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CONTINUOUS CENTER-OF-MASS ESTIMATION FOR A
GIMBALED ION-THRUSTER EQUIPPED SPACECRAFT

R. Calaon*, C. Allard†and H. Schaub‡

Knowledge of the location of the center of mass of a spacecraft is an essential
piece of information at flight software level, because it influences the definition
of the requirements from the attitude control subsystem. While the location of
the center of mass is typically known at the beginning of a mission, it can change
over time. With electric propulsion, it is necessary to know precisely along which
direction to fire the thruster, in order to avoid the accumulation of momentum
that would ultimately lead to reaction wheel saturation. This study involves an
ion thruster that is fired along an inertially-fixed direction to perform a long-term
maneuver correction, while the orientation of the spacecraft is stabilized with reac-
tion wheels. This paper investigates using the steady-state integral feedback term
of the attitude control law to inform a sequential least squares estimator about the
location of the center of mass, which is estimated continuously. Results illustrate
that with even small degree-level thruster platform orientation changes the three-
dimensional center of mass location can be estimated.

INTRODUCTION

Over the course of a space mission, the location of the center of mass (CM) changes due to
various reasons. The dominant contributor is typically mass depletion, when propellant is expelled
to provide thrust. Additionally, in complex spacecraft designs that involve moving appendages,
the center of mass varies as such appendages are moved with respect to the spacecraft hub, thus
adding uncertainty to the accuracy on the CM location. The location of the CM of the system is
a vital piece of information that affects the computation of the requested forces in thruster-based
control. An incorrect CM estimate results in the wrong force request delivered to the thruster(s),
and consequently the inability to bring the spacecraft to the desired state.

Modern spacecraft designs often involve the presence of electric thrusters given their high spe-
cific impulse, and consequent lower propellant mass requirement.1 The tradeoff consists in the fact
that these thrusters typically need to operate for extended periods of time. In such circumstances,
a good CM location estimate becomes relevant because a misalignment between the CM and the
thrust vector produces undesired torques on the system, which have to be compensated by the reac-
tion wheels (RWs). Some of the more recent mission designs have explored the idea of mounting
the electric thruster on a dual-gimbal mechanism that allows the direction of the thrust vector to
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be controlled with respect to the spacecraft hub. In principle, this was motivated by the need to
adjust the thrust direction based on the system’s center of mass as it changes over time.2, 3 More
recent studies4 and mission concepts5 are also studying the possibility of intentionally offsetting the
thruster with respect to the CM in order to perform continuous momentum dumping. This would
prove beneficial in the long term, as it would limit the impact of external forces and torques on
actuator saturation.

Figure 1: Artistic rendering of the Deep Space 1 spacecraft, featuring an ion engine

Whether the goal is to perform continuous momentum dumping, or to produce zero net torque on
the system, accurate knowledge of the location of the center of mass is needed in order to fire the
thruster along the right direction.

Mass properties are often estimated performing calibration maneuvers, during which the large
angular rates and accelerations of the slewing spacecraft can me measured and used to set up several
Kalman filters that provide updated estimates of the inertia tensor, the location of the center of
mass, and the total system mass.6, 7 These filters combine measurements from on-board instruments
with first principles, such as conservation of angular momentum.8 However, such maneuvers need
specific calibration procedures involving large slews that can interrupt the spacecraft’s nominal
operations.9 Moreover, large slews can excite the vibrational modes of flexible appendages such
as solar arrays which can further complicate the estimation solution. Finally, rotating calibration
maneuvers can move the fuel to different tank locations when when the ion thruster is causing
the fuel to settle in the thrust direction of the tank. Other methods to estimate inertia properties
involve the articulation of moving appendages: accurate knowledge of the mass and position of the
appendage with respect to the body, combined with velocity measurements, allows to estimate the
inertia properties for the whole system.10

This paper develops a technique to estimate the location of the CM of the system while thrust
is continuously being applied, and the spacecraft’s pointing requirements are being satisfied at all
times. The motion platform supporting the thruster is gimbaled periodically to align the thrust vector
based on the current CM estimate. Of interest is how these small platform orientation changes can
be used to make the three-dimensional CM location observable. In this work, the steady-state
response of the attitude control system with integral feedback constitutes the measurement model
to inform the estimator on the torque produced by the offset between CM and thrust vector. The
steady-state integral feedback term will account for the net external torque acting on the spacecraft
system. The CM location is updated assuming this term is dominated by the CM uncertainty, but
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Figure 2: Spacecraft and gimbaled thruster sketch

will also consider the torques due to other external influences like solar radiation pressure. The
study explores the effectiveness of this approach in an integrated mission scenario that enforces the
inertial thruster pointing constraint and corrects the body and platform orientations to seek long-
term thrusting without reaction wheel momentum build-up.

This paper begins by describing the low-thrust mission details and dynamic model. Subsequently,
the paper explores how to perform continuous CM estimation leveraging the steady-state integral
feedback term that compensates for external torques, leveraging aspects of the mission design
choices. The estimation algorithm is outlined, and its limits are discussed. After outlining the
simulation framework and the physical mass properties of the simulated components of the space-
craft, numerical simulations are presented to show the performance during short-term and long-term
simulations.

SPACECRAFT MODEL

Hub

The spacecraft analyzed in this paper features several components. The main component is the
spacecraft hub, whose motion affects the dynamics of all the connected components and is directly
controlled by a system of reaction wheels. The body-frame B with origin in pointB is fixed with re-
spect to the hub, and it is the frame with respect to which measurements about the spacecraft attitude
σB/N , angular rates ωB/N , and angular accelerations ω̇B/N are provided. The law implemented to
control the attitude of the hub is a nonlinear PID-like controller:11

u = −KσB/R − PωB/R − PKIz+

+ ωB/N ×
(
[Itot,C ]ωB/N + [Gs]hs

)
+ [Itot,C ]

(
ω̇R/N − ωB/N × ωR/N

)
(1)
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where the first three terms constitute, respectively, the proportional, derivative, and integral terms,
and z = K

∫ t
t0
σB/Rdt + [Itot,C ]ωB/R. The other terms arise due to the gyroscopic couplings

in Euler’s equation of motion, and are needed in the nonlinear control law to ensure asymptotic
stability. The tensor [Itot,C ] represents the inertia of the full system, minus the inertias of the reaction
wheels about their respective spin axes. See Reference 11 for a detailed derivation of this control
law. It is important to note that the tensor [Itot,C ] is, in general, not constant, because it factors
in the inertias of moving components uncertainties on the inertias of the individual components,
combined with uncertainties on the relative position between them, can make this tensor difficult
to estimate. Such control law is designed to zero the relative attitude (σB/R) and angular velocity
(ωB/R) between the body frame B and a reference frame R. The integral term PKIz has the
ability to zero the bias in the steady-state response due to a constant, unmodeled torque acting
on the system. As will be further discussed later, the integral feedback term fits well with the
purpose of this work, where the assumption is that the unmodeled torques acting on the system
are dominated by the thruster offset with the system’s CM. Over an observation time window, the
thruster application point does not change, nor does the thrust force, therefore the assumption of a
constant unmodeled torque is valid.

Reaction Wheels

The spacecraft is actuated by means of four reaction wheels in a pyramid configuration as shown
in Figure 3. The RW setup is such that two reaction wheels can provide torque about the first
principal body axis Bb̂1 = (1, 0, 0)T , two about the second principal body axis Bb̂2 = (0, 1, 0)T ,
and all four contribute to the torques about the third principal body axis Bb̂3 = (0, 0, 1)T , where the
left superscript B is used to denote that the vector are expressed in the B frame. This is achieved by
a 40 degrees upwards tilt angle in the direction of the wheels’ spin axes ûj , and it is done to ensure
that control about each axis is achievable even in the case of a single wheel failure. Given the

Figure 3: Four reaction wheels in pyramid configuration

following matrix [Gs] = [Bu1,
Bu2,

Bu3,
Bu4] and under the assumption that the center of mass of

each wheel is aligned with the respective spin axis, the rotational equations of motion of the wheels
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are given by:
uRW = ḣs = IW (Ω̇ + [Gs]

T ω̇B/N ) (2)

where Ω contains the wheel speeds and IW is the inertia of the wheels about the spin axis. The
torques to the individual reaction wheels are computed by means of the minimum-norm solution,
based on the requested torque in Equation (1):

uRW = −[Gs]
T
(
[Gs][Gs]

T
)−1

u (3)

where u is the torque being exchanged between the RWs and the hub. Because the wheels are
balanced and their respective axes do not change with respect to the hub, their motion does not
affect the location of the CM of the system over time.

Solar Arrays

Each solar array is modeled as a rigid bodies attached to the hub by means of a single degree-of-
freedom hinge. This hinge allows rotations about the spin axis â1, which is required to enable the
arrays to track the direction of incoming sunlight. The spin axis is fixed with respect to the body
frame B.

The motion of the system consisting of the hub and solar arrays is described by a system of three
equations that relate to the translational motion of the CM of the system, three equations that relate
to the rotation of the system, plus one equation for each solar array that describes the additional
degree of freedom that allows the arrays to rotate about their hinge axis. The analytical derivation
of the equations of motion is lengthy and out of the scope of this paper. For the details, the reader
is referred to Reference 12. For the purpose of this analysis, the focus is given to the fact that the
relative rotation between the hub and the arrays is controlled via a torque input. This is the torque
exchanged between the hub and the array(s), and it has the form of a PD control law:

uSA = − [KSA(α− αR) + PSA(α̇− α̇R)] â1 (4)

where α is the relative angle between hub and arrays(s) and αR is the reference angle that ensures
maximum sunlight incidence on the array surface. In this work, the center of mass of the arrays is
aligned with the spin axis, therefore the motion of the arrays does not affect the location of the CM
of the system.

Thruster Platform

The platform and thruster assembly is modeled as a rigid body with negligible mass, attached to
the lower surface of the spacecraft. The same considerations apply as for the solar arrays. In this
case, two differential equations are required to describe the dynamics of the gimbal with respect to
the hub, on top of the six equations that describe the translational motion of the CM and the rotation
of the system. A two axis gimbal connects the platform to the main hub, allowing it to perform tip
and tilt rotations with respect to the hub. As shown in Figure 2, the mount frameM is a frame fixed
to the hub, whose origin M coincides with the contact point between the lower gimbal and the hub.
Defining ν1 and ν2 the tip and tilt angles, respectively, the rotation of the platform frame F with
respect to the body-fixed mount frameM, is obtained as:

[FM] =

cos ν2 sin ν1 sin ν2 − cos ν1 sin ν2
0 cos ν1 sin ν1

sin ν2 − sin ν1 cos ν2 cos ν1 cos ν2

 (5)

5



where the tip angle ν1 is about the m̂1 axis and the tilt angle ν2 is about the f̂2 axis. The thruster-
platform assembly is modeled analogously to the solar arrays, with the exception that there are, in
this case, two degrees of freedom between the hub and the platform. The equations of motion are
once again solved using the back-substitution method. The two gimbal angles are also controlled
via torque inputs about the gimbal axes, once again according to PD control laws:

uPL = − [KPL(ν1 − νR1) + PPL(ν̇1 − ν̇R1)] m̂1 − [KPL(ν2 − νR2) + PPL(ν̇2 − ν̇R2)] f̂2. (6)

It is important to notice that the thrust vector t is defined in platform frame coordinates, as it is
applied to the platform. However, applying the back-substitution method, the force and torque re-
sulting from the thruster’s action are mapped into resulting force and torque on the whole assembly.

Equations of Motion at steady state

All the components described above interact with one-another via the exchange of forces and
torques. To correctly describe the dynamics of the system in all its parts, 14 equations of motion
are required. The equations of motion for the translation of the CM are not relevant to this problem.
The rotational equations can be simplified considering the steady-state response of the solar arrays
and thruster platform. In the assumption that there are no parasitic torques acting about the hinges
and gimbals that connect these components to the hub, both Equations (4) and (6) are proven to drop
to zero once the desired reference angles are tracked. The resulting rotational equations of motion
are:

[Itot,C ]ω̇B/N = −ωB/N × ([Itot,C ]ωB/N + [Gs]hs) +Lthr +LSRP + u (7)

where u is the control torque applied to the hub, as per Equation (1) and [Itot,C ] is, again, the
inertia of the entire system at steady state, minus the inertias of the RWs about their respective spin
axes. Under the assumption that the solar arrays and the platform reach their respective steady-state
response faster than the hub, it is valid to assume that [Itot,C ] is constant in Equation (7), and that the
system as a whole can be effectively treated as a whole rigid body. The control torques Equations (4)
and (6) do not appear because, per hypothesis, at steady state their contribution is zero. Equation (2)
provides the dynamics of the four reaction wheels. The term LSRP is the solar radiation pressure
torque acting on the system. In this work it plays the role of an unmodeled torque acting on the
system, but in a real scenario there could be multiple such disturbances. The remaining torque,Lthr,
is the torque that the thruster is producing on the system, and it is better discussed in the following
section.

It is interesting to take a closer look at the control law Equation (1) when the system converges
on the desired reference frame R. Because the reference is in first approximation static, in order
to ensure inertial pointing of the thruster, it is ωR/N = ω̇R/N = 0. Equation (1) is reduced to a
regulator control law:

u = −KσB/N − PωB/N − PKIz with z = K

∫ t

t0

σB/Rdt+ [Itot,C ]ωB/N (8)

where the gyroscopic term ωB/N ×
(
[Itot,C ]ωB/N + [Gs]hs

)
can be dropped without affecting the

asymptotic stability properties of the control law,11 and the inertial frame R is made coincide with
the inertial frame N , as it remains fixed in time. Additionally, once convergence to the reference
frame is achieved, it is by definition σB/R ≈ ωB/R ≈ 0. When this steady-state condition is met,
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the control torque is further reduced to:

uss = −PKIz = −PKIK

∫ t

t0

σB/Rdt (9)

where effectively the control torque coincides with the integral feedback term, and any dependence
on the inertia of the system is lost. This means that, once steady state is achieved, the control torque
required to stabilize the system is not affected by potential errors in the inertia tensor, which in
contrast would only affect the transient response.

CENTER OF MASS ESTIMATION

Traditional approaches

Traditional CM estimation algorithms, such as that outlined in Reference 7, rely on accelerom-
eters mounted on the spacecraft hub. The measurement model is given by the relative acceleration
theorem:

a = aCM + ω̇B/N × r + ωB/N × (ωB/N × r) + 2ωB/N × ṙ (10)

where a is the measured quantity, and r is the location of the center of mass to be estimated.
Because the CM location is assumed to not vary over time (ṙ = 0), and the system is not subject to
external forces (aCM = 0), the equation above simplifies to the linear model:

a = [H(ωB/N , ω̇B/N )]r (11)

where the angular rates and accelerations of the hub are obtained from IMU measurements. These
arguments, however, are not valid in the case of a thrust system such as the one considered in this
paper. Because the external force acting on the system is not zero, the acceleration of the CM cannot
be neglected:

aCM = t/m (12)

where t is the thrust vector, and m is the mass of the system, which are both subject to uncertainty.
Moreover, because the thruster must be aligned with a certain inertial direction, the angular rates and
accelerations of the hub are typically zero, except during transient control responses. This makes
it such that the linear model in Equation (11) is very weakly dependent on the CM location r, and
therefore very weakly observable.

Measurement Model

This work is motivated by the need to perform continuous CM estimation over the extended
periods of time during which the electric thruster is firing, without interrupting the nominal course
of operations to perform calibration slew maneuvers to compute the exact location of the CM. The
dynamics of the system when solar arrays and platform have reached steady-state response are given
in Equation (7). With respect to Figure 2, the thruster torque on the system can be modeled as:

Lthr = −rC/T × t = [t̃]rC/T (13)

where point T is the thrust application point, and it is known, and point C is the location of the CM,
which is to be estimated.
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Taking into consideration Equations (7), (12) and (13), and once again making the assumption
that the system has converged to the reference frame, the following correlation can be highlighted
between the integral feedback term and the thruster torque:

Z = [t̃]rC/T (14)

where Z = PKIz. Equation (14) constitutes a linear measurement model for the CM location,
where the thrust direction vector t is, in first approximation, known, and the integral term Z is
extracted from the flight software code segment that computes the torque delivered to the system
by the reaction wheels at steady state. Because the platform orientation changes with time, so does
the thrust application point T . For this reason, the measurement model can be better reformulated
introducing point B, the origin of the body frame B, whose coordinates are known and do not
change over time. This allows to formulate the problem in terms of the position of the CM with
respect to point B:

Z + [t̃]rT/B = [t̃]rC/B (15)

where rT/B is the location of point T with respect to pointB, and it can be measured very accurately
thanks to the reliable knowledge of the angles of the stepper motor gimbal that controls the platform.

The main source of uncertainty is the thrust vector t. While the mapping between the thruster-
platform frame F and the body frame B is known accurately, the knowledge of the thrust vector in
the Bt frame is ultimately dependent on how accurately the thruster performance is known in its own
frame Ft. This means that if the thruster is misaligned with the nominal direction, or if the magni-
tude of the thrust vector is off-nominal, this would affect the reliability of the measurement model.
This work assumes, in first approximation, exact knowledge of the thrust vector Ft. Uncertainties
in the model are discussed later.

Observability

Based on the considerations made in the previous subsection, it is possible to define the following
system: {

ẋ = [A]x
y = [C]x

(16)

where x = rC/B is the quantity to be estimated and y = Z− [t̃]rT/B constitutes the measurement,
and [C] = [t̃] the linear model. With the assumptions made in this work, the CM location does
not change over time, which means that [A] = 03×3. Analyzing the observability for a static
configuration, i.e., a case in which the platform is not moving with respect to the hub, gives the
following observability matrix:13

[O] =


C
CA

...
CAn−1

 = [t̃]. (17)

Because [t̃] is the skew-symmetric cross product matrix, it is known to have rank 2. This means
that, in such static configuration, the CM location is not fully observable. This could be inferred
thinking about the problem from a physical standpoint: when no torque is acting on the system, i.e.,
Z = 0, it means that the thruster is being fired exactly through the system’s CM. However, the exact
position of the CM remains unknown, as it could lie anywhere along the thrust line.
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However, as discussed in Reference 4, the thrust vector does not remain constant in body-frame
coordinates, because the platform is actuated in order to perform momentum dumping. As a result,
the measurement model is not static, but rather time-varying. In such case, the general observability
matrix is expressed as:14

[O] =


C(t)
d
dt
C(t)

...
dn−1

dtn−1
C(t)

 . (18)

What this means in practical terms is that if the platform is held at a constant configuration, the
problem is not fully observable. However, articulating the platform and taking measurements from
different thruster-platform configurations, makes the problem fully observable even when the CM
location has no dynamics.

Recursive Least-Squares Algorithm

The recursive LS algorithm implemented to estimate the location of the CM, effectively, coincides
with the correction step of a Kalman filter. In other words, the algorithm is equivalent to a Kalman
filter where the state has no dynamics, and therefore there is no prediction.

At every n-th measurement update, the following quantities are given:

• εn =
√
|σB/R|2 − |ωB/R|2 : convergence error

• [Cn] = [t̃] : linear model

• yn = Z + [t̃]rT/B

• [Kn] : optimal gain

• xn = rC/B : CM location estimate

• [Pn] : covariance of the state estimate.

The equations that define how to update each quantity at every step are, once again, those of the
correction step in a regular Kalman filter:13

[Kn] = [Pn][Cn]T
(
[Cn][Pn][Cn]T + [R]

)−1
(19)

xn+1 = xn + [Kn] (yn − [Cn]xn) (20)

[Pn+1] = ([I]− [Kn][Cn]) [Pn]. (21)

[R] is the measurement noise covariance, and is constant for every measurements. It is an estimate
of how much the measurement is corrupted by unmodeled perturbance.

The convergence error εn is used as a measure of whether the system has reached the steady state.
If εn it means that the system has not converged to the reference, therefore the integral termZ is not
representative of the torque that the thrust is applying on the system. For this reason, measurements
are only processed when the convergence error drops below a user-defined threshold εn < ε̄, which
is a tuning parameter for the algorithm and depends, among other things, on the gains of the attitude
control law.
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SIMULATION

Simulation Framework

attitudeReference solarArrayReferenceplatformReference

Spacecraft Dynamics

PDcontroller

solarArrays

PDcont1

platform + thruster

PDcont2 mrpFeedback

reactionWheels

inertialThrustDirection

srpTorque
Flight software

Simulated dynamic component

Simulated external force

Offline-computed request

cmEstimator

Figure 4: Simulation block diagram

The spacecraft is simulated using Basilisk Astrodynamics Simulation Framework*. Basilisk is
an open-source software framework that can simulate complex spacecraft systems and behaviors.
Its modular structure allows for building blocks, named modules, to simulate individual spacecraft
components and/or flight software processes. Modules exist as standalone segments of code, with
minimal interconnections. Exchanges of minimal information between modules limit the flow of
information to what is strictly essential.15, 16

Figure 4 illustrates the most relevant modules that are used in the simulations carried out in this
paper. The reader is referred to References 4, 17 for a detailed description of what each code block
represents within the simulation. This paper focuses on a fundamental difference between the block
diagram in Figure 4 and the equivalent block diagram in Reference 4: in this previous contribution,
the CM location is assumed to be known, the exact coordinates of the CM are pulled from the
dynamic properties of the system, and fed into the platformReference module that computes
the reference for the thruster platform. This is done for the purpose of testing the applicability of the
control law that regulates the offset between the thrust vector and the CM for momentum dumping
purposes. Realistically, however, this is a fundamentally wrong assumption, because a dynamic
property such as the CM cannot just assumed to be known.

The main contribution of this paper consists in the development of the cmEstimator module.
This new module extracts information from attitude measurements and flight software parameters,

*https://hanspeterschaub.info/basilisk
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and uses them as a measurement model to inform a leas-squares (LS) algorithm that sequentially
updates an initial guess of the CM location. The constantly-updated CM location estimate is fed to
the platformReference module, which is in charge of articulating the thruster platform based
on a best estimate of the CM location. For reasons that are better explained in the following sections,
in this work the platformReference module is run at a slower frequency of 2.8 ·10−4 Hz (one
update every hour), compared to every other flight software component, which are run at 1 Hz (one
update every second). The dynamics and the environment are run at a frequency of 10 Hz.

Spacecraft mass properties

The spacecraft hub is modeled as a cube with a 1.5 m side, a mass mhub = 750 kg and the
following inertia tensor, expressed with respect to a principal frame B:

B[Ihub] =

1531.4 −5.1 7.9
−5.1 2610.4 79.0
7.9 79.0 1998.4

 kg m2. (22)

The solar arrays are modeled as thin discs with a diameter of 7 m, whose center of mass is located
at 3.75 m from the hinges, along the rotation axis. The mass of the solar arrays is msa = 5 kg and
the inertia tensor is:

A[Isa] =

17.5 0 0
0 35 0
0 0 17.5

 kg m2 (23)

with respect to a principal frame S .

The thruster is assumed to fire continuously, with a specific impulse Isp = 1600 s and a thrust
output of t = 0.27 N. In nominal conditions, the thrust is along the platform axis F f̂z = (0, 0, 1)T .

Mass depletion is not simulated in this work: that means that, even though the thruster is fired for
extended periods of time, the mass of the system does not change. As a consequence, the location
of the CM remains constant throughout the simulation. This is obviously a simplifying assumption.
However, because the shift in the CM is primarily due to mass depletion, and because mass flow rate
of electric thrusters is typically small, it is reasonable to assume that significant CM shifts happen
over time scales that are much bigger than the time window in which the CM needs to be estimated.

NUMERICAL RESULTS

This section presents the results of the CM estimation algorithm applied to the simulation de-
scribed in Figure 4. Based on the mass and inertia properties described in the Spacecraft Modeling
section, the exact location of the CM with respect to origin B of the body frame is

BrC/B = (0.0961538, 0.0961538,−0.0108974)T . (24)

This is the quantity that needs to be estimated, and it is not known by the flight software a priori.
The estimator module needs to be seeded with an initial estimate of the CM location, which plays a
significant role in guaranteeing the success of the estimation and the stability of the simulation. The
following results are obtained with initial estimate and covariance:

x0 = (0.06, 0.13,−0.05)T [P0] =

0.0025 0 0
0 0.0025 0
0 0 0.0025

 . (25)

11



Short-term simulation, no SRP

Figure 5 shows the results of the CM estimator over a simulation time of 3 hours. Subfigure
(a) contains the errors on the three components of the CM location, computed as the difference
between the current best estimate and the truth in Equation (24), together with the respective ±3σ
bounds. Additionally, each plot shows the convergence error ε. It can be observed that the first
state update comes at around 30 seconds, when the convergence error drops below the threshold
ε < ε̄ = 10−6 and measurements start being processed. It is interesting to observe that two
measurements are enough to bring the error on all three components of the state to a near-zero value.
This is because while the problem is not fully observable with a single measurement, two linearly
independent measurement are sufficient to resolve the three-dimensional estimation problem. For
every 60-minute interval, it is possible to observe a sharp drop in the covariance and a change in the
estimation error when the convergence threshold is met, while for the remainder of the 60-minute
window these quantities appear to remain constant. In reality, they do vary during the remainder of
the time window, due to the fact that the convergence of the attitude is asymptotic, and therefore the
integral feedback term keeps evolving slightly. Looking at Figure 5 (b), it can be observed that the
post-fit residuals do not have the typical white noise look, because the measurement noise is not,
itself, randomly distributed.

More interesting information about the general behavior of the system can be inferred looking
at Figure 6. Subfigures (a) and (b) show the tracking performance of the attitude and platform
control systems as new references are generated for the platform every hour. Because the thruster’s
orientation with respect to the hub is updated every hour, the entire spacecraft has to rotate to
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Figure 5: CM estimation results
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Figure 6: Spacecraft attitude and platform performance over time

accommodate the need to point the thruster inertially. The attitude plots show some transients that
are larger for the initial reorientation maneuver, and become smaller and smaller subsequently when
the only attitude change is due to the platform reorientation. Subfigures (c) and (d) give an insight
on the momentum being accumulated on the reaction wheels. According to the control law outlined
in Reference 4, the platform reference angles are computed based on the combination of most up-
to-date knowledge of the CM location, and the total net momentum accumulated on the RWs. The
control law will, therefore, offset the platform in order to use the thruster to dump the momentum
on the wheels.

Long-term simulation, with SRP

It is interesting to observe what these results look like when the simulation is run for an extended
period of time. Figures 7 and 8 show the same results over a time window of 3 days With SRP acting
on the system. Figure 7 shows that even though the post-fit residuals are small, there is a bias on the
estimated components of the CM location. This happens despite adding adding measurement noise
covariance that is coherent with the magnitude of the SRP torque. Furthermore, it can be observed
that none of the three components of the state settle on a constant value, but are rather affected
by a long-term drift. The plots in Figure 8, however, show that despite the bias in the estimate.
Similarly, the platform angles settle and the reaction wheel speeds do not saturate. Over the long-
term simulation it is possible to observe that, coherently with the results shown in Reference 4, the
RW speeds evolve in order to build momentum about the steady-state thrust vector direction, which
is the direction about which momentum cannot be dumped.
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Figure 7: CM estimation results

The steady-state bias can be explained by factoring the SRP torque into the model, and introduc-
ing point C∗:

Z = [t̃]rC/T +LSRP

Z = [t̃]
(
rC/C∗ + rC∗/B + rB/T

)
+LSRP

Z + [t̃]
(
rT/B + rC∗/C

)
−LSRP = [t̃]rC∗/B

(26)

where, at steady state, the measurement is affected by a constant bias. Due to the nature of the
control law that actuates the platform, at steady state the thruster constantly dumps the momentum
on the wheels. Consequently, in the presence of SRP, the thruster is not aligned with the center of
mass, but instead with point C∗, such that the thruster torque is opposite to the SRP torque, minus
the component along the thrust direction:

− rC∗/C × t = LSRP −
(
LSRP · t̂

)
t̂. (27)

Combining Equations (26) and (27) gives:

Z + [t̃]rT/B −
(
LSRP · t̂

)
t̂︸ ︷︷ ︸

y

= [t̃] rC∗/B︸ ︷︷ ︸
x

(28)

which constitutes the effective measurement model in the presence of SRP torque. In the absence
of SRP, Equation (28) coincides with Equation (15), and the result of the estimation is the actual
CM location. Conversely, when SRP is acting on the system, the result of the estimation is the
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Figure 8: Spacecraft attitude and platform performance over time
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location of point C∗. When firing the thruster through point C∗, two out of three component of
the SRP torque are neutralized, thus ensuring that momentum is constantly being dumped by the
system. Figure 8 (d) shows, in fact, the different offsets between the thrust and the real center of
mass (∆θ1), which shows a steady-state bias, and between the thrust vector and point C∗ (∆θ2),
which converges to zero at steady state.

CONCLUSIONS

This paper outlines a very simple algorithm to estimate the location of the center of mass of a
spacecraft. This algorithm works in the presence of a gimbaled thruster that is consistently deliver-
ing a force and torque to the spacecraft system. This algorithm aims to close the loop on the problem
of orienting the thrust vector in body-frame coordinates, for which knowledge of the CM location
is required. This paper shows how the gimbaled thruster, which is the primary reason for CM es-
timation, can also be leveraged to deliver a solution to the CM estimation problem. Shortcomings
of the algorithm are the many inaccuracies of the measurement model, where external forces can
significantly corrupt torque measurements. Numerical simulations have shown that the CM can in-
deed be estimated accurately in the absence of unmodeled external disturbances. Specifically, the
non-observable nature of the static problem is overcome by the articulating thruster, as the ability
to thrust in different direction provides a set of linearly independent measurements that make the
problem observable. Interesting results appear when external disturbances such as SRP are added to
the system. While adding coherent measurement noise does not provide a good fix for such a biased
measurement error, the combined action of the estimation algorithm with the platform control law
is shown to drive the system to a stable configuration where momentum is being dumped contin-
uously. The results suggest that, in the presence of a constant, unmodeled torque, the algorithm
estimates not the location of the CM, but rather the location of a point through which the thruster
torque cancels the unmodeled torque. This result is interesting and valuable because, despite not
yielding the correct CM location, it drives the system to stability. This property can also be lever-
aged in the presence of a thruster misalignment, where incorrect knowledge of the thrust vector acts
as an unmodeled disturbance and ultimately does not affect the ability to stabilize the system.
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