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SATELLITE RELATIVE STATE UNCERTAINTY DYNAMICS IN THE
VICINITY OF A POORLY TRACKED TARGET OBJECT

Ethan R. Burnett∗ and Hanspeter Schaub†

This paper explores the dynamics for the sensitivity of the satellite relative state
to uncertainty in the initial orbit elements of the target object about which the dy-
namics have been linearized. These sensitivities enable rapid and highly accurate
Monte Carlo analysis of the evolving uncertainty in the relative state with respect
to a nearby unknown target object. The dynamics of the sensitivities are derived,
and the influence of control on these quantities is investigated. Because the sensi-
tivities directly determine the time-varying shape of the relative state distribution,
the interesting concept of using control to directly influence the sensitivities is
also explored. Through this framework, the uncertainty distribution of relative
states can be directly influenced to some degree, which could be useful in some
rendezvous and relative motion applications.

INTRODUCTION

A major topic in formation flying and satellite proximity operations is collision avoidance with
other space objects. There have been many important works studying the effects of uncertainties
in the satellite relative motion problem. Reference 7 derives analytic uncertainty propagation for
the relative motion problem in elliptic orbits. Under the assumption of a Gaussian white noise
process, they explore the computation of the evolving mean and covariance matrix of the relative
states using Tschauner-Hempel equations.10 Some work has focused on designing guidance and
control to mitigate collision risks in the presence of uncertainties, both with active and passive
methods. A classic passive means of minimizing impact risk in formation flying is through the safe
ellipse, which ensures that in the presence of along-track drift in the relative motion, the spacecraft
will not collide.6 In Reference 1, Breger and How investigate tradeoffs between active and passive
approaches to safety. They also develop a strategy for generating safe, fuel-optimized rendezvous
trajectories that guarantee collision avoidance for a large class of anomalous behaviors. Reference 4
develops a Receding Horizon Control (RHC) approach that enforces passive safety in the presence
of common navigation or propulsive system failures. They identify that adding cross-track relative
motion also greatly reduces collision probability.

There are several works which explore the problem of rendezvous and proximity operations when
the target orbit is uncertain, which leads to uncertainty in the linearized model. In these works,
the spacecraft relative state is assumed to be directly and accurately measured, but the effects of
dynamic uncertainty need to be mitigated. Reference 8 studies reliable impulsive state-feedback
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control for autonomous spacecraft rendezvous under target orbital uncertainty with the possibility of
thruster faults. This is accomplished using Lyapunov theory and genetic algorithms. Reference 11
addresses robust H∞ control for spacecraft rendezvous with a noncooperative target, specifically
for the case of CW dynamics, in which the target semimajor axis is uncertain. The control design
enables rendezvous in the presence of this dynamical uncertainty, while also allowing for control
input saturation. In both References 8 and 11, the uncertainty in the target orbit manifests only as
dynamic uncertainty in the linearized models. The relative position and velocity are assumed to be
observable.

Typically, the safe use of translational control in close proximity requires that the relative position
and velocity be directly and accurately observed, otherwise there is a fundamental risk of collision
or other undesired outcomes. However, sometimes a spacecraft must maneuver in the vicinity of
another space object whose position and velocity is not known to a desirable degree of accuracy, due
to poor observability conditions or any other factors leading to an inability to make the necessary
measurements. In such circumstances, the initial estimates of the relative state are going to have
some degree of error, and the resulting relative motion over time will be generally uncertain as
well. This is depicted in Figure 1, where the nominal relative position ρ∗ obtained from the best
guess of the target orbit differs from the true relative state ρ. In addition to dynamic error due to
incorrect linearization, the uncertainty directly affects the relative range and range rate, as well as the
orientation of the target-centered LVLH frame. This paper studies this problem of relative motion
in the vicinity of a poorly tracked target object, from the perspective of the linear sensitivities of
the relative state. The sensitivities studied are the derivative of the relative state vector with respect
to the individual uncertain orbit elements of the target spacecraft, and they have their own linear
forced dynamics if the two spacecraft are in close proximity in similar orbits.

Figure 1: Relative Position from Estimated and True Target Spacecraft Locations

Through the sensitivities, an uncertainty distribution in the initial target orbit elements can be
directly mapped to an evolving uncertainty distribution in the relative state. Assuming small target
orbit element errors, the problem can be approached by linearization, and the sensitivities progress
with their own dynamics influenced only by the nominal relative state and by the control. The action
of an estimator has no effect on the sensitivity propagation, and instead changes the uncertainty
distribution of the initial target orbit elements. In this manner, the sensitivities act as a scaffolding
for the relative state uncertainty distribution, and only need to be propagated once in parallel with
the nominal relative motion dynamics. This framework could allow for uncertainty-conscious linear
control to be designed for the relative motion problem that actively reduces the risk of satellite
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impact due to errors in the target orbit estimate.

SENSITIVITY DYNAMICS

Fundamentals of the Linear Sensitivities

The relative state of a satellite with respect to another orbiting space object is a function of the
orbit elements of the two. Let oes and oet denote the controlled spacecraft and the target object’s
orbit elements at some epoch time. For linearization about an incorrect orbit parameterized by
estimated target orbit elements oe∗t , the true relative state x can be expressed as a sum of the nominal
state x∗ and the deviations induced by the product of the sensitivities to the orbit elements and their
errors:

si =
dx

doet,i

∣∣∣∣
∗

(1)

ši =
dx

does,i

∣∣∣∣
∗

(2)

x ≈ x∗ +
dx

doet

∣∣∣∣
∗

(oet−oe∗t ) +
dx

does

∣∣∣∣
∗

(oes−oe∗s)

= x∗ +
6∑
i=1

(
oet,i− oe∗t,i

)
si +

6∑
i=1

(
oes,i− oe∗s,i

)
ši

(3)

In this work, the orbit of the maneuvering spacecraft is assumed to be known to much higher preci-
sion than the target orbit, so the influence of this uncertainty on the relative state is neglected:

x ≈ x∗ +
6∑
i=1

(
oet,i− oe∗t,i

)
si (4)

The “t” subscript is dropped, because this work only considers uncertainties in the orbit elements
of the unknown target object’s orbit. The associated sensitivity state vectors have their own linear
forced dynamics, obtained from the relative motion dynamics.

ṡi =
d
dt

(
dx
doei

)
=

d
doei

(
dx
dt

)
=

d
doei

(Ax)x+Axsi +
d

doei
(Bx)u (5)

Note that the concept of sensitivities having their own dynamics is not new, and is explored exten-
sively in Reference 5.

Dynamics in Local Cartesian Coordinates

If the relative state x is in Cartesian coordinates in the LVLH frame, the plant matrix Ax9 and
control matrix Bx are given below for the Keplerian case.

Ax =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

θ̇2 + 2 µ
r3

θ̈ 0 0 2θ̇ 0

−θ̈ θ̇2 − µ
r3

0 −2θ̇ 0 0

0 0 − µ
r3

0 0 0


(6)
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Bx =

[
03×3

R3(θ)R1(i)R3(Ω)R∗NH

]
(7)

In Eq. (7), the rotation matrix R∗NH maps from the known nominal LVLH frame to the inertial
frame, and the subsequent rotations map from the inertial frame to the true LVLH frame. For small
uncertainties in the target orbit, the lower 3× 3 sub-matrix in Bx will thus be close to identity. The
sensitivity dynamics given by Eq. (5) are evaluated using a chosen nominal target orbit and nominal
relative motion, and are not influenced by the uncertainty in the target orbit elements. Note that the
last term in Eq. (5) is nonzero only for the sensitivities to the orbit element angles parameterizing
the rotation RHN from the inertial frame N to the target-centered LVLH frame H.

The initial values of the sensitivities will typically be nonzero for this problem, and can be directly
computed. References 9 and 3 discuss the geometric method, mapping the relative state in orbit
element differences to the relative state in local Cartesian or curvilinear coordinates via the linear
mapping x = [G(θ)] δoe. Writing x∗0 = [G(θ0)] δoe∗0, where δoe∗0 = oes(0) − oe∗t (0), the initial
sensitivities are derived:

si(0) =
dx∗0

d oei(0)
=

d
d oei(0)

(G(θ0) δoe∗0) =
d

d oei(0)
(G(θ0)) δoe∗0 +G(θ0)

d δoe∗0
d oei(0)

(8)

G(θ) is reproduced below from Reference 9 for when x is in local Cartesian coordinates and δoe is
in quasi-nonsingular orbit element differences:

Gx =



r
a

vr
vt
r 0 − r

p (2aq1 + rcθ) − r
p (2aq2 + rsθ) 0

0 r 0 0 0 rci
0 0 rsθ 0 0 −rcθsi

− vr
2a

(
1
r −

1
p

)
h 0 1

p (vraq1 + hsθ) 1
p (vraq2 − hcθ) 0

− 3vt
2a −vr 0 1

p (3vtaq1 + 2hcθ) 1
p (3vtaq2 + 2hsθ) vrci

0 0 (vtcθ + vrsθ) 0 0 (vtsθ − vrcθ)si


(9)

where vr = ṙ, vt = rθ̇, and c and s denote the cos and sin functions respectively. Because of the
definition of δoe∗0, the final term in Eq. (8) can be rewritten as −G(θ0)êi, where êi is a unit vector
with six components, with the ith component one and all other components zero. Note from Eq.
(5) that the sensitivity state vectors behave as an augmented position and velocity vector. In other
words, for the elements sj of a given sensitivity vector, ṡj = sj+3 for j = 1, 2, 3.

Denoting ∆oe = oe−oe∗, and writing each si in terms of its associated element oei, Eq. (3) is
rewritten in terms of the sensitivities to and differences in the initial target quasi-nonsingular orbit
elements oe0:

x = x∗ + sa∆a+ sθ0∆θ0 + si∆i+ sq1∆q1 + sq2∆q2 + sΩ∆Ω (10)

Because the target spacecraft orbit is parameterized by epoch orbit elements, an initial statistical
distribution in these epoch elements can be directly mapped to a distribution of future relative states
via the sensitivities si.

In Eq. (10), the relative state is expressed as a time-varying vector sum of scalar random variables.
This is interesting because in principle, for the unforced problem, the time-varying vector states can
be computed analytically as functions of the nominal target argument of latitude θ for the case of
Keplerian orbits. This would enable highly efficient uncertainty propagation for the problem of
close-proximity spacecraft relative motion in the vicinity of an uncertain target – at least for the
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timespan that the majority of the uncertainty distribution lies within the linear regime. Interestingly,
from Eq. (5) it can be shown that some of the sensitivity terms can be influenced by control. As a
result, the action of a controller has some influence on the distribution of possible relative states.

Returning to Eq. (5), the relative state sensitivity dynamics to each orbit element are derived:

ṡa =

(
Ax,a +Ax,θ

dθ
da

)
x∗ +Axsa +Bx,θ

dθ
da
u (11a)

ṡθ0 = Ax,θ
dθ
dθ0
x∗ +Axsθ0 +Bx,θ

dθ
dθ0
u (11b)

ṡi = Axsi +Bx,iu (11c)

ṡq1 =

(
Ax,q1 +Ax,θ

dθ
dq1

)
x∗ +Axsq1 +Bx,θ

dθ
dq1
u (11d)

ṡq2 =

(
Ax,q2 +Ax,θ

dθ
dq2

)
x∗ +Axsq2 +Bx,θ

dθ
dq2
u (11e)

ṡΩ = AxsΩ +Bx,Ωu (11f)

The unintuitive dθ/doei terms appear due to the influence of changes in the orbit elements a, θ0, q1,
and q2 on the subsequent evolution of θ(t).

All terms appearing in Eq. (11) are directly computed and provided below:

Ax,oei =
d

d oei
(Ax) =

[
03×3 03×3

KAx
oei ΩAx

oei

]
(12)

KAx
a =

− 3
a θ̇

2 − 6
a
µ
r3

− 3
a θ̈ 0

3
a θ̈ − 3

a θ̇
2 + 3

a
µ
r3

0

0 0 3
a
µ
r3

 (13a)

ΩAx
a =

 0 − 3
a θ̇ 0

3
a θ̇ 0 0

0 0 0

 (13b)

KAx
θ =

 4θ̇2 κ′
κ + 6 µ

r3
κ′
κ

2θ̇2

κ2

(
4κ′2 − κ+ η2

)
0

−2θ̇2

κ2

(
4κ′2 − κ+ η2

)
4θ̇2 κ′

κ − 3 µ
r3
κ′
κ 0

0 0 −3 µ
r3
κ′
κ

 (14a)

ΩAx
θ =

 0 4θ̇ κ
′
κ 0

−4θ̇ κ
′
κ 0 0

0 0 0

 (14b)

KAx
q1 =

 2θ̇2β1 + 6 µ
r4
γ1 4θ̇2β1

κ′
κ − 2θ̇2 q2+sin θ

κ2
0

−4θ̇2β1
κ′
κ + 2θ̇2 q2+sin θ

κ2
2θ̇2β1 − 3 µ

r4
γ1 0

0 0 −3 µ
r4
γ1

 (15a)

ΩAx
q1 =

 0 6
η2
q1θ̇ + 4

κ θ̇ cos θ 0

− 6
η2
q1θ̇ − 4

κ θ̇ cos θ 0 0

0 0 0

 (15b)
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KAx
q2 =

 2θ̇2β2 + 6 µ
r4
γ2 4θ̇2β2

κ′
κ + 2θ̇2 q1+cos θ

κ2
0

−4θ̇2β2
κ′
κ − 2θ̇2 q1+cos θ

κ2
2θ̇2β2 − 3 µ

r4
γ2 0

0 0 −3 µ
r4
γ2

 (16a)

ΩAx
q2 =

 0 6
η2
q2θ̇ + 4

κ θ̇ sin θ 0

− 6
η2
q2θ̇ − 4

κ θ̇ sin θ 0 0

0 0 0

 (16b)

dθ
da

= −3aη

2r2
0

κ2

κ2
0

n(t− t0) (17a)

dθ
dθ0

=
κ2

κ2
0

(17b)

dθ
dq1

=
1

r2η2

(
r sin θ(r + a(1− q2

1))− r0 sin θ0(r0 + a(1− q2
1))

+ aq1q2(r cos θ − r0 cos θ0) + q2(r − r0)(a+ r + r0)
) (17c)

dθ
dq2

=
1

r2η2

(
− r cos θ(r + a(1− q2

2)) + r0 cos θ0(r0 + a(1− q2
2))

− aq1q2(r sin θ − r0 sin θ0)− q1(r − r0)(a+ r + r0)
) (17d)

κ = 1 + q1 cos θ + q2 sin θ (18)

κ0 = 1 + q1 cos θ0 + q2 sin θ0 (19)

κ′ = −q1 sin θ + q2 cos θ (20)

η =
√

1− q2
1 − q2

2 (21)

β1 =
3q1

η2
+ 2

cos θ

κ
(22)

β2 =
3q2

η2
+ 2

sin θ

κ
(23)

γ1 =
2aq1

κ
+
aη2

κ2
cos θ (24)

γ2 =
2aq2

κ
+
aη2

κ2
sin θ (25)

Bx,Ω =
dBx
dΩ

=

[
03×3

−R3(θ)R1(i)˜̂e3R3(Ω)R∗NH

]
(26a)

Bx,i =
dBx
di

=

[
03×3

−R3(θ)˜̂e1R1(i)R3(Ω)R∗NH

]
(26b)

Bx,θ =
dBx
dθ

=

[
03×3

−˜̂e3R3(θ)R1(i)R3(Ω)R∗NH

]
(26c)
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where ˜̂ei denotes the skew-symmetric tilde (cross) matrix for the ith basis vector.9 Eqs. (12) -
(26) are all evaluated on the nominal target orbit, and enable the sensitivity dynamics given in Eq.
(5) to be computed.

Substituting R∗NH = R>3 (Ω∗)R>1 (i∗)R>3 (θ∗), the directions for the control components u1, u2,
u3 track the nominal LVLH frame basis vectors. Then, Eq. (26) can be simplified when evaluated
on the nominal target orbit:

Bx,Ω =

[
03×3

−R3(θ)R1(i)˜̂e3R1(i)>R3(θ)>

]
=



0 0 0
0 0 0
0 0 0
0 ci −cθsi
−ci 0 sisθ
cθsi −sisθ 0

 (27a)

Bx,i =

[
03×3

−R3(θ)˜̂e1R3(θ)>

]
=



0 0 0
0 0 0
0 0 0
0 0 sθ
0 0 cθ
−sθ −cθ 0

 (27b)

Bx,θ =

[
03×3

−˜̂e3

]
=



0 0 0
0 0 0
0 0 0
0 −1 0
1 0 0
0 0 0

 (27c)

Propagating both the nominal relative state x∗ and the sensitivities via Eq. (11) once, uncertainty
distributions in the target orbit elements can be rapidly mapped to an evolving distribution in the
relative state. This mapping is extremely accurate for close-proximity (km-scale) satellite relative
motion and for modest uncertainties in the target orbit.

THE CLOHESSY-WILTSHIRE CASE

The sensitivity dynamics discussed in Section 2 for the general Keplerian relative motion prob-
lem are inconvenient to explore analytically due to their complexity. To avoid such a prolonged
investigation, this section explores the sensitivity dynamics for the controlled relative motion prob-
lem when the target orbit is sufficiently near-circular to use the Clohessy-Wiltshire (CW) model.2 It
is easier to analyze this system and then afterwards investigate if and how fundamental conclusions
change for the general-eccentricity case.

For the CW problem, the natural relative motion dynamics assume the following highly simplified
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linear-time varying form that is a function of the target semimajor axis alone:

ẋ =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0

0 0 −n2 0 0 0

x (28)

where n =
√
µ/a3. Because the CW problem linearizes about a circular orbit, the orbit element

definition from Section 2 is modified. In particular, the target orbit is parameterized by a, θ, i, and
Ω. The quantity θ is measured from the ascending node, and eccentricity is assumed sufficiently
small that one may write θ ≈ θ0+nt. The orbit element differences are δoe = (δa, δθ, δe, δi, δΩ)>.
For this study, the chaser periapsis is located at the chaser’s ascending node. Note that it is always
possible to define the inertial frame such that the periapsis is at zero latitude, so there is no loss of
generality with this approach.

The initial sensitivities are computed in the same manner as before – using Eq. (8). However, the
mapping from element differences to local coordinates needs to be modified from Eq. (9):

GCW =



1 0 −a cos θ 0 0
0 a 0 0 a cos i

0 0 0 a sin θ −a cos θ sin i

0 0 na sin θ 0 0

−3
2n 0 2na cos θ 0 0

0 0 0 na cos θ na sin θ sin i


(29)

The derivatives of Eq. (29) with respect to the target orbit elements are simple and thus are not
explicitly provided.

From Eqs. (8) and (28), only the sensitivity to the target semimajor axis is influenced by the
relative state. Its dynamics are given with the other sensitivities below:

ṡa = ACW,ax
∗ +ACWsa +Bx,θ

dθ
da
u (30a)

ṡθ0 = ACWsθ0 +Bx,θu (30b)

ṡi = ACWsi +Bx,iu (30c)

ṡΩ = ACWsΩ +Bx,Ωu (30d)

ACW,a =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

− 9
an

2 0 0 0 − 3
an 0

0 0 0 3
an 0 0

0 0 3
an

2 0 0 0

 (31)

dθ
da

= − 3

2a
nt (32)
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Inspecting Eqs. (30) – (32), the influence of control and the motion of the nominal trajectory are
generally sub-dominant in the dynamics of sa. In other words, ṡa ≈ ACWsa, except for large
magnitudes of the control signal u, or large values of the components of the nominal relative state
x∗.

Further interpretation of the sensitivity dynamics for the CW case is possible by investigating
the initial values of the sensitivities themselves using Eq. (8). Note that the uncontrolled dynamics
of sθ0 , si, and sΩ are all the same as the CW system. It can be shown that all three are periodic.
Consider sθ0(0):

sθ0(0) =



a sin θ0δe
−a

a cos θ0δi+ a sin θ0 sin iδΩ

na cos θ0δe

−2na sin θ0δe

−na sin θ0δi+ na cos θ0 sin iδΩ


(33)

The CW no-drift condition is ẏ0 + 2nx0 = 0. From Eq. (33), the components sθ0,x(0) and sθ0,ẏ(0)
satisfy this constraint. Additionally, sθ0,y is much greater than all other components of sθ0 and is
nearly stationary in the absence of control. it A similar result can be shown for si and sΩ using
their initial components – both of these sensitivities are also periodic in the uncontrolled case. For
si, the dominant component is a large periodic oscillation in si,z , with the state components in the
x and y directions of a negligible scale by comparison. For sΩ, there is a large y component, and
the oscillatory z component is also large, whereas the x component is insignificant.

Because the sensitivities directly map static uncertainty distributions in oe0 to evolving uncer-
tainty distributions in the relative state, it is of interest to see which sensitivities drive the growth
in the distribution in the absence of control. Because all other sensitivities are periodic, is clear
that growth in components of sa must be driving the secular growth in uncertainty for uncontrolled
relative motion. The unforced behavior of sa turns out to be extremely simple. To start out, the
initial value of the sensitivity is given below:

sa(0) =



−1− cos θ0δe

δθ0 + cos iδΩ

sin θ0δi− cos θ0 sin iδΩ

−1
2n sin θ0δe

3
2n+ 9n

4a δa− n cos θ0δe

−n
2 cos θ0δi− n

2 sin θ0 sin iδΩ


(34)

Substituting the initial sensitivity state into the CW solution9 and keeping only dominant terms, the
sensitivity to semimajor displays the following approximate behavior, neglecting small oscillations:

sa(t) ≈
(
−1,

3

2
nt, 0, 0,

3

2
n, 0

)>
(35)

It is natural to ask what the influence of control on the sensitivities can have – because any
permitted purposeful control of the sensitivities enables a corresponding control of some aspect
of the evolving relative state uncertainty distribution. To answer this, first recall that the scale
of control needed to significantly influence sa is of a much larger scale than that needed for the
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other sensitivities, due to the n/a multiplier on the control u. Thus, the controllability of the other
sensitivities sθ0 , si, and sΩ with lower thrust is considered. For control analyses of this type,
the resulting meager effect of control on sa is neglected. Furthermore, the z components of the
sensitivities are decoupled from the in-plane components and are also neutrally stable, so these will
be ignored as well.

Note that it can be determined from Eqs. (30) and (27) that the simultaneous control of all
components of x∗, sθ0 , si, and sΩ is impossible. However, control of a subset of these states is
possible. As a demonstration of control of a subset of the sensitivities, a simple strategy is explored
in this paper that combines augmented control of the planar x∗ and sθ0 with stabilization of planar
sΩ. The out-of-plane components of the nominal relative state and the sensitivities are ignored. The
augmented dynamics are given below:

ż =
d
dt

(
x2D
sθ0,2D

)
=

[
A2D 04×4

04×4 A2D

]
z +Bzu (36)

where the control vector is composed of the in-plane accelerations u = (ax, ay)
>, and A2D and

Bz are given below:

A2D =


0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0

 (37)

Bz =

[
0 0 1 0 0 0 0 1
0 0 0 1 0 0 −1 0

]>
(38)

Stabilization of sΩ is achieved by enforcing the no-drift constraint xoff(sΩ) = 4sΩ,x+ 2
nsΩ,ẏ ≈ 0 to

prevent secular growth in the sΩ dynamics. This is achieved by the following out-of-plane control
component:

u3 = az =
cos i

sin i sin θ
u1 (39)

where some maximum |u3| < δ is enforced as needed for when sin θ is small. Computing the
controllability matrix C = [B AB A2B . . . A7B] for the LTI system given by Eq. (36), the rank is 8,
thus the augmented planar state and θ0 sensitivity dynamics are determined to be fully controllable.
Most of the secondary effects of the control strategy are small changes in the neutrally stable out-
of-plane components of the sensitivities si and sΩ, and increases in the out-of-plane motion of
x∗. Additionally, this strategy does have a tendency to grow the small in-plane components of si.
Nonetheless, it is a simple demonstration of the possibility of designing control to influence the
sensitivities.

NUMERICAL SIMULATIONS

Efficient Relative State Uncertainty Propagation via the Sensitivities

To demonstrate the successful propagation of the sensitivity dynamics for the general Keplerian
case, consider the example given by the information in Table 1. For this example, the initial target
orbit element error statistics correspond to uncertainty in its initial orbit position on the order of 100
m, with cm/s error in velocity. The chaser spacecraft orbit position is assumed perfectly known,
but the relative state is uncertain. The nominal relative state is linearly propagated using the plant
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matrix given by Eq. (6) and the sensitivities are propagated from their initial values – obtained
using Eq. (8) – through use of Eq. (11) . This first study is control-free, investigating the behavior
of the unforced sensitivities over the course of two nominal target orbit periods. The dominant

Table 1: Eccentric Target Orbit, Unforced Relative Motion

Parameters Values

Nominal Target Orbit oe∗t,0 = (a, e, i, ω,Ω, f0) ≈ (12600 km, 0.3, 63.4◦, 27◦, 2◦, 10◦)
θ∗0 = 37◦, q∗1 = 0.2673, q∗2 = 0.1362

Target Orbit Uncertainty Normal dist., zero-mean, angle deviations ×10−5 degrees:
σa = 20 m, σe = 2× 10−6, σi = 4, σω = 4, σΩ = 1.9, σf0 = 8

Chaser Spacecraft Orbit δoe∗s,0 = oes,0−oe∗t,0 = (0.4 km, 8× 10−5, 0.01◦, 0.006◦, 0◦, 0◦)
Nominal Initial Relative State ρ0 = (−724.2, 926.9, 929.7) m, ρ′0 = (0.009, 1.202, 1.097) m/s

components of the sensitivities of relative position to each orbit element are given in Figures. 2 - 5.
The sensitivities of velocity are not explicitly shown but their behavior can be inferred from the po-
sition sensitivity curves, because the sensitivities behave like augmented position and velocity state
vectors. Inspecting the sensitivity figures, the out-of-plane components of sensitivities to semimajor
axis and θ0 are negligible, and so are the in-plane components of sensitivity to inclination. Note that
all sensitivities except sa are periodic, thus it is the uncertainty in target semimajor axis that drives
secular growth in relative state uncertainty. This finding agrees with intuition, because only an error
in the target semimajor axis would correspond to a drift over time.

The effect of the scale of target eccentricity on the sensitivities is straightforward. For low ec-
centricity, the growth in sa,y becomes more linear in time, and the oscillations in sa,x are reduced.
As e → 0, sa,x → −1. Additionally, for low eccentricity, the sθ0,x curve is composed of small
oscillations about zero, and the sθ0,y curve is nearly constant, oscillating about −a∗. For larger
values of eccentricity, the oscillations in sθ0 become large, as demonstrated by the large oscillations
in the two quantities for e = 0.3 in Figure 3. The characteristic behavior of si, sq1 , and sq2 does not
change greatly with the eccentricity except for an increasing sharpness near target periapsis for very
high values of eccentricity. For sΩ, the oscillations in the y component flatten out as eccentricity is
decreased.

Note that the scale of components of sa is smaller than the components of sensitivities to the
target orbit element angles because small variations in angular separation scale with the semimajor
axis of the orbit, so even a small error in θ0 can have large consequences for the relative state in
Cartesian components. Rescaling sa = a∗sa might be a superior way of representing the scale of
the sensitivities to semimajor axis – mapping small deviations in (a− a∗)/a∗ to large variations in
the x and y coordinates of the relative state.

The real value of propagating the sensitivities is in their use for rapidly and accurately capturing
variations in the relative state arising from uncertainty in the target orbit. The sensitivities are
propagated once by evaluating their linear equations on a nominal target orbit, and the nominal
relative state is also propagated once using the nominal target orbit. Then, dispersions in the target
orbit elements from its nominal values can be directly mapped to dispersions in the local relative
state using Eq. (10). To demonstrate the usefulness of this, the statistical variations in the initial
target orbit elements given in Table 1 are used to generate a 1000-point Monte Carlo study of the
evolution of the relative state. To investigate collision risk, the time of smallest relative distance for
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Figure 2: Relative Position Sensitivities to Target Semimajor Axis
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Figure 3: Relative Position Sensitivities to Target Initial Argument of Latitude
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Figure 4: Relative Position Sensitivities to Target R.A.A.N and Inclination

the nominal relative trajectory is computed to be tcrit ≈ t0 + 1.328T ∗. All 1000 points are given in
Figure 6 at times t0 (blue) and tcrit (red), along with a subset of their connecting trajectories (gray)
and the nominal trajectory (dashed line). This information is all obtained in a matter of seconds,
because the individual points do not need to be numerically propagated and are instead mapped
directly through the sensitivities. Repeating this study with 10,000 points thus results in minimal
increase in runtime. Comparing the sensitivity-mapped relative state solutions to their true values
obtained by numerical integration of the individual cases, the sensitivity study is revealed to be
highly accurate, with none of the position errors ever exceeding 0.2 cm in the simulated timespan

12



0.0 0.4 0.8 1.2 1.6 2.0

Time (orbits)

−30000

−15000

0

15000

30000

S
en

si
ti

v
it

y
(k

m
)

sq1,x

sq1,y

sq2,x

sq2,y
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of 1.328 nominal target orbit periods.
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Figure 6: Sensitivity-Propagated Relative State Uncertainty Distribution

The relative states depicted in Figure 6 are each results for different target orbits – the relative
motion is shown in the nominal LVLH frame centered on the uncertain target at (0, 0). The chaser
spacecraft orbit is known, but the target-centered relative state is unknown due to target orbit uncer-
tainty. As expected, this relative state uncertainty grows over time, discernible from the spread in
the initial relative positions (blue) to the spread in final relative positions (red) in Figure 6. This is
an interesting result because a single linear simulation allows very large samples of possible relative
states to be propagated efficiently, despite the fact that each of these points is for a different target
orbit and would traditionally require its own linearization.

Overall, this method tends to work quite well for at least one target orbit period for uncertainties
in the target orbit corresponding to up to km-scale initial position error in low Earth orbits. The
sensitivities enable efficient characterization of the evolving uncertain relative state for proximity
operations in the vicinity of an uncertain target object. Additionally, they enable a direct study of
which target orbit element uncertainties are the largest contributors to the relative state error at a
future time of interest. Because it relies on linearized dynamics of the relative state’s sensitivity to
target orbit elements, it breaks down with both large separations in the nominal relative state and
with sufficiently large differences between the nominal target orbit and the true orbit. As a result,

13



the accuracy of the method will degrade for target orbit statistics with large standard deviations in
the initial orbit elements. The method is fairly sensitive to errors in semimajor axis, which must
be known to a certainty of kilometers or better. Nonetheless, it is quite useful for situations with
modest uncertainty in the target object orbit.

Control Examples with the CW System

To test the influence of control on the sensitivities, this paper explores simple examples of infinite-
time LQR control with the CW dynamics. The following cost is minimized for symmetric positive-
definite Q and R:

J =

∫ ∞
t0

(
x>Qx+ u>Ru

)
dt (40)

The cost-minimizing feedback control is u = −R−1B>Px where P solves the algebraic Riccati
equation:

A>P + PA− PBR−1B>P +Q = 0 (41)

Naı̈ve Relative State Control Note that typical control maneuvers conducted in close-proximity
exert only a small influence on the sensitivities. This is especially true if the control effort for the
maneuvers is low. As an example, consider the case given by the data in Table 2.

Table 2: Simulation Parameters, CW Control Example 1

Parameters Values

Nominal Target Orbit Elements a∗ = 8000 km, θ
∗
0 = 37◦, i∗ = 30◦, Ω∗ = 21◦

Target Orbit Uncertainty Normal dist., zero-mean, angle deviations ×10−5 degrees:
σa = 6.0 m, σi = 4.0, σΩ = 1.9, σθ0 = 8.0

Nominal Initial Relative State ρ0 = (−0.92,−2.92,−3.76) km, ρ′0 = (1.27, 2.06, −5.22) m/s
Target Relative Motion Bounded relative orbit, x(0) = 0.5 km, ẏ(0) = −2n∗x(0)

Control Parameters Qρρ = 2I3×3, Qρ′ρ′ = 100I3×3, R = 1013I3×3

Simulation Parameters tf = 2.25 T ∗

The optimal control signal solving the infinite-time LQR problem parameterized by Table 2 is not
very aggressive, taking about 2 nominal target orbit periods to settle 95% of the initial relative state
error. The resulting nominal relative motion is given by the dotted line in Figure 7. The achieved
nominal relative orbit is approximately 2 km by 1 km. To simulate the effects of uncertainty in the
target orbit, a 1000-point Monte Carlo study is also propagated using the sensitivities for the CW
case, whose dynamics are given by Eq. (30). None of the sensitivity-propagated controlled relative
position errors exceed 5 cm from their true values in the 2.25 nominal orbit periods simulated. This
demonstrates that the sensitivities remain effective for efficiently studying relative state outcomes
for cases of controlled relative motion.

The most significant relative state sensitivities are given in Figures 8 and 9. Note that the sensitiv-
ities for relative state propagation without control are given as dotted black lines that are very close
to their counterparts from the controlled example (colored). This shows that the control strategy
explored for this example exerts only a small influence on the sensitivities. This is because the rela-
tive state sensitivities are more costly to significantly influence than the relative state. First, for the
sensitivity to semimajor axis, Eqs. (30) and (32) show that the influence of control on the dynamics
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Figure 8: Sensitivity to Semimajor Axis, Naı̈ve Control Example
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Figure 9: Sensitivities to Target Orbit Element Angles, Naı̈ve Control Example

is pre-multiplied by n∗/a, a very small quantity. For the sensitivities to Ω, i, and θ0, the reason for
the weak influence of control is due to the sheer scale of those sensitivity states, which are much
larger than the relative state. Recall from Eq. (30) that these sensitivities obey forced CW dynamics,
just like the relative state. There are actually comparable effects of control on the relative state and
the sensitivities - the control exerts a km-scale influence on the relative state, and a km/rad scale
influence on the sensitivities. The sensitivities are simply quite costly to influence significantly, at
least in comparison to the cost of achieving desired regulation and tracking control of the relative
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state. This is an important point that will be discussed further in the next control example.

Note from Figures 8 and 9 that the simple predictions of Eqs. (33) - (35) and their associated
discussions in Section 3 are accurate. In particular, for si, the dominant component is a large
periodic oscillation in si,z , with the state components in the x and y directions of a negligible scale
by comparison. For sΩ, there is a large y component, and the oscillatory z component is also large,
whereas the x component is insignificant (not shown). Additionally, by inspection of Figure 8, the
simple secular behavior given by Eq. (35) for sa is also shown to be accurate.

Comparing the curves in Figures 8 and 9 with their counterparts in Figures 2 - 5 for an eccentric
target orbit, the qualitative differences in the sensitivity between the circular target and eccentric
target orbit cases are fairly straightforward. First, the oscillations in sa,x and sa,y become more
pronounced, but the secular growth in sa,y is retained for both. Next, because the target orbit is now
circular, the in-plane sensitivities of the relative state to target elements Ω and θ0 no longer vary
considerably over time. Lastly, because the target orbit is assumed circular and the dynamic effects
of nonzero target orbit eccentricity are not at all considered by the CW formulation, the sensitivities
sq1 and sq2 are undefined here.

Augmented Relative State and Sensitivity Control As an example of combined control of the rel-
ative state and a subset of the sensitivities, the strategy discussed in Section 3 is implemented. This
strategy maneuvers the spacecraft to a desired final relative state, and in the process, reduces the
planar relative state sensitivity to θ0 while preserving the planar sensitivity to Ω. In general, this
results in an exaggeration of the neutrally stable out-of-plane motion, while also potentially gener-
ating insignificant increases in the in-plane sensitivity of the relative state to the target inclination.
For this example, the relevant simulation parameters are provided in Table 3.

Table 3: Simulation Parameters, CW Control Example 2

Parameters Values

Nominal Target Orbit Elements a∗ = 8000 km, θ
∗
0 = 37◦, i∗ = 30◦, Ω∗ = 21◦

Nominal Initial Relative State ρ0 = (−0.92,−2.92,−3.76) km, ρ′ = (1.27, 2.06, −5.22) m/s
Control Goals ρ2D = (0,−4) km, ρ′2D = (0, 0) m/s,

sθ0,x = 0 km/rad, sθ0,y = −7200 km/rad (10% reduction)
Preserve sΩ, ignore out-of-plane relative state and sensitivities

Control Parameters Q = diag(200, 200, 104, 104, 0.02, 0.02, 10, 10), R = 1011I2×2,
Out-of-plane control u3 = cos i

sin i sin θ
u1, |u3| < 1 m/s2

Simulation Parameters tf = 4.0 T ∗

In general, it has been determined that controlling the sensitivities is more costly than control of
the relative state. As a simple demonstration of the possibility of controlling the relative state along
with a subset of the sensitivities, a stationary along-track offset of 4 km is targeted, in a control
maneuver that also yields a 10% reduction in the magnitude of sθ0,y, while keeping sθ0,x ≈ 0 and
preserving the values of the planar components of sΩ. Through this action, the contribution of
uncertainty in the target orbit element θ0 to uncertainty in the relative state is reduced. The purpose
of this control example is to demonstrate that the sensitivities can be meaningfully influenced by
control action.

Using the augmented control design discussed in Section 3 and the control parameters in Table
3, the control effect is simulated for 4 nominal target orbit periods. The resulting motion of the
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Figure 10: Relative Motion Trajectory, Augmented Control Example

nominal trajectory is given in Figure 10. The initial point is given by a blue x and the final point
is given by a red x, and the target is at the origin of the nominal LVLH frame, indicated with a
black x. Note from Figure 10 that the relative state trajectory follows a very indirect path to the
target relative position. This is because a lot of control effort has to be exerted to reduce the planar
components of sθ0 as specified. There is no way to exert this control effort without also affecting
the relative state in the process.

The time-varying behaviors of each component of the controlled nominal relative position are
given in Figure 11. Examining both Figures 10 and 11, the initial large change in the relative
position is clear. There is an almost 8 km shift in x and a ∼ 2 km shift in y. This maneuver seems
necessary to initialize reduction in sθ0,y. Using other control simulations, it is determined that the
size of this initial maneuver scales with the desired reduction in sθ0,y. Despite this large initial
deviation, the relative state does eventually settle to the desired value, as can be seen from Figure
11. The planar relative position settles to the desired values x = 0, y = −4. These desired values
are indicated by the two horizontal dashed lines.
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Figure 11: Relative Position, Augmented Control Example

Note that as a consequence of the control compensation given by Eq. (39), the out-of-plane
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Figure 12: Controlled Sensitivity to θ0, Augmented Control Example
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Figure 13: Stationary Sensitivity to Ω, Augmented Control Example

motion is highly affected, as indicated by the gray curve in Figure 11. The out-of-plane nominal
relative state oscillations would be limited to |z| < 2 km without this compensation strategy (purple
curve), but grow to oscillations of up to |z| < 9 km, especially in the first 1.5 orbits. Note that
the out-of-plane motion settles to smaller variations after 2.4 orbits. However, without the control
compensation strategy, there would be larger changes in sΩ. This is clear from examining Figure
13. Without the control compensation, u3 = 0, and sΩ,y is heavily affected. This is given by the
purple curve, while the properly stabilized behavior of sΩ,y is shown by the orange curve.

The position components of sθ0 are given in Figure 12. The 10% reduction in the absolute value
of sθ0,y is achieved. The uncontrolled sθ0,y is given by the dashed horizontal curve towards the
bottom of the plot, while the orange curve shows the effect of control on that component. Note the
large scale of sθ0,y necessitates that it be plotted with its own y axis, on the right side of the plot.
This enables small details in the other two components to be discernible. The small oscillations in
sθ0,z are essentially unaffected, and the component sθ0,x is successfully regulated.

Finally, the control components for this example are given in Figure 14. Note from Eq. (39) that
|u3| → ∞ as sin θ → 0, but this is avoided by enforcing |u3| < 1 m/s2. Nonetheless, the control
signal prescribed in Figure 14 might be a challenge to implement practically, due to the combina-
tion of small and medium accelerations needed, and especially by the challenging profile of u3(t).
Additionally, a more ambitious control strategy than what is explored with this second example is
probably possible. These things are beyond the scope of this work, which only introduces the sen-
sitivity dynamics and does a preliminary investigation of whether or not they can be influenced by
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control. From this second control example, it is clear that the sensitivities can be meaningfully influ-
enced by control, but it is costly, and difficult to balance with relative state control requirements. As
discussed previously, because the components of the sensitivities are so large, more control action
must be exerted to significantly change these than to significantly change the relative state.
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Figure 14: Control Accelerations, Augmented Control Example

This last point is an important insight of this work. It is an appealing concept to directly control
some aspects of the evolving relative state uncertainty distribution, but it doesn’t seem to always
be practical. The most practical way to ensure safe relative motion is to design relative motion
while being aware of the distribution of possible relative states for a chosen maneuver design. It
is much easier to move the entire relative state distribution than it is to significantly contract it in
particular directions. Inspecting Figure 7 for example, it is apparent that considering the nominal
relative state alone in relative motion control design can be dangerous, because there is a risk for
impact depending on how the uncertainty distribution evolves. Computing the sensitivities along
with the nominal relative state response to a control action enables safe relative motion control
in the presence of target orbit uncertainty to be executed very efficiently. Finally, note that there
are limits to what control can achieve when influencing the relative state uncertainty distribution –
changing the shape is possible, but greatly reducing the volume through the action of control alone
should be impossible. Only measurements can effectively curb uncertainty growth.

CONCLUSIONS

This paper explores the sensitivities of the relative state to initial target orbit elements in the
satellite relative motion problem. The initial values and the dynamics of the sensitivities are derived
for the case of any target orbit eccentricity and for the special case that the target orbit is circular.
Simulations performed show that the sensitivities can be used to efficiently study how the uncer-
tain relative state distribution evolves with high accuracy. The sensitivities can be used to directly
map from uncertainty distributions in the initial target orbit elements to the consequential evolving
uncertainty distribution in the relative state. This enables rapid characterization of statistical risks
of impact for the case of maneuvering in the vicinity of an uncertain target object. This would be
especially useful in instances where the target object cannot be continuously tracked.

To explore the effects of relative state control on the sensitivities, infinite-time LQR control is
implemented with the CW system. The effects of control on the sensitivities are determined to
typically be fairly small, because the sensitivities to target elements tend to have much larger state
values than those of the relative state, and are thus more difficult to significantly alter. The prospect

19



of augmented control of a subset of the sensitivities with the nominal relative state is also briefly
explored in this paper, testing a formulation that controls planar relative state and planar sensitivity
to the initial target of argument latitude while preserving sensitivity to target R.A.A.N. This simple
control design is implemented with infinite-time LQR and achieves the desired control objectives.
It is observed that inducing large changes in the sensitivities is fairly expensive, and in practice it
would often be easier to simply control the relative state directly while computing the effects of
such control actions on the uncertainty distribution via the sensitivities.

The concept of rendezvous and relative motion control in the vicinity of an uncertain orbit is
not new. However, the formulation discussed in this paper offers new perspectives. The sensitivity
dynamics are shown to be rather simple, behaving like the relative motion dynamics but forced by
control and by the relative state in some cases. There are several ways this work can be expanded
on in the future. First, analytic solutions of the relative state sensitivities to the target orbit elements
could be derived. Combined with a suitable analytic formulation for propagating the relative state,
such as by using the Tschauner-Hempel equations,10 this would remove the need for any numerical
integration when studying the problem of maneuvering in the vicinity of a poorly tracked target
object. Additionally, the full problem could be explored – including sensitivities of the relative
state to both the initial target and chaser orbit elements. While maneuvering space objects are
typically well-tracked, the small error in the chaser spacecraft’s orbital state can still be important
in the uncertain relative motion problem. Additionally, more exploration of the limitations of the
augmented control of the relative state and sensitivities would be useful. Lastly, the sensitivity
formulation can in principle be used to design control that reduces the statistical risk of collision.
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