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Abstract—Advancements in space technology are enabling more
sophisticated spacecraft designs with time-varying spacecraft
configurations to account for varying power considerations. For
example, articulating solar arrays that rotate about an axis fixed
with respect to the hub can track the Sun at all times. Electric
thrusters also have become omnipresent in modern spacecraft
designs. Because these thrusters operate over long time win-
dows, and the thrust vector must at all times be aligned with
a specific inertial orientation, the optimal spacecraft attitude
reference needs to accommodate the thruster too. Multiple
pointing constraints pose a challenge to the attitude reference
generation problem, because the attitude is characterized by
three degrees of freedom, whereas the different constraints are
often described by overdetermined systems of multiple equa-
tions. This paper leverages the different attitude parameter-
izations to provide a mathematical description of the solution
spaces of the constraints outlined above. When the intersection
space is nonzero it is possible to compute a solution that satisfies
multiple constraints simultaneously. Conversely, an ordered list
of pointing priorities is required in order to enforce the most
important requirements, and reformulate the subsequent ones
in terms of constrained optimization problems.
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1. INTRODUCTION
Recent advancements in spacecraft technology have enabled
exciting new mission concepts to be designed. One such
advancement that has slowly taken over the design for space
missions is electric propulsion (EP), which has established
itself as the leading technology for Earth-orbiting spacecraft
first, and for missions to the inner Solar System later [1].
EP is characterized by a higher specific impulse, which
means that an electric thruster (ET) can accelerate propellant
to higher velocities, despite a smaller instantaneous thrust
output, ultimately yielding a higher impulse-to-mass ratio [2].

Successful applications of electric thrusters in interplanetary
missions are NASA’s Deep Space 1, launched in 1998 [3],
JAXA’s Hayabusa 1 and 2 missions, launched in 2003 and
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2014 respectively [4], [5], ESA’s Smart-1 mission, launched
in 2003 [6], NASA’s Dawn mission, launched in 2007 [7],
and the ESA-JAXA joint mission Bepi Colombo, launched
in 2018 [8]. Another instance of deep-space mission that
will involve electric propulsion is NASA’s Psyche mission,
scheduled to launch in late 2023 [9]. Some of the more
recent mission designs have explored the idea of mounting
the electric thruster on a dual-gimbal mechanism that allows
control of the direction of the thrust vector with respect to
the spacecraft hub. In principle, this is motivated by the need
to adjust the thrust direction based on the system’s center of
mass, which changes location over time due to mass depletion
[7], [10]. Recent studies [11] and mission designs [9] have
explored the possibility of firing the dual-gimballed ET at an
offset with respect to the system’s center of mass, in order
to continuously dump the momentum accumulated on the
system due to external perturbations.

Except for the Smart-1 and Bepi Colombo missions, which
had the Moon and Mercury as their respective targets, all
of the aforementioned missions involve the exploration of
bodies in the asteroid belt. This marks the bottleneck for the
applicability of EP to interplanetary missions, primarily due
to the high power supply needed by the thruster to operate. In
all of the above, power is supplied through solar arrays (SAs).
However, the ability of the arrays to harvest solar power
dramatically decreases with the distance from the Sun. As
a consequence, solar energy is not a feasible option to power
electric propulsion systems beyond the asteroid belt. Mission
concepts exist that involve the exploration of the outer planets
and their moons using radioisotope electric propulsion, where
the thruster is supplied by radioisotope thermoelectric gener-
ators. Such mission designs remain, however, only theoretical
at this stage [12], [13], [14]. Attitude is significantly impacted
during the long time windows when an ET operates, because
the thrust vector must at all times be aligned with a specific
inertial orientation that is the result of trajectory planning.

Distance from the Sun is typically what regulates the sizing
of the SAs. At large distances, these can reach up to 20 m2 of
surface area each [7]. However, another parameter severely
affects the ability of the spacecraft to generate power: the
inclination of sunlight with the power-generating surface of
the array. For this reason, designs involving gimbaled SAs are
becoming more and more common. Connecting the array to a
one-axis gimbal gives an additional degree of freedom (DoF)
that allows the array to track the direction of sunlight [3], [6],
[15]. For hard-mounted arrays, in order to ensure maximum
power generation, two out of three DoFs that describe the
attitude are locked in order to have the arrays perpendicular
to incident sunlight. Rotating SAs, instead, only require the
rotation axis to be perpendicular to incident sunlight. This, in
contrast, locks only one DoF.
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These multiple pointing constraints pose a challenge to the
attitude reference generation problem. Attitude is character-
ized by three DoFs, and just the two pieces of equipment
described lock, in total, several DoFs. Additionally, when
the thrust direction in the body frame is time-varying, it is not
trivial to determine whether multiple pointing constraints can
be enforced simultaneously at all times. Moreover, spacecraft
often present additional, softer constraints such as thermal-
sensitive surfaces or equipment that must be kept away from
the Sun, and which add another layer of complexity to the
optimal attitude reference definition problem.

This paper leverages the Classic Rodrigues Parameters (CRP)
attitude parameterization set to provide a rigorous mathe-
matical description of the solution spaces of each type of
constraint outlined above. Emphasis is given to the solution
spaces for the constraints. In certain cases this intersection
space is nonzero, and it is possible to compute a solution
that satisfies multiple constraints simultaneously. Conversely,
when such intersection space is empty, an ordered list of
pointing priorities is required in order to enforce the most
important requirement, and reformulate the subsequent ones
in terms of constrained optimization problems. The ultimate
goal of this paper is to provide a fully analytical formulation
of the attitude reference generation problem as a function
of spacecraft geometric properies and sensor measurements.
This analytical formulation is used to deliver a closed-form
solution that optimizes multiple requirements simultaneously
and whose simplicity makes it suitable for on-board imple-
mentation.

This paper starts with Section 2, where the pointing require-
ments described above are defined analytically. Section 3
describes the space of admissible solutions when the desire
is to apply all those requirements simultaneously, in order
of priority. Section 4 builds on the results of Section 3 to
describe how the solution space expands in the case that the
tight power requirement can be relaxed. Section 5 describes
how to generate the reference for the rotating solar arrays,
also depending on the power requirements. Lastly, conclu-
sions are drawn in Section 6.

2. POINTING REQUIREMENTS DEFINITION
The goal of this paper is to define a reference frameR for the
spacecraft, which satisfies a series of pointing requirements.
The two-letter notation [RN ] describes the direction cosine
matrix (DCM) that maps a vector from the inertial frame N
to the reference frame R. The left superscript Bê indicates
the coordinate frame in which the vector ê is expressed, in
this case the body-fixed frame B. Each individual pointing
requirement analyzed in this paper can be expressed as an in-
equality that describes the desired minimum or maximum an-
gle between a certain unit direction vector in body/reference-
frame coordinates, and another unit direction vector in inertial
frame coordinates:

−1 ≤ c1 ≤ Rê1 · [RN ]Nê2 ≤ c2 ≤ 1. (1)

The following types of pointing requirements, ordered by
priority, are considered in this paper:

1. Vector alignment: this is the case in which, for exam-
ple, the body-frame thrust direction must be aligned with
an inertial requested direction. Alternatively, it can be the
case where the body-fixed high-gain antenna (HGA) must be
aligned along the direction of Earth relative to the spacecraft
for telecommunication purposes. Referring with ĥ1 to the

body vector, and with ĥR1 to the inertial request vector, this
requirement is expressed as:

R
ĥ1 · [RN ]

N
ĥR1 = 1, (2)

where
R
ĥ1 =

B
ĥ1 under the assumption that the body

frame will ultimately converge to the reference frame. This
vector alignment alone locks two out of the three DoFs that
characterize an attitude problem. Therefore, when present,
it only leaves the space of rotations about the ĥR1 axis to
optimize for other potential pointing requirements.

2. Solar array Sun incidence: under the assumption of ro-
tating solar arrays, this requirement is dictated by power
requirements. Let’s define ŝ as the unit direction vector of
the Sun’s position relative to the spacecraft, and with â the
unit direction of the solar array drive axis (SADA) in the body
frame, about which the arrays can rotate. In the presence of
two SAs whose drive axes are opposite with respect to one-
another, it is sufficient to pick either as a valid description for
â without invalidating any of the results shown in this paper.
The description does however fail when the SADAs are not
collinear. The pointing requirement for the solar arrays is
described by: ∣∣∣Râ · [RN ]Nŝ

∣∣∣ ≤ sin γ, (3)

where γ indicates the incidence angle of sunlight, measured
from the normal to the power-generating surface of the solar
arrays, as shown in Figure 1. While it is out of the scope
of this paper to go into the details of what the optimal γ is
for the different phases of a space mission, it is relevant to
acknowledge that this parameter is likely to vary depending
on the relative position of the spacecraft and the Sun. Because
irradiance decreases quadratically with the distance from the
Sun [16], γ → 0 is the desired outcome in outer regions of the
Solar System. Substituting this condition into Equation (3)
results in:

Râ · [RN ]Nŝ = 0, (4)

which is the condition for maximum power generation. This
condition is equivalent to stating that the SADA must be
perpendicular to the direction of incoming sunlight, and it
locks one degree of freedom for the spacecraft attitude. In
the inner regions of the Solar System it is possible to generate
more power with suboptimal illumination conditions, due to
the higher irradiance experenced by the spacecraft. In this

Figure 1: Sun incidence on array power-generating surface
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case, the condition 0 ◦ < γ < 90 ◦ substituted into
Equation (3) results in an even larger solution space, which
can accommodate additional pointing requirements.
3. Keep-in/out zone: this third constraint is conceptually
analogous to the first, but the alignment requirement is re-
laxed. This category describes a variety of requirements,
such as thermally-sensitive surfaces or optical instruments
that need to be kept at a certain angular distance from the
Sun, or a low-gain antenna (LGA) that must point at Earth
within an certain angular distance. The problem is formulated
similarly, with a body-frame direction ĥ2, representing the
instrument, and an inertial-frame direction ĥR2 that describes
the axis of the conical keep-in or keep-out zone. The pointing
requirement is described by:

R
ĥ2 · [RN ]

N
ĥR2 ≥ cos θ, (5)

where θ describes the half angle of the cone. Note that
Equation (5) most intuitively describes a keep-in zone, but it
can equivalently describe a keep-out zone when substituting
ĥR2 with the opposite vector −ĥR2, and θ with π − θ.

3. INERTIAL POINTING WITH MAXIMUM
POWER

This subsection investigates the compatibility of require-
ments 1, 2, and 3, when applied simultaneously. This problem
describes the case of a spacecraft like Psyche, where the
thrust must be aligned at all times with the inertial requested
vector, and at the same time the spacecraft must be able
to generate as much power as possible. Additionally, it is
desirable to point a thermally sensitive surface away from the
Sun, to ensure heat dissipation. The requirements 1, 2, and 3
are therefore presented in order of importance.

The goal of this section is to define a reference frame R that
satisfies the pointing constraints. This is done by means of
two consecutive rigid body rotations involving an intermedi-
ate frame D:

[RN ] = [RD][DN ]. (6)

Thruster alignment

Enforcing requirement 1 is relatively straightforward. The
principal rotation parameters (PRPs) are a set composed of a
unit direction principal rotation vector (PRV) and a principal
rotation angle (PRA), and they fully describe the relative
attitude between two frames. For the intermediate frame
DCM [DN ] they are obtained as:

Nêφ =

N
ĥ1 ×

N
ĥR1∣∣∣Nĥ1 ×
N
ĥR1

∣∣∣ (7a)

φ = arccos
(N

ĥ1 ·
N
ĥR1

)
, (7b)

where the body-frame heading is preemptively mapped from
current B-frame coordinates to N -frame coordinates. From
Equation (7) the DCM [DN ] is readily computed. See
Ref. [17] for a full description of PRPs. The DCM [DN ]
so obtained describes a rotation from the inertial frame to a
frame D in which the pointing requirement on the thruster is
satisfied.

Maximum power generation

The space of rotations about the thrust axis describes a set of
frames, all compliant with the thruster pointing requirement.
It is within this space that the second intermediate DCM [RD]
is to be found, in order to maximize the incidence of sunlight
on the solar arrays. The PRV for the second intermediate
rotation [RD] coincides with the thruster heading:

Rêψ =
R
ĥ1 =

R
ĥR1, (8)

from which it is possible to define the CRP set (or Gibbs
Vector):

q = tan

(
ψ

2

)
Rêψ = t · Rêψ. (9)

The expression of the DCM in terms of the CRP set is [17]:

[RD] =

(
(1− qTq)[I3×3] + 2qqT − 2[q̃]

)
1 + qTq

, (10)

which is a function of the variable t = tan (ψ/2). Maxi-
mizing power generation is equivalent to requiring that the
sunlight is perpendicular to the SADAs, or as close to per-
pendicular as possible. This translates into minimizing the
expression on the left-hand side of equation Equation (3)

|f | =
∣∣∣Râ · [RD][DN ]Nŝ

∣∣∣ =
∣∣∣Râ · [RD]Dŝ

∣∣∣ . (11)

Using the DCM expression in Equation (10), the quantity f
can be expressed as:

f(t) =
At2 +Bt+ C

1 + t2
(12)

where:

A = 2
(
Dŝ · Rêψ

)(
Râ · Rêψ

)
− Dŝ · Râ (13a)

B = 2Râ ·
(
Dŝ× Rêψ

)
(13b)

C = Dŝ · Râ. (13c)

In Equation (13) it is, again, Râ = Bâ and Rêψ = Bêψ ,
assuming that the body frame will eventually converge to
the reference frame. The coefficients A, B, and C are
not entirely independent from one-another. C is the scalar
product between two direction vectors, therefore it is:

−1 ≤ C ≤ 1. (14)

B is two times the triple product of three unit direction
vectors, which is known to be equal to the volume of par-
allelepiped which has such vectors as its sides. Because the
angle between two of these vectors is already bound by C, it
is:

−2
√

1− C2 ≤ B ≤ 2
√

1− C2. (15)

Lastly, A is bound by functions of both B and C, due to the
scalar products that appear in its formulation. It can be proved
that:

B2

2
− C − 2 ≤ A ≤ 2− C − B2

2
. (16)

The denominator in Equation (12) is never zero, making
the expression always nonsingular, and the numerator is a
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quadratic expression. Different types of solutions are sought
depending on the discriminant ∆ = B2 − 4AC of this
quadratic expression:

• ∆ ≥ 0: the equation f(t) = 0 has two solutions. This
means that maximum power condition is achievable, with
incoming sunlight exactly perpendicular to the solar arrays’
power-generating surface. The corresponding principal rota-
tion angles (PRA) are obtained as:

ψ1/2 = 2 arctan

(
−B ±

√
B2 − 4AC

2A

)
. (17)

• ∆ < 0: the equation f(t) = 0 has no real solutions.
The optimal attitude is given by the PRA for which |f(t)|
is minimum. To find such value, let’s consider the derivative
of f(t) with respect to t:

f ′(t) =
−Bt2 + 2(A− C)t+B

(1 + t2)2
. (18)

The absolute minimum and maximum for the expression
f(t) are found equating f ′(t) to zero, which gives the two
solutions:

ψ1/2 = 2 arctan

(
A− C ±

√
(A− C)2 +B2

B

)
. (19)

Note that the term under the square root in Equation (19) is
always non-negative, therefore the two solutions are always
real. In this case, however, the two solutions ψ1 and ψ2 are
not equivalent: one corresponds to the maximum for f(t),
and the other one to the minimum. In order to maximize
power generation, only the solution for which |f(t(ψ))| is
minimum should be chosen.

The optimal value for ψ can be combined into Equations (9)
and (10) in order to compute [RD], and ultimately the DCM
between inertial frame and optimal reference [RN ].

Attention should be paid to the fact that there is no a priori
knowledge on the coefficients A, B, and C, and while
their definition is always nonsingular, singularities can be
encountered in Equations (17) and (19) when some of these
coefficients are zero. Algorithm 1 shows how to compute the
correct PRA ψ in all circumstances, including cases in which
Equations (17) and (19) are singular.

Keep-out zone

The keep-out zone for the thermal-sensitive panel is ex-
pressed by Equation (5), where

R
ĥ2 is the panel-normal head-

ing in body/reference frame coordinates, and
N
ĥR2 = −Nŝ.

Following the same procedure outlned for Equations (12)
and (13), one obtains the expression:

g(t) =
Dt2 + Et+ F

1 + t2
≥ cos θ (20)

where:

D = Dŝ ·
R
ĥ2 − 2

(
Dŝ · Rêψ

)(R
ĥ2 · Rêψ

)
(21a)

E = 2
R
ĥ2 ·

(
Rêψ × Dŝ

)
(21b)

F = −Dŝ ·
R
ĥ2. (21c)

Algorithm 1 ψ = optimalPRA(A,B,C)

∆ = B2 − 4AC
if A = 0 then

if B = 0 then
ψ = π

else
ψ = −2 arctan(C/B)

end if
else

if ∆ < 0 then
if B = 0 then

if |A| > |C| then
ψ = 0

else
ψ = π

end if
else

q = A−C
B

t1 = q +
√

1 + q2

t2 = q −
√

1 + q2

f1 =
|At21+Bt1+C|

1+t21

f2 =
|At22+Bt2+C|

1+t22
if f1 < f2 then

ψ = 2 arctan(t1)
else

ψ = 2 arctan(t2)
end if

end if
else

ψ = 2 arctan

(
−B±

√
B2−4AC
2A

)
end if

end if
return(ψ)

However, the previous subsection describes how to compute
the PRA in order to ensure that the resulting reference at-
titude yields the maximum power. It has been shown that
there can be two different scenarios, depending on whether
∆ = B2 − 4AC is negative or not. In the first case, there is
only one ψ value that maximizes the generated power. In
this circumstance it is not possible to further optimize the
reference attitude to accommodate the requirement on the
thermal-sensitive platform without compromising the ability
to generate power, which is already suboptimal. Conversely,
when ∆ > 0, two solutions exist. Because these two solu-
tions are equivalent in terms of power generation, the solution
for which g(t(ψ)) ≥ cos θ should be chosen. In the scenario
when neither solution satisfies the keep-out constraint, the
best solution is the one for which g(t(ψ)) is higher.

Performance Discussion

An interesting result is derived exploring the space of pos-
sible relative orientations between the unit direction vectors
involved in this analysis. Let’s define β and δ as the angles
between the two body-frame directions, and the two inertial-
frame directions, respectively, and γ as the incidence angle
on the solar arrays, as defined in Figure 1:

β = arccos
(
Bâ ·

B
ĥ1

)
(22a)

δ = arccos
(
Nŝ ·

N
ĥR1

)
(22b)

γ = arccos
(
Râ · Rŝ

)
. (22c)

Figure 2 shows the angle γ(β, δ) for every combination of
(β, δ) ∈ [0, π] × [0, π], where γ is derived after computing
the optimal reference R applying Algorithm 1. The central
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plateau where γ = 0 represents the cases for which ∆ ≥ 0
and two solutions exist for the optimal reference attitude.
Conversely, the four regions in which 0 < γ ≤ π/2 represent
suboptimal configurations in which the optimal illumination
on the solar arrays cannot be achieved simultaneously with
the thruster pointing constraint (∆ < 0). The relation
between the angles expressed in Equation (22) is:

γ =



π

2
− β − δ if 0 ≤ β ≤ π

2
and δ <

π

2
− β

−π
2
− β + δ if 0 ≤ β ≤ π

2
and δ > β +

π

2

−π
2

+ β − δ if
π

2
< β ≤ π and δ < β − π

2

β + δ − 3

2
π if

π

2
< β ≤ π and δ >

3

2
π − β

0 otherwise.
(23)

Figure 2: Sun incidence angle on array power-generating
surface

Given the parameterization of the problem showed in Equa-
tion (13), where the coefficients A, B, and C, depend on the
relative headings of two vectors Râ and Dŝ with respect to
Rêψ . Because each relative heading is characterized by two
DoFs, the entire formulation is inherently four-dimensional.
However, according to the results in Figure 2, the power
perfomance of the spacecraft parameterized by the resulting
incidence angle γ only depends on the two relative angles β
and δ.

Based on this results, considerations can be made on the
geometry of the spacecraft. For example, Figure 2 shows that
when β = π/2 the optimal illumination condition γ = 0 is
always achievable. In a design where the thruster is fixed with
respect to the body frame, it is desirable to have the thrust
vector perpendicular to the SADA axis: this ensures that the
spacecraft can generate the maximum amount of power at all
times while thrusting in the right direction. However, when
the pointing requirement is driven by a movable component in
the B-frame, like the gimbaled thruster, β becomes a function
of time, and consequently the optimum γ depends also on δ,

i.e. the angle between the requested pointing direction and
the Sun.

4. INERTIAL POINTING WITH
LOWER-BOUNDED POWER GENERATION

This section expands on the earlier results in the follow-
ing manner. The same set of constraints is considered,
but the strict requirement on maximum power generation
is relaxed. For a mission to the outer Solar System, the
power requirements would be defined based on the arrival
conditions, where illumination is worse. However, during
flybys of the inner planets, it may not be necessary to use
the full power generation capability of the spacecraft and,
conversely, it might be more important to ensure that the
spacecraft is dissipating heat efficiently. This sections starts
from the same initial assumptions of the former one, where
the thruster alignment is the main driving requirement for
attitude reference generation. Once again, the solution is
obtained as the product of two intermediate DCMs as shown
in Equation (6). Because power-related considerations do
not affect the thruster alignment, the first intermediate DCM
[DN ] is obtained analogously.

Lower-Bounded Power Generation

When the spacecraft is closer to the Sun, the irradiance on the
arrays increases. As a result, more power can be harvested
even if the incidence angle of the light on the arrays is
not optimal. In such case, the requirement in Equation (3)
becomes:

−K ≤ f(t) ≤ K (24)
where Equations (12) and (13) still apply, and K = sin γ
is a parameter that describes how far off from perpendicular
the array surface and sunlight can be while still harvesting
a sufficient amount of power. In practice, K constitutes the
lower admissible bound on the amount of power that can be
generated by the spacecraft in that position in orbit. Because
0 ≤ γ ≤ π/2, it is 0 ≤ K ≤ 1, where K = 0 means that the
lower bound is the maximum power requirement described
in the previous section. In practical terms, a limit on how
muchK should be increased is posed by the shadowing of the
spacecraft onto the arrays, which occurs when the SADAs are
not perfectly orthogonal to the sunline and further degrades
the power-generating performance. Because this issue is
specific to the spacecraft design, it is not considered in the
following analysis.

Before diving into the discussion of the problem presented by
Equation (24), a simplifying assumption is made. No a priori
knowledge is given on the coefficients A, B, and C. How-
ever, it is possible to assume, without loss of generality, that
A > 0. This is true because, even whenA < 0, Equation (24)
can be rewritten in an equivalent form where the coefficient of
the t2 term is positive. With this consideration, Equation (24)
is rewritten as the system:{

(A+K)t2 +Bt+ (C +K) ≥ 0
(A−K)t2 +Bt+ (C −K) ≤ 0

(25)

with A ≥ 0 and 0 ≤ K ≤ 1. To analyze the solutions of this
system it is useful to define the functions:

y(t) = At2 +Bt+ C (26a)

y+(t) = (A+K)t2 +Bt+ (C +K) (26b)

y−(t) = (A−K)t2 +Bt+ (C −K) (26c)
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Figure 3: Solution space with A = 0.777, B = −1.112, C = −0.826

which describe three parabolas as functions of t. It is easy to
show that these three parabolas never intersect, except for the
case K = 0, for which they coincide. Moreover, it is true
for any real value of t, that:

y−(t) ≤ y(t) ≤ y+(t) (27)

Analytical methods can be derived to compute the solution
space for the system in Equation (25). These methods are
differentiated depending on the sign of the discriminant of the
base parabola y(t). The following discriminants are defined
for the three parabolas in Equation (26):

∆ = B2 − 4AC (28a)

∆+ = B2 − 4(A+K)(C +K) (28b)

∆− = B2 − 4(A−K)(C −K). (28c)

• Case ∆ ≥ 0: the equation y(t) = 0 has two solutions. It is
interesting to determine for which vaules ofK y+(t) = 0 and
y−(t) = 0 also have solutions. Such values are determined
by the solution of the following inequality:

∆± = B2 − 4(A±K)(C ±K) ≥ 0

= −
[
4K2 ± 4(A+ C)K −B2 + 4AC

]
≥ 0

(29)

whose discriminant, as a function of the variable K, is:

∆K = 16
[
(A− C)2 +B2

]
≥ 0 (30)

and whose critical K values are:

K+
1/2 =

−(A+ C)±
√

(A− C)2 +B2

2
(31a)

K−1/2 =
+(A+ C)±

√
(A− C)2 +B2

2
. (31b)

For both these pairs of solutions it is true that:

K±1 ·K
±
2 = −1

4
(B2 − 4AC) ≤ 0, (32)

from which it can be concluded that each pair of solutions
consists of a positive and a negative solution. Based on this
result, it is concluded that the conditions for y+(t) = 0 and
y−(t) = 0 to have each two solutions are, respectively:

K ≤
√

(A− C)2 +B2 − (A+ C)

2
(33a)

K ≤
√

(A− C)2 +B2 + (A+ C)

2
. (33b)

Defining the following zeroes of Equation (26):

t+1 =
−B −

√
∆+

2(A+K)
t+2 =

−B +
√

∆+

2(A+K)
(34a)

t−1 =
−B −

√
∆−

2(A−K)
t−2 =

−B +
√

∆−

2(A−K)
(34b)

it is possible to visualize the problem represented by Equa-
tion (25) in Figure 3, where the solution space is highlighted
in green. Attention should be paid to the fact that the
parabola y−(t) changes its concavity depending on the sign
of (A − K), and the solution space changes accordingly, as
highlighted by the differences between Subfigures (a) and (b).
In the event of K = A, y−(t) degenerates into a line, and
t−2 → ∞. Mapping the solution space in t to the respective
PRA gives the range of angles ψ that satisfy Equation (25).
Figure 4 shows such solution space for varying values of K,
where it is observed that, for K = 0, the solution space
degenerates into the two individual solutions presented in
Equation (17).

6



Figure 4: Solution space with A = 0.777, B = −1.112,
C = −0.826, 0 ≤ K ≤ 1

• Case ∆ < 0: the equation y(t) = 0 has no real solutions.
Based on Equation (27) it is true that 0 < y(t) ≤ y+(t),
therefore the system in Equation (25) reduces to:

y−(t) = (A−K)t2 +Bt+ (C −K) ≤ 0. (35)

The discriminant of this equation is expressed by Equa-
tion (29), with the negative sign. The two solutions K−1/2
are those in Equation (31b). However, in this case it is:

K−1 ·K
−
2 = −1

4
(B2 − 4AC) > 0, (36)

from which it follows that the two critical K values have
the same sign. It can be concluded that y−(t) = 0 has no
solutions for K < K−1 , two solutions for K−1 ≤ K ≤ K−2 ,
and infinite solutions for K > K−2 . This result allows to
solve Equation (35) and, mapping the solutions for t to the
respective PRV values ψ, the solution space in Figure 5 is
obtained. Note that, for K ≤ K−1 = 0.454, the solution
from Equation (19) is chosen to ensure that |f(t(ψ))| is
minimum. Analogously, this choice drives the SADA drive
axis as close to perpendicularity to sunlight as possible. For
K ≥ K−2 = 0.891, infinite solutions exist.

Algorithm 2 shows how to derive the solution space Ψ for
any combination of A, B, C, and K, and obtain the solution
space plots in Figures 4 and 5.

Keep-out zone

For the keep-out constraint, the Equations (20) and (21) still
apply. Specifically, Equation (20) can be rewritten in the
form:

z(t) = (D −Q)t2 + Et+ (F −Q) ≥ 0, (37)

Figure 5: Solution space with A = −0.863, B = −0.216,
C = −0.483, 0 ≤ K ≤ 1

where Q = cos θ. The solution set Θ of this inequality can
be computed using Algorithm 3. When the set that satisfies
Equation (37) is the empty set, the solution computed by
Algorithm 3 coincides with the value for which |z(t)| is
minimum, i.e., the computed PRA gets the heading ĥ2 as far
from the Sun direction as possible.

The final solution of the attitude reference generation prob-
lem as a whole is, in this case, the intersection space of Ψ
and Θ. A non-empty intersection space contains the solutions
that best satisfy all three pointing requirements in oder of
priority. Conversely, an empty solution space means that
it is not possible to satisfy the second and third constraint
simultaneously. In this circumstance, it is recommendable to
choose ψ such that:

ψ ∈ Ψ : ψ = arg min(dist(Ψ,Θ)) (38)

which means, ψ is the element of the set Ψ that is closest to
the set Θ.

5. SOLAR ARRAY REFERENCE GENERATION
Maximum power generation

Once the reference attitudeR is computed, defining the rota-
tion angle for the solar arrays is a relatively trivial problem.
The rotation angle of the arrays α is defined with respect to
a zero direction, for which α = 0. Such direction b̂ is fixed
in body-frame coordinates and is, by definition, orthogonal
to the SADA axis â. The goal of this section is to identify
the reference direction b̂R along which the power-generating
surface of the solar arrays needs to be pointed. Under the
assumption that the requirement is to generate as much power
on the solar arrays as possible, the reference b̂R direction
needs to be a linear combination of the SADA axis â and
the Sun direction vector ŝ, and simultaneously orthogonal to

7



Algorithm 2 Ψ = SolutionSpaceLB(A,B,C,K)

if A < 0 then
A = −A
B = −B
C = −C

end if
∆ = B2 − 4AC
∆+ = B2 − 4(A+K)(C +K)
∆− = B2 − 4(A−K)(C −K)

ψ+
1 = 2 arctan

(
−B−

√
∆+

2(A+K)

)
ψ+

2 = 2 arctan
(
−B+

√
∆+

2(A+K)

)
ψ−1 = 2 arctan

(
−B−

√
∆−

2(A−K)

)
ψ−2 = 2 arctan

(
−B+

√
∆−

2(A−K)

)
ψ− = 2 arctan

(
A−C
B

)
if ∆ > 0 then

if K > A then
if ∆+ ≥ 0 and ∆− ≥ 0 then

Ψ = [ψ−1 , ψ
+
1 ] ∪ [ψ+

2 , ψ
−
2 ]

else if ∆+ < 0 and ∆− ≥ 0 then
Ψ = [ψ−1 , ψ

−
2 ]

else
Ψ = ∅

end if
else if K = A then

if ∆+ > 0 then
Ψ = [−π, ψ+

1 ] ∪ [ψ+
2 , ψ

−]
else

Ψ = [−π, ψ−]
end if

else
if ∆+ ≤ 0 and ∆− ≥ 0 then

if B < 0 then
Ψ = [−π, ψ−2 ] ∪ [ψ−1 , ψ

+
1 ] ∪ [ψ+

2 , π]
else

Ψ = [−π, ψ+
1 ] ∪ [ψ+

2 , ψ
−
2 ] ∪ [ψ−1 , π]

end if
else if ∆+ ≤ 0 and ∆− ≥ 0 then

Ψ = [−π, ψ−2 ] ∪ [ψ−1 , π]

else if ∆+ > 0 and ∆− < 0 then
Ψ = [−π, ψ+

1 ] ∪ [ψ+
2 , π]

else
Ψ = [−π, π]

end if
end if

else
ψmin = optimalPRA(A,B,C)
if K < A then

if ∆− < 0 then
Ψ = [ψmin, ψmin]

else
Ψ = [ψ−1 , ψ

−
2 ]

end if
else if K = A then

Ψ = [−π, ψ−]
else

Ψ = [−π, ψ−2 ] ∪ [ψ−1 , π]
end if

end if
return(Ψ)

â,. This gives the following:

R̂
bR =

Rŝ− (Râ · Rŝ)Râ√
1− (Râ · Rŝ)2

. (39)

From Equation (39) it is easy to show that b̂R ⊥ â and
b̂R · ŝ = cos γ, where γ is consistent with the definition
given in Equation (3). Therefore for γ = 0, assuming that a
solution that satisfies the attitude requirement exists, results
in b̂R ‖ ŝ, that is the arrays are directly facing the Sun. The

Algorithm 3 Θ = SolutionSpaceKO(D,E, F,Q)

θmin = optimalPRA(D,E, F )
∆KO = D2 − 4(D −Q)(F −Q)
if D = Q then

if E = 0 and F ≥ Q then
Θ = [−π, π]

else if E = 0 and F < Q then
Θ = [θmin, θmin]

else if E > 0 then
Θ =

[
2 arctan

(
Q−F
E

)
, π
]

else
Θ =

[
−π, 2 arctan

(
Q−F
E

)]
end if

else
if ∆KO < 0 and D > Q then

Θ = [−π, π]
else if ∆KO < 0 and D < Q then

Θ = [θmin, θmin]
else

θ1 = 2 arctan

(
−E−

√
∆KO

2(D−Q)

)
θ2 = 2 arctan

(
−E+

√
∆KO

2(D−Q)

)
if D > Q then

Θ = [−π, θ1] ∪ [θ2, π]
else

Θ = [θ2, θ1]
end if

end if
end if
return(Θ)

reference angle for the solar arrays is:

αR = arccos(b̂ · b̂R). (40)

Upper-Bounded Power Generation

The case may exist where, due to close proximity to the
Sun, the desire is to limit the exposure of the arrays to the
Sun. This can happen, for example, to avoid overheating the
spacecraft. Effectively, this translates into the problem of
upper-bounding the amount of power that can be generated
by the arrays. This can be accomplished via two different
approaches. With respect to Equation (24), it is possible to
redefine the requirement as:

H ≤ |f(t)| ≤ K. (41)

This equation can be translated to a problem similar to that
analyzed in Section 4, with the difference that, in this case,
the solution space would be a subset of the respective solution
spaces shown in Figures 4 and 5. Besides the analytical
complexity of determining the solution of this problem, this
is not the desirable approach because it would ultimately
involve computing a new reference frame and slewing the
spacecraft to it. The better approach consists in only ar-
ticulating the solar arrays in order to face them away from
sunlight whenever needed. This allows to hold the hub’s
attitude steady and at the same time change the condition
of illumination while only rotating the arrays. Let’s define
σ as the desired angle between the Sun direction and the
normal to the array surface, as opposed to γ, which indicates
the smallest such angle possible given the current spacecraft
attitude. The relation between the two is:

cosσ = cos γ cos ε, (42)
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which implies that σ ≥ γ. Combining this relation with the
result of the previous subsection gives:

αR = arccos(b̂ · b̂R)± ε

= arccos(b̂ · b̂R)± arccos

(
cosσ

cos γ

) (43)

where the same reference angle computed in Equation (40) is
offset by an amount ε depending on the desired performance.
It can be observed that for σ = γ, i.e., when the requirement
coincides with the best performance, Equations (40) and (43)
coincide. The angles γ, ε, σ and αR are visualized in Figure 6.

Figure 6: Array reference angles

6. CONCLUSIONS
This paper has presented the problem of defining the ref-
erence frame for a spacecraft subject to multiple pointing
constraints. Such constraints are represented by, in order of
importance, 1. boresight alignment, 2. Sun incidence on the
rotating solar arrays, and 3. soft keep-in or keep-out pointing
zone. These constraints are relatively common modern space-
craft designs, and this paper provided a detailed description
of the attitude spaces of compliant solutions to satisfy most of
such requirements simultaneously, or following and ordered
priority list.

The first main contribution of this paper is a thorough analysis
of the types of constraints that can be met simultaneously
given a certain spacecraft design. The results show that, under
the assumption that the first requirements is always met, the
second requirement can also be achieved when the geometry
of the spacecraft is favorable. In this case, two solutions exist
that can accommodate the first two requirement simultane-
ously, and between which it is possible to choose in order to
obtain the best result for the third requirement. Conversely,
when the solar array requirement cannot be met, a closest
solution is derived. Because such a solution is unique, it does
not leave any room for further optimization. These results
have been expanded to show how, when the Sun incidence
requirement is relaxed, the two solutions mentioned above
expand into two compliant solution spaces, until eventually
merging together. Lastly, attention is paid to how to define
the appropriate reference angle for the solar arrays, in order
to ensure that the power performances meet the requirements
at all times.

The second main contribution of this paper consists in the
formulation of the attitude reference problem in terms of
the spacecraft geometry and sensor measurements of the sun
vector. The fully analytical nature of this formulation makes
it noteworthy for on-board implementation, where the attitude
reference generation algorithm can be run online, finding the
optimal attitude reference for multiple pointing constraints
simultaneously with minimal computational burden.
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