i0
((
n20 − c2(1− cos 2θ)

)
sin 2ψ − cn0 (cos 2ψ sin 2θ − sin 2θ0)

)))
(67)

This equation is evaluated by applying θ ≈ θ0 + n0t and ψ = ct.

The argument of latitude θ is the final coordinate needed for parameterizing the orbit. Recall that the
argument of latitude rate is given as θ̇ = ωn − Ω̇ cos i, where the second term is due to the deviation and
regression of the node from which θ is measured.13 The approximation for θ(t) is given by integrating the
following equation, substituting Eqs. (39) and (7) and retaining only terms up to O(ε):

θ(t) = θ0 +

∫ t

0

(
ωn(t)− Ω̇(t) cos i0

)
dt (68)

Substituting preceding results into Eq. (68) and simplifying:

θ(t) ≈ θ0 + (c cos i0 − υ) t+

(
c2 cos i0 sin i0

υ
− c sin i0

)∫ t

0

δi(t) dt

+
3µ+ 2J0r0

r30υ

∫ t

0

ξ(t) dt− µ

r30υ

∫ t

0

f(t) dt− Ω(t) cos i0

(69)
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where each integral expression is given below:∫ t

0

δi(t) dt =

√
r30
µ

(
3

8
α

µ

n0h0r0

[
sin 2i0

(
cos 2θ0

(
τ − sinω4τ

ω4

)
− sin 2θ0

cosω4τ

ω4

)]
+

3

4
β

µ

ch0r0 (c2 − n20)

[
− cn0 sin 2i0 cos 2θ0τ − 2

(
c2 cos 2θ0 + (c2 − n20)

)
sin i0τ

+
1

2
c(c+ n0) (sin 2i0 + 2 sin i0)

(
cos 2θ0

sinω1τ

ω1
+ sin 2θ0

cosω1τ

ω1

)
− 1

2
c(c− n0) (sin 2i0 − 2 sin i0)

(
cos 2θ0

sinω2τ

ω2
+ sin 2θ0

cosω2τ

ω2

)
+ 2(c2 − n20) sin i0

sinω3τ

ω3

])
(70)

∫ t

0

ξ(t) dt =

√
r30
µ

(
4∑
i=1

Ai
ωi

sinωiτ −
4∑

i=1, i 6=3

Bi
ωi

cosωiτ + Cτ +
D√
2η2

sin
√

2η2τ

− E√
2η2

cos
√

2η2τ

) (71)

∫ t

0

f(t) dt =

√
r30
µ

(
α

[
−1

2
τ +

3

4
sin2 i0(1− cos 2θ0

sinω4τ

ω4
− sin 2θ0

cosω4τ)

ω4

]
+ 3β

[
cos4

(
i0
2

)(
cos 2θ0

sinω1τ

ω1
+ sin 2θ0

cosω1τ

ω1

)
+ sin4

(
i0
2

)(
cos 2θ0

sinω2τ

ω2
+ sin 2θ0

cosω2τ

ω2

)
+

1

2
sin2 i0

sinω3τ

ω3

]) (72)

At this point, the approximate behaviors of all 6 state elements Ω, i, θ, r, ωn, ṙ have been developed. The
necessary information for the first 5 elements are given respectively in Eqs. (67), (53), (69), (55), and (64).
To use these equations, the reader is reminded of the definitions i(τ) = i0 + δi(τ), r(τ) = r0(1 + ξ(τ)), and
ṙ = r0ξ̇(τ) = r0

√
µ/r30ξ

′(τ), where τ is given by Eq. (19). Differentiation of Eq. (55) is straightforward
so ξ′(τ) is not explicitly given. These results enable near-circular orbits in the rotating gravity field to be
analytically approximated. The elements Ω, i, θ, r capture the position, and the elements ṙ and ωn capture
the velocity. The approximations for Ω and i are easy to obtain, so they might exist elsewhere in literature. To
the knowledge of the authors, the other expressions in this paper appear here for the first time. All elements
are tested numerically in this paper, but most of the focus is on studying the accuracy of the approximation
of the orbit radius, whose accuracy will generally reflect the accuracy of approximations of θ and ωn due to
the coupling of these quantities.

Periodicity of the Perturbed Elements

Recall the periodicity condition on ξ, δi, and f is given as any admissible choice of angular frequencies
ωh, ωi such that the resonance condition ω2

h = 2η2 = ω2
i is avoided and ωi/ωj ∈ Q ∀i, j and ωi/ωh ∈ Q ∀i.

When this condition is satisfied, the analytic solutions predict that the elements r, ṙ, ωn, and iwill be periodic.
The variation of Ω has the following secular rate Ω̇:

Ω̇ =
3µR2

2n0h0r30
C20 cos i0 (73)

Common periodicity of the remaining elements θ and Ω could only be achieved by a choice of initial con-
ditions satisfying the periodicity condition of ξ, δi, and f , resulting in a common period T ∗ for which the
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elements r, ṙ, ωn, and i are periodic, with the additional constraint that this T ∗ must satisfy θ(t0 + T ∗) =
θ(t0) + 2πk. In addition, the secular right ascension drift ∆Ω over k orbits must be accounted for, i.e.
2πk = ψ + |∆Ω|, resulting in the following final constraint for bodies with C20 < 0:

kn0 −
(
c− 3µR2

2n0h0r30
C20 cos i0

)(
k − 1

l

)
= 0 (74)

where the perturbed element common period is represented as T ∗ =
(
k − 1

l

)
T0 for integers k and l satisfying

k ≥ 1, |l| > 1. Inspection of Eq. (74) implies that for Γ > 1 and C20 < 0, the negative drift in Ω cannot
be accounted for by prograde orbits, and conditions for full periodicity of the elements cannot be found.
However, using the analytic results in this paper, prograde orbits that are quasi-periodic except for their
precession can be found with relative ease. Such orbits could have useful applications for asteroid missions.

LIMITATIONS AND EXTENSIONS

The derivation in this paper assumes the orbit is near-circular, and that terms due to the potential (captured
by f(t)) and the deviations δi and ξ(t) manifest at the same order in the dimensionless equations. This is not
always the case, and the current treatment is inappropriate in particular for very high inclination orbits. Fur-
thermore, the method for approximating the solution to Eq. (12) assumes that the variations in the perturbed
orbit radius remain relatively small. This assumption results in poor solution accuracy near and below Γ = 1,
as well as the appearance of singularities in the coefficients for ξ(τ) for when Γ is unity. Eq. (48) also breaks
down at this value, so the frequency

√
2η2 of the homogeneous solution to Eq. (47) also fails.

The failure of the current approximation at Γ = 1 is inconvenient, but can be avoided by approximating the
orbital motion in a rotating coordinate system fixed to the primary body. Previous work has approximated the
variation of near-circular orbits in rotating planar asymmetric potentials, in a manner that could be directly
adapted for approximating perturbed motion in the GEO belt.2 No reformulations of the solutions obtained in
this paper are necessary to treat cases with the critical inclination ic = 63.4◦. However, for high inclinations
generally greater than 70◦, there is a breakdown in approximation accuracy. The cause is due to η2 (Eq. 48)
decreasing to zero and eventually to a negative value. Because the natural frequency of ξ(τ) is ωp =

√
2η2,

the solution begins to fail as η2 → 0. The transition condition η2 = 0 is a complicated expression, but
can be approximated as γ1 = 1 for Γ = c/n0 � 1, resulting in the following inclination restriction for
approximating prograde orbits under such conditions:

i0 < cos−1
(

1

c

√
µ

r30

)
(75)

Solution accuracy will start to degrade as this value is approached from below. The task of identifying and
correcting the source of this failure is left to future work.

The work in this paper is focused on approximating perturbed orbits that are nearly circular. However, a
possible way to alter the approach to consider deviations about more eccentric orbits would be to substitute
the following ansatz into Eq. (12):

r(θ) =
a0(1− e20)

1 + e0 cos (θ − ω0)
(1 + ξ(θ)) (76)

where |ξ(θ)| � 1 is a dimensionless expression for the deviation in the radius, obtained similarly to how
ξ(τ) is obtained in this paper. It describes the deviation of the orbit radius from the unperturbed elliptical
orbit. The independent variable of Eq. (12) is transformed from t to θ through the following substitution:

d
dt

( ) = θ̇
d
dθ

( ) =
(
ωn − Ω̇ cos i

) d
dθ

( ) (77)

With this transformation, the approximate solution will be described in terms of the angle θ. This angle is
continuously increasing and is an analog for time. Under this transformation, an additional challenge will be
transforming time dependence for the angle ψ = ψ0 + ct into a function of θ.

15



NUMERICAL SIMULATIONS

Validating The Orbit Radius Approximations

Simulations confirm that the approximations of the orbit radius work as expected, and this section presents
representative examples to demonstrate this. For all cases in this section, the hypothetical asteroid described
in Table 1 is used. It is a fairly representative example of large belt asteroids.

Table 1. Primary Body Parameters

Parameter Value

Size and Mass Data R = 6.0 km, ρ = 2.6 g/cm3, m = 4.9009× 1014 kg
Gravity Field Data µ = 3.2709× 10−5 km3s−2, C00 = 1.0, C20 = −0.0903, C22 = 0.0375
Rotation data 10.0 < Tr < 50.0 hours, constant variable. ψ0 = 0.0

For the first simulation, C22 = 0, and the J2-only approximation of the orbit radius is tested. The initial
nonzero orbital elements are a0 = 40 km, e0 = 0.002, i0 = 50.0◦. The resulting approximation of the
orbit radius is compared to truth model data in Figure 2. The results show that the approximation obtained
with energy conservation works as expected with small initial eccentricity. Simulation 2 uses a0 = 40 km,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (orbits)

39.900

39.905

39.910

39.915

39.920

39.925

39.930

r(
t)

True

Approx.

Figure 2. Orbit Radius – Simulation 1, C20 Only

e0 = 0, and i0 = 2.0◦, θ0 = 0◦. Simulation 3 uses a0 = 40 km, e0 = 0.0022, i0 = 40.0◦, f0 = θ0 = 50.0◦.
In all cases, the unperturbed orbit period is 77.2 hours. In the first case, the asteroid rotation period is set to
24.12 hours, resulting in the angular rate ratio Γ = c/n = 3.2. For this first case, the approximation of the
orbit radius is compared to truth model data in Figure 3. In the second case, the asteroid rotation period is set
to 36.76 hours, so Γ = 2.1. The results are given in Figure 4.

In general, for lower values of Γ, the effects on variations in the orbit radius are more severe. In these cases
of near-resonance, the fluctuations can be so large as to result in orbit ejection or impact with the primary
body in the long-term. Such cases are not well-represented by any approximation assuming small deviations
from the initial orbit radius, and will require a different approach. The second simulation with Γ = 2.1 is
near the limit of efficacy of the current approach at this time of writing. The fluctuations are larger than in
other cases, and the approximation is less accurate, while still predicting the general behavior. Overall, this
approximation accuracy is limited to inclinations below 70◦, as discussed earlier.

With the accuracy of the approximation of the orbit radius demonstrated for several examples, some rep-
resentative results are shown to demonstrate that the other analytic approximations work. Figures 5 – 7 show
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Figure 3. Orbit Radius – Simulation 2, C20 +C22, Γ = 3.2
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Figure 4. Orbit Radius – Simulation 3, C20 +C22, Γ = 2.1
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Figure 5. Right Ascension – Simulation 3, C20 +C22, Γ = 2.1
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Figure 6. Inclination – Simulation 3, C20 +C22, Γ = 2.1
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Figure 7. Angular Rate – Simulation 3, C20 +C22, Γ = 2.1
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Figure 8. Orbit Radius – Simulation 4, C20 +C22, Γ = 4.0

that the approximations of the right ascension, inclination, and ωn are reasonably accurate for the case of
Simulation 3, with a0 = 40 km, e0 = 0.0022, i0 = 40.0◦, θ0 = 50.0◦. These are the same initial conditions
as are used to generate Figure 4. It would be somewhat redundant to show simulation results of ṙ and θ, so
these results are omitted.

One final simulation demonstrates the efficacy of the approximation for long time spans for cases with
highly regular motion. In this simulation, a0 = 40 km, e0 = 0.001, i0 = 50.0◦, ω0 = 25.0◦, f0 = 50.0◦.
Furthermore, Γ = 4.0. The resulting motion is simulated for 16 orbits with the nonlinear dynamics and with
the approximation, and the results agree to high accuracy for the full timespan simulated. Only the radius
data is shown for brevity, and these results are given in Figure 8. Note that the approximation captures the
interesting feature of long-term variations in the brief sharp oscillations appearing 3/4 of the way through
each orbit, as well as the persistent larger orbit-periodic variations due to the initial nonzero eccentricity.

CONCLUSIONS

In this paper, the variations in the orbit radius in a rotating gravity field with C20 and C22 are described for
near-circular orbits with the angular rate ratio Γ = c/n > 1. The kinematics of the osculating orbit are used
to obtain a scalar differential equation for the orbit radius r, which is rendered as a time-varying differential
equation in r alone using the Jacobi integral to remove unknown terms to first order in small variational terms,
O(ε). Once the approximation for the orbit radius is obtained, approximations for all other components of the
orbit state are found. The approximations in this paper are all explicit functions of time. Most time-dependent
terms are weighted sums of sin ( ) and cos ( ), with the weights determined by system initial conditions, and 5
fundamental frequencies constructed from the initial mean motion n0 and the primary body angular rotation
rate c. Solution accuracy generally increases as Γ is increased above the critical value Γ = 1. This makes
these solutions especially well-suited for approximating near-circular orbits around quickly rotating bodies
with significant C20 and C22 coefficients.

The potential for additional analytical work is extensive. First, the failure of the solution at high inclina-
tions should be investigated and corrected. It would also be useful to construct a solution for Γ < 1, as this
is the domain of low planetary orbits. The relative scale of variations in the derivation could be treated more
formally. This would help in identifying which issues in the approximate solution are fundamental to this
approach and which can be amended. Furthermore, a rigorous accounting of the relative scale of small terms
would enable higher-order analytic series approximations of the orbit behavior to be obtained. The approxi-
mation of variations in the orbit radius can be extended to more eccentric orbits by a change of independent
variable in Eq. (12). The assumption that |ωn| � |Ω̇|, |i̇| should also be relaxed for highly eccentric orbits.
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In addition to the relative simplicity of the approximations obtained, an attractive feature of the approach
in this paper is that it can be adapted to include additional terms in the gravitational potential. This new
approach shows promise for refinements to develop analytic approximate solutions to the problem of orbits
in complex rotating gravity fields. However, any given approximate solution will only apply to limited regions
of the parameter space of all possible orbits. For example, the solutions in this paper are applicable only to
orbits that remain near-circular. The assumptions used to generate an approximation necessarily constrain
its applicability to the space in which these assumptions are valid. However, the parametric variation of
behavior of orbital motion in rotating asymmetric gravity fields has been extensively studied numerically
and with dynamical systems theory.7, 15, 16 This body of work should inform where the development and
application of various approximate solutions are appropriate.
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