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The ability to accurately estimate the position and orientation of one object with respect
to another lies at the heart of many ground, air and space operations. To this affect, this
paper investigates a vision based strategy to solve the relative pose problem by tracking
four independent spheres whose relative geometry is known. The novel aspect is that the
sphere outlines do not need to be complete to compute a solution. Rather, target segments
are used to estimate the true apparent sphere center and radius. The vision sensor used is
a camera. The camera is fixed to the object whose pose is to be calculated relative to the
spheres. It is assumed that the position and orientation of the camera frame with respect
to the object frame to which it is attached, is known. The vision sensor is equipped with
active deformable contour algorithms (visual snakes), the outputs of which are used in the
proposed pose estimation algorithm. Compared to earlier work which looked at calculating
the relative pose based line of sight measurements only, this paper also looks at incorporating
depth estimates into the algorithm, which can lead to an improved solution. The proposed
method allows for a unique solution with only three spheres, as opposed to four which is the
minimum needed if only line of sight measurements are used.

INTRODUCTION

Pose estimation or the relative position and orientation is a critical capability that is required in performing
various engineering tasks in the real world. Right from ground based visual servo applications, to servicing
of orbital replacement units in space,1 pose estimation forms an important aspect of all these problems.

Vision or camera based pose estimation strategies are a subset of these algorithms and have been of con-
siderable research interest. However, problems like lens distortions, image projections, robust tracking in
variable lighting etc. present challenges associated with using such camera based pose estimation techniques
and implementing them in general scenarios.

Several methods have been considered which solve the relative pose problem. In reference 2 a vision based
relative pose estimation algorithm called VisNav is developed for guidance and navigational purposes. This
algorithm provides precise 6DOF information needed for pose estimation. It measures four headings between
the sensor, mounted on one vehicle, and a set of four active LED’s (Light Emitting Diode), mounted on the
target vehicle. Knowing the position of the LED’s in the object frame, we are able to solve the relative pose
estimation problem. Although this gives us very reliable relative 6DOF position and orientation information,
the fact that we have active light emitting beacons might make this methodology less preferable at times.
Further, light can reflect off surfaces causing multi-path affects and reduce reliability and accuracy.

Pose estimation finds use in space, air and ground vehicle operations. Operations such as spacecraft ren-
dezvous and docking operations have been and will be an essential cog in the wheel of future space explo-
rations. The techniques adopted in the past for such operations required significant information exchange
between both the units and also human intervention in the loop to ensure smooth operation.3 The ability to
perform such close proximity maneuvers autonomously are desired particularly when ground intervention is
limited or to reduce work load on limited human resources. Reference 4 develops an relative angles-only
navigation and pose estimation algorithm for such purposes. A 32 state extended Kalman filer is developed
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Figure 1. Visual Snake Illustration

that processes angular measurements from an optical camera along with gyro and star tracker data to estimate
the relative pose between both the units in question.

Space operations such as satellite on-orbit servicing and orbit transfer,5 orbital replacement of units1 etc.
are operations of current interest. Previously such operations required the astronauts to perform considerable
EVA (Extra Vehicular Activity). With the advent of autonomous systems, it is desirable and possible to
reduce the need for the astronaut to walk out into space. To this affect, robotic manipulator arms are usually
used to perform the task. Solving the relative pose problem between the manipulator arm tip and space unit
of interest is critical for the success of such operations.

Ground operations such as visual motion estimation plays a pivotal role in position based visual servoing
of ground vehicles too. The estimation of relative position and orientation is used to execute closed loop
control strategies. Reference 6 presents an algorithm for the visual estimation of the pose of a moving object.
The predictive capability of an extended Kalman filter is used to arrive at the optimal pose estimates. The
robustness of this scheme with respect to the measurement noise and modeling errors is further enhanced
by making the filter adaptive. Note that this algorithm iterates over time to converge to a pose estimate, as
opposed to the VisNav solution which converges to the relative pose during a single time step.

Pose estimation finds use in controlling UAVs as well. Scenarios such as autonomous aerial refueling2

can use the vision-based relative pose estimation algorithm VisNav for solving the relative pose problem.
Further, operating autonomous flight in complex, cluttered environments7 results in the need to solve the pose
estimation problem n a manner robust to lighting variations, multiple similar targets, and partially obscured
targets.

Machine vision and computer science based applications use various methods to estimate pose. Reference
8 presents machine vision based algorithms to estimate spacecraft relative motion that is ultimately used
for autonomous navigation about small gravitational bodies such as astroids and comets. Along the same
lines, Reference 9 discusses the performance of an image processing based pose estimation algorithm for
autonomous guidance and navigation for planetary landing.

The pose estimation lies at the heart of many relative motion problems in a variety of environments and
situations. This paper investigates a pose estimation algorithm using a statistical pressure snake algorithm
commonly known as visual snakes10 to track four spheres which are either fully or partially visible. This
visual tracking capability is applied to a spacecraft rendezvous docking scenario. The relative geometry
between the four spheres and the target craft are assumed to be known. An illustration of the visual snakes
tracking a disk is shown in Fig. 1. The visual snakes are used to segment and track the target spheres in the
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image plane under varying lighting conditions. The snake output is used to estimate the target center of area
and the radius in the image plane. The estimate of the target center is used to calculate a direction vector to
the sphere center, and the radius is used to calculate the depth to each of the four spheres. This information
is used in the pose estimation algorithm which evaluates a pose solution at each time step. The algorithm
is cooperative (requires specific visual targets), and passive (unlike the active visual beacons of the VisNav
concept), doesn’t use any computationally intensive pattern recognition, is very robust to harsh changes in
lighting conditions,11 and is fast to implement (up to full camera frame rate of 30Hz using 1Gz pentium class
processor).12

The focus of this paper is how visual snakes can be employed to track partially visible spheres, and then
using the resulting relative heading and distance information for pose estimation. This scenario is very much
in context with real world scenarios. Partially illuminated objects occur very commonly due to shadows,
incomplete visual tracking and partially obscured targets. The feature extraction algorithm is an extension
of the work done in Reference 13, where the visual snakes are used to identify the corners of a rectangular
target even if the corners are obstructed. An illustration of the corner tracking algorithm operation is shown
in figure 2. The sphere tracking problem poses new challenges in that the image plane disk coordinates do not
appear linearly in the system. Of interest is how few disk edge points (visual snake control points) are required
to robustly reconstruct the sphere information, and to what accuracy this can be accomplished. Limitations of
this work include two principal assumptions. The first one is that the target identification problem of the four
individual spheres has been solved. Secondly, we are currently assuming that under no circumstance does a
target sphere obstruct another target sphere in the camera image plane. This would otherwise cause the target
to appear like a deformed blob spanning both targets. Both of these issues are expected to be resolved in
future work. For example a logic can be developed to determine which targets are being viewed depending
on their sensor measurements.

The paper is organized as follows. First the pose estimation problem in a spacecraft rendezvous docking
scenario is discussed. Then the visual snake algorithm is discussed briefly. Next the new sphere tracking
algorithm is presented and the performance quantified. The VISNAV2 estimation scheme forms the basis of
the pose estimation with visual snakes. The algorithm is modified to incorporate target depth information
as well, even though is information is less accurate than the direction vector measurements. Numerical
simulations using the visual snake algorithm to track synthetic target images are used to evaluate nominal
pose estimation performance levels.

VISUAL SNAKES ALGORITHM

Statistical pressure snakes methods, or more simply visual snakes, segment the target area of the image and
track the target with a closed, non-intersecting contour.14, 11, 15 The visual snake provides not only information
about the target size and centroid location, but also provides some information about the target shape through
the principal axes lengths. Reference 16 presents the mathematics to efficiently compute the moments of the
target snake contour (defined through a series of image plane coordinates called snake points), and hence
ascertain information about the target size, center of mass, principal axes dimensions and the orientation.

Active deformable contour algorithms have been an area of contemporary research interest. In 1987 Kass
et al. proposed the original active deformable model to track targets within an images stream.17 Also referred
to as a visual pressure snake, the parametric snake curve S() is of the form

S(u) = I(x(u), y(u))′, u = [0, 1] (1)

where I is the stored image, x and y are the image contour coordinates, and u is the independent curve
parameter. This curve is placed into an image-gradient-derived potential field and allowed to change its
shape and position in order to minimize the energy E along the length of the curve S(u). This work uses
modified parametric snake formulations proposed by Ivins and Porrill,18 while incorporating the constraints
suggested by Schaub and Smith.11 The snake algorithm parameters can be chosen such that the visual snake is
capable of tracking targets with significant variations in target saturation and shading. This is a very important
capability considering the sphere based pose estimation scenario where harsh changes in lighting evels and
shadowing occur.
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Figure 2 Visual Snake Tracking Partially Obscured Rectangular Target and Esti-
mating Corner Locations

For example, Fig. 1 shows the visual snake tracking a disk shaped target, while Fig. 2 shows the visual
snake forming a closed contour about the rectangular target. Note that the tracking is not disturbed by the
presence of the black pen partially covering the target. Further, this particular implementation uses a corner
tracking algorithm.13 Here the target is assumed to be rectangular and the four dominant straight line snake
point segments are used to triangulate the corner locations. Note that the top right corner is not visible, but
its location can be estimated with the snake information. In this paper this partially obscured feature tracking
capability is extended to track disk centers and radii. Note that the color visual snake algorithm itself is not
being changed. The new tracking capabilities are a result of processing the visual snake points output.
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Figure 3. Spacecraft proximity operation illustration

POSE ESTIMATION PROBLEM SETUP

This section sets up the relative pose estimation problem using the visual snakes to track the four target
spheres of known relative geometry to the target vehicle. Figure 3 shows the general setup of a spacecraft
proximity operation scenario. The object frame (X,Y, Z) is fixed to the body of spacecraft B and the camera
image frame is fixed to the body of spacecraft A. The variables (Xj , Yj , Zj) with j = 1, 2, 3, 4, are the known
object space coordinates of the target spheres which are attached to spacecraft B. (Xc, Yc, Zc) are the to be
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determined object frame coordinates of the image frame origin attached to the camera lens center fixed to
the body of spacecraft A. The camera field of view of the camera is given through the angle Φ. The pose
determination objective is to estimate the relative position and orientation of the image frame with respect to
the object frame. This assumes complete knowledge of the relative geometry of the four individual spheres
in the object frame.

Visual Snake

Xi

Yi Camera Image Frame

Out of plane sphere

Figure 4. Pose Estimation Simulation

The relative pose problem is solved by tracking the four target spheres within each camera frame. Fig. 4
shows an mage frame of an video sequence being processed by the visual snakes. The four spheres here have
been setup in a 3D virtual environment. Note that to get a unique solution using heading only information
we need to have one of the spherical targets out of the plane formed by the other three spheres. These images
are processed by the visual snake algorithm to yield the image coordinates of the snake contour points of the
segmented target. The zeroth moment of these points is the area, the first moments provide the center of area
position image coordinates xc and yc. The second moments determine the major and minor principal axes
along with the principal rotation angle tracking the major principal axis orientation within the image plane.16

A pin hole camera model shown in Fig. 5 is used to calibrate the camera view and thus extract out the
focal length f and the depth gain γ respectively. The focal length is needed to determine the heading to the
individual spheres. The focal length is calibrated by placing a target sphere at a user defined distanceD which
produces a corresponding heading angle θ. The focal length is then calculated by using the y-coordinate of
snake center of mass, yc as:

f =
yc

tan θy
(2)

where θy is the projection of θ in the image Y Z plane. A similar relation exists in the image XZ plane as
well.

The second visual sensing parameter to be determined is the depth gain γ. Using similar triangles the depth
gain γ is

γ = Db = Lf (3)

The image plane variable b is the apparent shape of the projected target on the image plane in units of pixels.
Knowing the depth gain γ and measuring the apparent size b, the depth along the camera bore-sight direction
to a target sphere is

D =
γ

b
(4)
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Figure 5. Pin-Hole Camera Model
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(b) Screen Shot of Actual Partial Sphere Tracking

Figure 6. Partial Sphere Tracking Illustration

Note here that the pinhole camera model works well around the nominal calibrated distance D along the
bore-sight.

Observe that the range R can be expressed as:

R2 = D2 +X2 (5)

Using similar triangles again the range is written as

R =
γ

b

√
1 +

x2
c + y2

c

f2
(6)

Once the camera calibration is done, then the visual snake outputs (xc, yc, b) are used to compute the range
estimate R using Eq. (6), to the each of the spherical targets respectively. Because the relative geometry of
the spheres is already known, the position vector estimate from the camera to each of the spherical targets
is calculated. This information is then used to solve the pose estimation problem assuming the targets have
been identified.
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PARTIAL DISK TRACKING ALGORITHM

Algorithm Goal Overview

This section presents the methodology used for extracting the center (xc, yc) and the radius r, of a partially
obscured sphere. as illustrated in Fig. 6. This process is a challenging problem because the parameters
(xc, yc) and r appear nonlinearly in the governing equations. The objective is to estimate the apparent radius
r and the image plane coordinates (xc, yc) of the target. Due to the target either not being perfectly tracked
(harsh lighting) or partially obscured by another object, the control points of the visual snake do form form
a perfect circle. Instead, the goal is to determine what snake points below to the dominant circular feature of
the visual snake, and use these points to extract the full (xc, yc, r) parameters as if the spherical targets was
completely tracked. The centroid coordinates provide a heading measurement and the radius estimate can be
used for range estimation.

Fig. 6(b) illustrates the end result of the algorithm. The darker disk in the screenshot is the one being
tracked while partially obscured by the lighter disk. The estimated target disk center and radius is determined
and then drawn on the image as shown in Fig. 6(b).
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Figure 7. Hough Space Plot of Sample Sphere-Shaped Snake

Transformation to 3D Hough Space

Circles are represented in Cartesian coordinate space through

(xi − xc)2 + (yi − yc)2 − r2 = 0 (7)

where (xc, yc) is the center of the circle and r is the radius. Any point (xi, yi) that lies on the periphery
of this circle will share the same (xc, yc, r) values. Thus, the parameters (xc, yc, r) are invariant properties
of the circle defined by Eq. (7). If a set of snake points lie on the periphery of a common circle, then the
curve segments between each set of three adjacent snake points yields identical (xc, yc, r) values. This is the
general idea behind the 3-D Hough transform. Applying this principle to the entire image to search for arc
segments that belong to a common disk would be very computationally expensive. But with the visual snake
this process is greatly facilitated. Here we look at the points preceding and super-ceding a current snake point
to curve parameters. If a series of snake points lie on the periphery of a common circle, then their equivalent
(xc, yc, r) parameters would cluster closely together as shown by the darker points in Fig. 7.

Note an interesting behavior of the curve point clusters. They do not form tight groups of points, as
expected, but rather form chains of points. The reason for this is that the snake chatters about the target
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edge. When computing the snake curve segments about any given snake point, this minor chatter will cause
some slight perturbation in the calculations. To mitigate the effect of this chatter, we are using snake points
two slots behind and ahead of the current snake point, and not the ones immediately preceding and super-
ceding the current snake point as illustrated in Fig. 6. This makes the computation of the invariant parameters
(xc, yc, r) more robust to local flat spots and chatter around the target edge.

As an example, let us consider three darker snake points shown in Fig. 6. If they are to lie on the same
curve segment then

(xi − xc)2 + (yi − yc)2 − r2 = 0 (8a)

(xi−2 − xc)2 + (yi−2 − yc)2 − r2 = 0 (8b)

(xi+2 − xc)2 + (yi+2 − yc)2 − r2 = 0 (8c)

The image coordinates (xi, yi) refers to the current snake point, (xi−2, yi−2) refers to the snake point which is
two positions behind the current snake point and (xi+2, yi+2) refers to the snake point which is two positions
in front of the current snake point. Solving these three coupled nonlinear equations for the required circle
parameters (xc, yc, r) we have

r =
1
2

√
(∆xyi,i−2)(∆xyi,i+2)(∆xyi−2,i+2)

[yi(xi−2 − xi+2) + yi−2xi+2 − xi−2yi+2 + xi(−yi−2 + yi+2)]2
(9)

xc =
{
yi−2x

2
i+2 − (x2

i−2 + y2
i−2)yi+2 + yi−2y

2
i+2 + x2

i (−yi−2 + yi+2) + . . .

. . . y2
i (−yi−2 + yi+2) + yi(x2

i−2 + y2
i−2 − x2

i+2 − y2
i+2)

}/
. . .

. . .
{

2(yi(xi−2 − xi+2) + yi−2xi+2 − xi−2yi+2 + xi(−yi−2 + yi+2))
}

(10)

yc =
{
x2

i (xi−2 − xi+2) + y2
i (xi−2 − xi+2) + x2

i−2xi+2 + y2
i−2xi+2 − . . .

. . . xi−2(x2
i+2 + y2

i+2) + xi(−x2
i−2 − y2

i−2 + x2
i+2 + y2

i+2)
}/

. . .

. . .
{

2(yi(xi−2 − xi+2) + yi−2xi+2 − xi−2yi+2 + xi(−yi−2 + yi+2))
}

(11)

where

∆xyi,i−2 = (xi − xi−2)2 + (yi − yi−2)2 (12)

∆xyi,i+2 = (xi − xi+2)2 + (yi − yi+2)2 (13)

∆xyi−2,i+2 = (xi−2 − xi+2)2 + (yi−2 − yi+2)2 (14)

Note that we in our case we use a set of three snake points to do the Hough transform. This is due to the
fact that three snake points yields a unique solution in the Hough space whereas using more than three snake
points will lead to non unique transformation issues and require more computationally expensive least squares
solutions to determine the local best fit to a circle.

Determining Curve Point Clusters

Using Eqs. (9)-(11) we are able to map all (xi, yi) snake points into the corresponding Hough space
(xci

, yci
, ri) points. The next task is to identify which groups of Hough space points belong to a common

curve. Figure 7 shows an example where the snake points of a partially obscured target being tracked have
been transformed into the Hough space. Figure 8 illustrates a flow-diagram of the algorithm used.

The metric d is used to evaluate how similar two sets of Hough space circle parameters (xc, yc, r) are:

d =
√
w1(xcj

− xci
)2 + w2(ycj

− yci
)2 + w3(rcj

− rci
)2 (15)

where w1, w2, w3 are metric weights. The snake point positions will inherently chatter along the target
contour and cause the Hough space cluster of common circle points to be elongated into a small chain-like
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Figure 8. Flowchart Diagram of Common Curve Point Cluster Identication

structure of points as illustrated in Fig. 7. As a repercussion of this effect this metric d is chosen to be 20
pixels.

To accelerate the search for common local circle parameters, the snake points are first sorted by their r
values using a fast N log2(N) HeapSort() algorithm.19 The sorted r values are stored in the array r abs[],
while keeping track of which snake point these values correspond to. After sorting the snake points by their
r value, we loop over the N snake points and assign ID tags to them based on the calculation of the metric
d. The methodology is presented in Fig. 8. This is done to determine clusters of nearby points in the Hough
space which then ultimately enables us to identify the biggest cluster corresponding to the dominant curve
segment of the disk being tracked.

Note that because the snake points are sorted by their r values, we are performing the above cluster search
not by looping through successive all snake points, but rather by considering snake points in ascending order
of their r value. If a difference in r values is large, we can immediately conclude that the current, and all later
points, will not belong to this chain cluster. This avoids the need to introduce a more complicated scheme
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which would join chain ID tags which belong to a common chain.

This sorting algorithm is roughly a N log2(N) operation. No assumptions have been made here as to the
ordering of the snake points. If a circle is partially obscured, this method will still identify points that belong
to the dominant curve.

After identifying chains of points in the Hough space, the number of points in each chain cluster is evalu-
ated. The largest chain which represents the dominant curve is then identified for further processing. If the
sphere is partially obscured, it is possible to have other small curve segments in the image. By using only
the largest set of snake points that form the dominant curve, we are able to keep the algorithm robust to such
small erroneous curve segments.

Modified Nonlinear Least Squares Estimation

Algorithm Formulation: Having identified the snake points belonging to the biggest cluster, we need to
evaluate the best fit of these set of points to a circle.

In this partial sphere tracking algorithm the objective is to extract the target center (xc, yc) and the radius
r given at least three snake points on its periphery. The system equations for this case can be written as the
homogeneous constraint equations

φ1 = (x1 − xc)2 +(y1 − yc)2 −r2 = 0
φ2 = (x2 − xc)2 +(y2 − yc)2 −r2 = 0

...
...

...
φm = (xm − xc)2 +(ym − yc)2 −r2 = 0 (16)

where m refers to the number of snake points (x1, y1, . . . , xm, ym) in the biggest cluster. Hence in vector
notation Eq. (16) is written as

φ(xc, yc, r) = 0 (17)

This is re-written as

ỹ = f(x) + v (18)

where

ỹ = [ỹ1, ỹ2 . . . ỹm]T = [0]m×1 = measured y values
f(x) = [φ1, φ2 . . . φm]T = system equations
x = [x1, x2 . . . xn]T = [xc, yc, r]T = true x-values
v = [v1, v2 . . . vM ]T = measurement errors

Similarly, the estimated y-values, denoted by ŷ and residual error e = ỹ − ŷ are written as

ŷ = f(x̂) (19)
e = ỹ − ŷ ≡ ∆y (20)

where

ŷ = [ŷ1, ŷ2 . . . ŷm]T = estimated y values
e = [e1, e2 . . . em]T = residual errors
x̂ = [x̂1, x̂2 . . . x̂n]T = [x̂c, ŷc, r̂]T = estimated x values

Note that in our case here we don’t have any measurements (i.e. ỹ = 0), so we reformulate the whole setup
as a constrained optimization problem. Consequently Eq. (18) is rewritten as f(x) + v = 0 and Eq. (20)) as
e = −ŷ = ∆y. The system dynamics, are given by Eq. (17). Finally, Eq. (18) is expressed as

ỹ = f(x̂) + e = 0 (21)
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We seek an estimate (x̂) that minimizes the cost function

J =
1
2
eTWe (22)

The nonlinear differential corrector routine in Reference 20 is employed to solve this nonlinear minimization
problem for the desired target center and radius. The method for determining the differential corrections in
∆x is to select the particular set of corrections that lead to the minimum sum of squares of the cost function
J , which finally leads to the expression

∇∆xJ = HTWH∆x−HTW∆y = 0 (23)

where the matrix H is known as the Jacobian (m× 3) matrix calculated as H ≡ ∂f
∂x

∣∣∣∣
x

Simplifying Eq. (23) yields the update equation

∆x = (HTWH)−1HTW∆y (24)

Equation (24) is used for differential state correction. Figure 11 outlines the algorithm discussed above.

Algorithm Initialization and Convergence Criteria: Appropriate initialization is critical for the estimated
states x̂ to converge to proper convergence with this nonlinear least squares algorithms. The initial values
of the estimates have to be chosen such that they are sufficiently close to the true values. In our case the
arithmetic mean of the associated (xc, yc, r) values which correspond to the snake points in the biggest
cluster performs adequately in that respect and thus are used to initialize the algorithm mentioned above.
There are three convergence criteria used.

The first convergence criteria is

δJ ≡ |Ji − Ji−1|
Ji

< ε (25)

where ε is a prescribed small value. For the given application it is set to 10−7. If Eq. (25) is not satisfied,
then the update procedure is iterated until the process converges, or unsatisfactory convergence progress is
evident. To that effect, the second convergence criteria is used as a measure for unsatisfactory convergence
progress, which in our case is the maximum allowable number of iterations. In the following simulations the
maximum number of iterations is set to 10 . This number turns is a rather conservative choice as the algorithm
typically converges in about three to four iterations.

The last convergence criteria is used to counter the scenario when we are confronted with a near perfect
circular target. In that situation the absolute value of Ji is around 10−20 which can result in the algorithm
turning into an infinite loop and hanging the simulation. Hence to account for this, the third stopping condition
used is abs(Ji) > 1. Even if we are tracking a partially visible sphere, the minimum value that J usually
takes, is in the order of 105. So abs(Ji) > 1 is a pretty conservative choice from this perspective as well.

Algorithm Performance:

This section demonstrates the performance of the algorithm developed above. To that affect Fig. 9 below
shows how the estimates vary with the diameter visible expressed as a percentage of the total diameter, while
the snake tracks sphere A (see Fig. 6). This parameter is expressed as

Percentage of Diameter Visible =
No. of pixels visible along the diameter

Total length of the diameter in pixels
× 100 (26)

Sphere A is centered at the image plane coordinates (130.5px, 150.5px) with a radius of 80 px. The variation
of the visible diamater of sphere A is achieved by varying the position of sphere B (see Fig. 6) while keeping
the position of sphere A fixed. Figure 9 shows that the accuracy of the estimates are of the subpixel level if the
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percentage of visible diameter is 45% or more. As the percentage of visible diameter decreases the standard
deviation of the estimates tend to increase which is expected. There is a distinct increase in the standard
deviation of the estimates and hence a drop in performance when the percentage of the visible diameter drops
below 19%. Note that at each configuration of the visible diameter the statistical data regarding the mean and
standard deviation is created using 10 observation.
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Figure 9. Estimates v/s Percentage of Visible Diameter [True(- - -), Estimated(—)]

Figure 10 shows how the estimates vary with the δ. This parameter represents how close two snake points
needs to be in units of pixels so that they can be considered to be part of the same cluster. Note that sphere A
(see Fig. 6) is being tracked here. Additionally the center and radius of sphere B in this scenario was given as
(200.5px, 150.5px) and 100px respectively. As we see from Fig. 10, the accuracy of the estimates again are
of the subpixel level at most times. The standard deviation is consistently about 2 pixels on either side of the
mean if δ is 10 pixels or more. Below 10 pixels there is a significant degradation of performance, where mean
values of the estimates is about 3 to 4 pixels off and standard deviation is about 4 to 5 pixels on either side of
the mean of all the three estimated parameters (xc, yc, r). Here too at each configuration of δ the statistical
data regarding the mean and standard deviation is created using 10 observation.

The Gaussian Least Squares Differential Correction Scheme with the Depth Estimate

The Gaussian least squares differential correction scheme developed in reference 2 is used to calculate
the pose estimate. Note that this should not be confused with the differential corrector scheme discussed
previously in the paper, used for determining the best curve fit to the points in the biggest cluster in the
Hough space. For completeness the algorithm is summarized below. Subsequently the modification of the
algorithm to include depth is discussed.

The image coordinates of the centroid of a ith sphere in the camera image plane denoted by [xci , yci ] is
normalized to arrive at

hi =
1√

f2 + x2
ci

+ y2
ci

[xci
, yci

]T (27)
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Figure 10. Estimates v/s δ [True(- - -), Estimated(—)]

where f , denotes the focal length of the virtual camera. This measurement is also denoted by

h̃i(s) = [IO]ri (28)

Here [IO] denotes the direction cosine matrix from object frame to the image frame. The position vectors ri

denote the line of sight vectors from the image frame origin to each of the four target spheres expressed in
the object frame.

ri =
1
di

[(Xi −Xc) (Yi − Yc) (Zi − Zc)]T (29)

and

di =
√

(Xi −Xc)2 + (Yi − Yc)2 + (Zi − Zc)2 (30)

The measurement sensitivity matrix Hi is obtained by taking the partial derivative of the measurement model
given in Eq. (28) with respect to the state vector s = [P ,O]T where P = [Xc, Yc, Zc]T is the position vector
along withO = [o1, o2, o3]T being the Modified Rodrigues Parameter (MRP) orientation vector.

Hi =
[
∂hi

∂P

∂hi

∂O

]
(31)

where

∂hi

∂P
= − [IO](I3×3 − rirT

i )
di

(32)

∂hi

∂O
=

4
(1 +OTO)2

[S][(1−OTO)I3×3 − 2Õ + 2OOT ] (33)

Here note that

S =
[

s3 0 s1

−s2 s1 0

]
, s = [s1, s2, s3]T = [IO]ri (34)
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Figure 11. Modified Nonlinear Least Squares Algorithm

Note that Õ is the skew symmetric form of the vectorO.

The actual measurement matrix for the target spheres using Eq. (27) is given as

b = [hT
1 . . . h

T
4 ]T (35)

The estimated measurement matrix is given by Eq. (28) as

b̃ = [h̃T
1 . . . h̃

T
4 ]T (36)

The sensitivity matrix is given as

H = [HT
1 . . . HT

4 ]T (37)

Hence using the above information and initial values of the state the non-linear gaussian least squares routine
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is setup using the following equations

Pk,l = (HT
k,lWkHk,l)−1 (38)

∆ŝk,l = Pk,lH
T
k,lWk(bk − b̃k,l) (39)

ŝk,l+1 = ŝk,l + ∆ŝk,l (40)

Note that here Pk,l is the covariance at the lth iteration at the kth time step. Hk,l = H as in Eq. (37) and Wk

is the weighting matrix. The hat above the variables denotes an estimate.

Target range Rei information is incorporated as follows. The range to any one of the four target spheres is
written as

Rej
=
√

(Xj −Xc)2 + (Yj − Yc)2 + (Zj − Zc)2 (41)

where j = 1, 2, 3, 4. The measurement sensitivity matrix for the jth target sphere Hj is obtained by partial
differentiation of Eq. (41) with respect to the state vector:

Hj =
∂Rej

∂s
=




Xc−Xj√
(Xj−Xc)2+(Yj−Yc)2+(Zj−Zc)2

Yc−Yj√
(Xj−Xc)2+(Yj−Yc)2+(Zj−Zc)2

Zc−Zj√
(Xj−Xc)2+(Yj−Yc)2+(Zj−Zc)2

0
0
0




(42)

Thus the overall measurement matrix for j target spheres including the line of sight vectors and depth
information is

b = [hT
1 , R1, . . . , h

T
j , Rj ]T (43)

Note that the range Ri is defined in Eq. (6). Similarly the estimated ideal measurement using the estimated
states for “j” target spheres including the line of sight vectors and depth information is given as

b̃ = [h̃T
1 , Re1 . . . , h̃

T
j , Rej ]T (44)

Equations (42), (43), (44) are then used in the the nonlinear differential corrector algorithm to modify it
to accommodate depth information. Also note that based on the expected errors found in the estimates for
the centroid and the radius in the section discussing the partial disk tracking algorithm, preliminary analysis
revealed that the range estimate had an error of about 0.6 m and the heading vector estimate had an error of
about 0.01 m, both at a nominal distance of about 13 m. So the final weights chosen for heading and range
were 1

0.012 and 1
0.62 respectively.

One observation to note here is that, in the algorithm using the line of sight measurements and depth
information for pose estimation, we need only three spheres with one sphere being out of the plane for a
unique pose estimate, as opposed to four spheres if only line of sight measurements are used. This may be
helpful if a scenario when one of the target spheres completely drops out of vision and we are left with only
three visible target spheres.

RESULTS

Simulation Setup:

A spacecraft rendezvous docking scenario is setup as shown in figure 3 and used for following numerical
results. Spacecraft A is at an average distance of about 12m from spacecraft B and navigating around it. The
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four target spheres exist on spacecraft B body frame at these given locations in the spacecraft body frame

X1 = −1m, Y1 = 0m, Z1 = −1m
X2 = −1m, Y2 = 0m, Z2 = 1m
X3 = 1m, Y3 = 0m, Z3 = 1m
X4 = 1m, Y4 = 1m, Z4 = −1m (45)

The range of these numbers has been taken from Reference 21 which specifies the position of the LEDs in
a VisNav based application in a spacecraft formation flying scenario. Each of the spheres have a radius of
0.5 m. The virtual camera used in the simulation has a resolution of 640 × 480 pixels. The field of view of
the camera is fixed at 70 degrees. Also the weights w1, w2 and w3 in the expression for d in Fig. 8 are all
chosen to be one.

The pose estimation algorithm is evaluated on five different poses whose truth data is shown in Table 1.

Pose Number Position (m) Orientation (MRPs)

1 [0, -13.25, 0] [0.4142, 0, 0]
2 [1, -13.25, 0] [0.4142, 0, 0]
3 [1, -14.25, 1] [0.4142, 0, 0]
4 [0.3, -14.25, 1] [0.4142, 0, 0]
5 [0, -11.25, 1] [0.4142, 0, 0]

Table 1. Pose Truth Data
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Figure 12. State Deviations from the Truth

Pose Estimation Using Line Of Sight Vectors (Full Sphere Tracking):

Figure 12 shows the position and attitude estimates for a series of five different poses. The pose estima-
tion algorithm is formulated using the Gaussian Least Squares Differential Correction (GLSDC) algorithm
described in Reference 2. The algorithm is initialized by using the pose resulting from multiplying the true
values in Table 1 by 0.85. The only difference in our implementation is that we calculate the four line of sight
vectors using the visual snake output and not the LED’s. For the nominal separation distance of about 13m
the position errors are well within 0.5 meter at the worst. The attitude errors are of the order of 10−3 radians.
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Figure 13. State Deviations from the Truth With Partially Visible Sphere

Pose Estimation Using Line Of Sight Vectors (Partial Sphere Tracking):

The major focus of the paper is the pose estimation process in the presence of partially visible spheres.
To that affect, Fig. 13 shows the deviations of pose estimates from the truth for the first two poses (Table 1).
Fig. 13(a) shows the norm of the position deviation vector from the truth and Fig. 13(b) shows the norm of
the attitude deviation vector. In both these plots the circled points show previous target tracking with the
line of sight vectors determined by the conventional snake algorithm and the square points show the pose
estimates when the line of sight vectors are determined by the new partial sphere tracking algorithm. The
simulation is started with 60 percent of the diameter of the target spheres visible as calculated by Eq. (26),
at pose number 1. At pose number 2, only 30 percent of the diameter of the spheres is visible. Lowering the
percentage of visible diameter below 30 percent leads to issues with snake target convergence. As expected
the pose estimation process which uses the line of sight vectors determined by the new partial sphere tracking
algorithm produces superior results, especially towards the end of the simulation when about 30 percent of
the diameter of the spheres is visible, as compared to the previous visual snake processing algorithm.
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Figure 14. State Deviations from the Truth while using depth information
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Pose Estimation Using Line Of Sight Vectors and Depth Information(Full Sphere Tracking):

Fig. 14 shows the position and attitude estimates for the same series of poses as used in Fig. 12. Only
this time the depth information is used as well. We see that the pose estimate errors are in the same ranges
as the ones in Fig. 12. One significant observation here is that the errors in the pose estimates, seem to be
extremely sensitive to the depth gains. To mitigate this effect the camera view has been calibrated over a
series of depth ranges and for any particular pose the appropriate depth gains are chosen numerically, based
on the calibration curve fitted through the depth gain measurements which corresponds to this series of the
depth ranges.

CONCLUSION

This paper presents a vision based partial disk tracking algorithm using the visual snakes. This is then
applied to the pose estimation algorithm with and without the range information. With a target craft about
13m away, the results show that the algorithm converges to position estimates with errors within 0.4 m
and orientation estimates with errors in the order of 10−3 radians in both cases. Incorporating the partial disk
tracking algorithm, on the other hand, showed significant improvement in the accuracies of the pose estimates
even when only 30 percent of the disk diameters were visible. Future work in this direction would involve
analyzing the lens distortion effects, the target disk obstruction phenomenon and the target identification
problem, while looking at there affects on the pose estimation problem. Another interesting study would
be to look at the accuracies of the pose estimates while using the depth information in the pose estimation
algorithm with only three spheres in view.
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