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Abstract— Recent work has shown that Coulomb forces can
be used to maintain fixed-shape formations of spacecraft at high
Earth altitudes with practical charging requirements. These for-
mations require a careful balance between the intercraft forces
and the relative orbital dynamics. While nearly propellantless,
the resulting dynamic equations are nonlinear, and result in a
challenging control system design problem. This paper explores
a different Coulomb force application where a chief satellite
deploys deputy craft to specified end states. By using multiple
charge surfaces on the chief, a linear control design approach
can be used while guaranteeing reachability for one deputy. This
is extended to simultaneous, multiple deputy deployment by
modulating control authority across the formation. A 3 deputy
example is presented to illustrate the approach where Debye
length plasma shielding is considered. This example shows that
1 meter diameter craft can be deployed to a 30 meter, circular
projected formation in geostationary orbit in approximately 2
orbits with a maximum of 20,000 volts on the charge surfaces.

I. INTRODUCTION

The focus of this paper is high Earth orbit (HEO) deploy-
ment of relatively small deputy spacecraft using Coulomb
forces generated between a chief satellite and the deputies.
It is assumed that the chief craft has its own conventional
propulsion system, and is in a circular orbit about Earth. Fur-
thermore, the chief has several controllable spherical charge
surfaces. The deputy craft are assumed to be spherical,
with their own controllable charge capability. Deployment
consists of simultaneously repositioning the deputies from
an initial configuration near the chief to a specified end-
shape, typically multiple chief radii’s away. In general, the
final speed states of the deputies could be nonzero. During
deployment, the deputies react against the chief, exploiting
the chief’s station keeping capability to generate accurate
motions.

A unique feature of Coulomb propulsion is that it requires
considerably less propellant than a conventional gas or
plasma thruster. In addition, it does not produce contaminat-
ing plumes, nor impingement forces. It has also been shown
that the power requirements are much less than conventional
propulsion systems, even when modulating the charge at
relatively high frequency (100s of Hz) [10].

There are several possible uses for Coulomb force deploy-
ment. One application is the initial deployment of formation
flying spacecraft, with the typical goal being Earth imaging.
Related to this is the ability to periodically correct formation
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Fig. 1. Steerable Coulomb force deployment scenario. The chief shown
has 6 charge spheres, 4 of which are active.

flying spacecraft orbits disturbed by external disturbances
(e.g. J2, aerodynamic, solar pressure forces). Deployable and
retractable autonomous or semi-autonomous vehicle health
monitoring devices is another application. Here the deputies
would be used to monitor the chief, with the goal of
diagnosing a perceived problem with the chief spacecraft.
Finally, because the deputies can be given an end state,
including nonzero speed, they could also be used as steerable
projectiles.

The use of Coulomb forces for propulsion is a relatively
new field. The earliest work examined symmetric, crystal-
like structures where one node, the chief, had a conventional
propulsion system [4], [8], [9], [10]. This allowed the deputy
craft to react against a body that was maintaining a constant
orbit. The report in Reference [10] also showed, using data
from the SCATHA [11] and ATS [6] missions, that 10µN -
1000µN level forces could be generated between spacecraft.
In addition, charging times were estimated to be in the
millesecond range, and the Coulomb ‘thrust’ propulsion
system power consumption was lower than for conventional
propulsion methods. More recent work has examined the
necessary conditions for static equilibrium where all space-
craft are held together by Coulomb forces alone [13], [12].
Free-flying formations were considered in detail for 2 and
3 spacecraft cases [1]. This was followed by consideration
of larger formations using a genetic algorithm optimization
strategy to find static shapes for up to 9 spacecrafts [2] where
the plasma shielding effect, characterized by the Debye
length, was considered negligible.

The remainder of this paper is as follows. The chief
and deputy spacecraft dynamic equations are developed in



Section II. The control strategy is presented in Section III
starting with 1 deputy, and then extending it to N deputies.
Conditions for chief charge sphere locations are also dis-
cussed. Section IV illustrates the approach with an example
where the chief has 4 charge spheres, and there are 3 partic-
ipating deputies. A few concluding remarks are provided in
Section V, along with plans for future work.

II. DYNAMIC MODEL

Before examining the formation dynamic equations, the
Coulomb charge, voltage and force relationships should be
discussed.

It’s well known that Coulomb forces exist between charged
bodies. Considering the two homogeneously charged spheres
of Fig. 2 the Coulomb force magnitude acting on body 1,
directed along the line between the spheres is

f12 =
kcq1q2

d2
(1)

where kc is Coulomb’s constant (8.99 × 109 Nm2

C2 ), q1 and
q2 are the sphere charges in Coulombs and d is the distance
between the center of the spheres in meters.

î

ĵ

k̂

1

2

d

f12

−f12

Fig. 2. Coulomb forces between two spheres having the same charge sign.

An important deviation from the ideal Coulomb force
model of (1) occurs when considering charged bodies in a
plasma-rich environment, as found in space. In short, the
plasma shields the Coulomb force effect exponentially with
the separation distance as shown in (2). The exponential
decay of the Coulomb force is characterized by the Debye
length, λd, which varies with plasma characteristics [3]. In
general, the Debye length is small at LEO and large at HEO
(roughly 10 cm and 100 m respectively)

f12 =
kcq1q2

d2
e−d/λd . (2)

When charged spacecraft are more than 2 Debye length apart,
then their Coulomb force interaction becomes negligible for
realistic charge scenarios. Finally, it should be noted that the
charges can be converted to voltages for the ith craft, which
may give more practical insight, according to

Vi =
qikc

rn
(3)

where rn is the radius of the spherical charge device.
Next, Hill’s equations [7] (also known as the Clohessy-

Wiltshire equations, [5]) are used to generate the formation

dynamic equations for the Coulomb controlled system. Con-
sider a system consisting of Nd deputy craft, and a chief
containing Nc charge points. The specific case of 3 deputies
and 1 charge sphere is shown in Fig. 3. The position vectors
of the Nd + Nc bodies are ordered such that p1 through
pNd

are the deputy vectors and pNd+1 through pNd+Nc
are

the charge sphere vectors, all relative to the center of the
chief satellite. Each position vector has elements xi, yi and
zi. Referring to the example of Fig. 3, the 3 deputy craft
position vectors are denoted p1 through p3 and the chief’s
charge sphere position vector is denoted p4. The chief is
assumed to be in a circular orbit about the Earth with a
Hill coordinate frame at its center as shown in Fig. 3. The
î unit vector is pointing radially outward from the center of
the Earth and the ĵ axis is in the direction of the chief’s
velocity vector. Each of the Nd + Nc bodies is assumed to
be have charge qi.
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Fig. 3. Three virtual structure nodes orbiting the Earth illustrating the
notation used in the model development.

Applying the Coulomb forces to the right side of Hills
Equations, yields the system dynamic equations for small



motions about the chief satellite and are shown in (4)

m
(
ẍi − 2nẏi − 3n2xi

)
= kc

Nd+Nc∑
j=1

xi − xj

d3
ij

qiqje
−

dij
λd

m (ÿi + 2nẋi) = kc

Nd+Nc∑
j=1

yi − yj

d3
ij

qiqje
−

dij
λd

m
(
z̈i + n2zi

)
= kc

Nd+Nc∑
j=1

zi − zj

d3
ij

qiqje
−

dij
λd

(4)

for i = 1 . . . Nd, j 6= i during the summation and dij =
‖pi − pj‖. The Hill frame angular velocity is denoted as n
and the mass of each deputy is m. Equation (4) is nonlinear
and results in a challenging control problem if the goal is to
simultaneously move the deputies from initial positions near
the chief to final states away from the chief. When all the
deputies are charged, the qiqj terms limit the ability to create
arbitrary force vector directions. Furthermore, as the craft
move away from each other and the chief, the Debye length
effect exponentially reduces the force capability. It should
be noted that the Debye length λd can be as little as 10 cm
at low altitudes. Therefore, the ability to generate Coulomb
forces between craft at large distances is impractical. How-
ever, imparting large initial velocities is still quite feasible.
At high altitudes, such as geostationary orbit (35,800 km,
n = 7.28 × 10−5rad/sec), λd varies from 75 m to 575 m.
Thus, long-distance positioning capability is possible.

III. CONTROL STRATEGY

The movement of one deputy is considered first, followed
by the extension to multiple deputies. For the single deputy
case, Nd = 1, (4) becomes

m
(
ẍ1 − 2nẏ1 − 3n2x1

)
= kc

1+Nc∑
j=2

x1 − xj

d3
1j

q1qje
−

d1j
λd

m (ÿ1 + 2nẋ1) = kc

1+Nc∑
j=2

y1 − yj

d3
1j

q1qje
−

d1j
λd

m
(
z̈1 + n2z1

)
= kc

1+Nc∑
j=2

z1 − zj

d3
1j

q1qje
−

d1j
λd

(5)

where d1j = ‖p1 − pj‖. Assume that the charge of the
deputy, q1, is held to some nonzero, constant value and that
Nd = 3. Next, denote the right sides of each equation in (5),
specifiable forces, using the variables fd,x, fd,y, and fd,z , or
in vector form, fd. As long as the rank of the matrix

P =
[
(p1 − p2) (p1 − p3) . . . (p1 − p1+Nd

)
]

(6)

is 3, then any desired force, fd, can be applied to the deputy.
Because it is possible to generate any force vector, it is clear
that a suitable control law can now be applied depending on
the application (e.g. tracking, regulation, etc.). For example, a
simple proportional controller with rate feedback and orbital
dynamics cancellation is suitable for moving the deputy from

some initial point to a final point with zero final speed

fd =

−2nẏ1 − 3n2x1

2nẋ1

n2z1

 + Kp (p1d − p1)−Kdv̇1 (7)

where Kp and Kd are 3× 3 diagonal gain matrices, p1d is
the desired final position of the deputy, and v1 is the velocity
of the deputy.

At this point, it is convenient to rewrite the right side of
(5) as fd = Bq where the jth column of the 3×Nc matrix
B is

Bj = kc (p1 − pj) ·

e
−

d1j
λd

d3
1j

 q1 (8)

and the Nd × 1 vector of inputs, q, is

q =


q2

q3

...
q(1+Nd)

 . (9)

Some comments on the number of chief charge spheres is in
order. If Nc = 3, the charge spheres form a plane and defines
a singular region where forces orthogonal to the plane cannot
be achieved. Thus, a minimum of 4 charge spheres is needed
to guarantee complete maneuverability of the deputy. This
introduces redundancy in the control law solution. This could
be handled by switching between sets of 3 charge spheres,
or by utilizing all the charge sphere assets according to some
optimization criteria. In this work, a weighted least squares
solution is used. Specifically, given the desired force vector
to be applied to the debuty, fd, the charge sphere charge
values are computed according to

q = W−1BT
(
BW−1AT

)−1
fd (10)

where W is an Nc ×Nc matrix of constants used to focus
control authority onto specific charge spheres. The identity
matrix is used in the example below.

Extending this method to multiple deputies can be ac-
complished in several ways. One approach is to move each
deputy to its final state sequentially. In some applications,
this may be appropriate. However, if the goal is to have
all the deputies be at their goal points at the same time,
this would not be suitable. The orbital dynamics quickly
result in a loss of positioning accuracy once the Coulomb
force is removed and the deputies move according to their
own Keplarian motion. The method used in this work is to
focus control sequentially between the participating deputies.
For example, the formation control period, denoted ∆T ,
would be divided into Nd equal pieces as δT = ∆T/Nd.
During each δT only 1 deputy is charged, and the solution
to (10) is formed with a B matrix where the p1 of (8) is
replaced with i for the ith deputy. It should be noted that
from a practical perspective, this assumes that: (1) the deputy
charges can be cycled from zero to the maximum value at
least 10 times faster than δT , (2) the chief and deputies have
a communication protocol that allows the chief to designate



which deputy is under control, (3) the chief can measure the
deputy position vectors.

IV. EXAMPLE

Three deputies are considered, Nd = 3, and 6 charge
spheres, Nc = 6. The goal is to move the deputies from
their initial locations, near the chief, to a final zero speed
state such that they lie on a circle, as viewed from Earth, with
a radius of 30 meters. The deputies and charge sphere radii
are all 0.5 meters, each with a mass of 50 kg. The initial and
final coordinates of the deputies are given in Table I along
with the coordinates of the charge spheres where Li = 3/

√
2,

Lf = 30, and Lc = 2. The Debye length is assumed to be
100 meters, and the altitude of the chief is 35,800 km (the
orbital period is 24 hours). The time that each deputy is being
controlled by the chief’s charge spheres is δT = 5 minutes
and the piece-wise constant charge of the deputies is 20,000
volts.

TABLE I
INITIAL AND FINAL COORDINATES OF THE DEPUTY CRAFT, AND THE

COORDINATES OF THE CHARGE SPHERES.

Position Vector x (m) y (m) z (m)
Initial p1 0 Li Li

Initial p2 0 −Li −Li

Initial p3 0 −Li Li

Final p1 0 1
2
Lf

1
2
√

3
Lf

Final p2 0 0 − 1√
3
Lf

Final p3 0 − 1
2
Lf

1
2
√

3
Lf

p4 Lc 0 0
p5 −Lc 0 0
p6 0 Lc 0
p7 0 −Lc 0
p8 0 0 Lc

p9 0 0 −Lc

Fig. 4 shows the trajectories of all three deputies - blue
for p1, green for p2 and red for p3. The hollow circles
indicate the initial positions and the filled circles the end
points. The charge spheres are not shown. The only care
taken in selecting the initial and end points was to inhibit
significant x-axis motion. This was done merely to create an
example that could be viewed easily on a two-dimensional
plot. As seen in Fig. 4 the motion in the x direction is small
compared to the y and z motion.

Fig. 5 shows the charge spheres, black circles, and the
trajectories of the deputy spacecraft. Again, blue denotes p1,
green denotes p2, and red denotes p3. The hollow black
sphere at the origin indicates the location of the p4 and p5

charge spheres and are outside the y− z plane. As expected
from the control strategy, the motion of the deputies is in a
straight line to their respective goals since the desired force
vector, fd is always pointed from the deputy toward its goal.
This feature may be useful in the future for path planning.

Fig. 6 shows the x, y, and z coordinates for each deputy.
The x motion is a dotted line, the y motion a solid line,
and the z motion a dashed line in all cases. From this view
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Fig. 4. Trajectories of all three deputies. The hollow circles are the initial
configuration, and the filled circles the final positions.
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Fig. 5. Trajectories of all three deputies projected onto the y − z plane.
Hollow circles are the initial positions, and the filled circles the final
positions.

it is clear that the deputies achieve their final end points in
approximately 2 orbits (2 days).

Voltage time histories are shown in Fig. 7 and Fig. 8. These
were computed from the charges, qi, using (3). It’s clear that
the maximum voltage required is approximately 20,000 volts.
It should be noted that since the current requirements are
extremely small, this requires very little power compared to
conventional thrusters. The oscillatory nature of these time
histories is due to the switching, every 5 minutes, of the
control objective to a different deputy. This is seen more
clearly in the ”zoomed view” of the p4 charge sphere shown
in Fig. 9. It should be noted that the steady-state part of Fig. 7
and Fig. 8, after about 50 hours, is keeping the deputies at
the desired fixed positions, constantly working to overcome
the orbital forces.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

A method was developed for Coulomb control positioning
of deputy spacecraft using charged spheres attached to a chief
satellite. By focusing on one deputy at a time, a linear control
solution was applied to a single deputy. This was extended
to simultaneous movement of all the deputies by cycling the
charge between deputies. The requirement for the existence
of a control solution was given in (6). In practice one should
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Fig. 6. Time histories of all three deputies where in each plot the dotted
line is the x coordinate, the solid line is the y coordinate, and the dashed
line is the z coordinate.
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Fig. 7. Charge sphere voltage time histories for spheres 4,5, and 6.
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Fig. 8. Charge sphere voltage time histories for spheres 7,8, and 9.
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Fig. 9. Zoomed view of charge sphere 4 showing the control authority
switching.

plan the trajectories such that the deputies do not need to
cross through the volume bounded by the charge spheres.
This is not a very restrictive constraint, and means that the
deputies should be moving outward from the chief.

B. Future Work

There are numerous areas for further study in the general
area of Coulomb controlled formations. Related more specif-
ically to the method described in this paper, certainly stability
of the modulated control solutions needs to be examined. The
ability to generate desired trajectories, not just end points,
that exploit the orbital dynamics would also be helpful.
Coulomb force attitude control is another area that could
benefit from this approach.
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