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META-REINFORCEMENT LEARNING FOR SPACECRAFT
PROXIMITY OPERATIONS GUIDANCE AND CONTROL IN

CISLUNAR SPACE

Giovanni Fereoli*, Hanspeter Schaub† and Pierluigi Di Lizia‡

In order to address the challenges of future space exploration, new lightweight and model-free
guidance algorithms are necessary to make the spacecraft completely autonomous. In recent
years, autonomous spacecraft guidance has been a subject of intense research, and in the near
future, this technology will be a great advantage for proximity operations in cislunar space.
For instance, NASA’s Artemis program plans to establish a lunar Gateway, and this type of
autonomous maneuver, besides the nominal Rendezvous and Docking (RVD) ones, is also nec-
essary for the assembly and maintenance procedures. In this context, a Meta-Reinforcement
Learning (Meta-RL) algorithm is applied to address the real-time relative optimal guidance
problem of a spacecraft in the cislunar environment. Non-Keplerian orbits have more complex
dynamics, and classic control theory may be less flexible and more computationally expensive
with respect to Machine Learning (ML) methods. Furthermore, Meta-RL is chosen for its pecu-
liar and promising ability of ”learning how to learn” through experience. It is an ML approach
in which a model is trained on a variety of tasks in such a way that it becomes more efficient
and effective at learning new ones. A stochastic optimal control problem is modeled in the
Circular Restricted Three-Body Problem (CR3BP) framework as a discrete time-scale Markov
Decision Process (MDP). The agent, an LSTM-based network, is then trained with a state-
of-the-art actor-critic algorithm known as Proximal Policy Optimization (PPO). Additionally,
operational constraints and stochastic effects are considered to assess policy safety and robust-
ness. An MLP-based agent and an optimal control solution using pseudospectral methods are
also evaluated for comparison purposes. The resulting tool is a closed-loop controller able to
autonomously guide a spacecraft in the context of cislunar proximity operations. It is able to
approximate the optimal control solution with a very general and not hand-crafted algorithmic
framework, guaranteeing at the same time high robustness and computational efficiency.

INTRODUCTION

Rendezvous and Docking (RVD) maneuvers play a critical role in various space mission tasks, including
crew transfer, cargo exchange, repairs, and structure assembly. For more than five decades, various coun-
tries have conducted missions of this nature1 and various chaser spacecraft, with their origins in Gemini and
Apollo, have successfully performed these tasks. Some contemporary examples, such as the Demonstration
of Autonomous Rendezvous Technology (DART), the Automated Transfer Vehicle (ATV) of the European
Space Agency (ESA), and the H-II Transfer Vehicle (HTV) from Japan, are now unmanned and fully au-
tomated. This progress, considerably more robust and secure than previous manual astronaut maneuvers,
required the adoption of new autonomous algorithms for Guidance, Navigation, and Control (GNC). In ad-
dition, these techniques have become indispensable for the most intricate spacecraft proximity operations,
including on-orbit servicing, active space debris removal, and other missions. This kind of problem can be
formulated as an Optimal Control Problem (OCP) and solved with active set or interior point techniques after
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transcription.2 However, these methods are open-loop, unable to manage unpredictable circumstances with-
out a controller, and too computationally expensive to be executed on-board. Autonomous G&C algorithms
require two fundamental ideas: robustness, which should be achieved by satisfying numerous requirements,
such as closed-loop control, for mission safety, and computational efficiency for on-board implementation.
Today, to acquire this capability, the high-level task is usually transformed into a pre-calculated reference
trajectory (Guidance) and then tracked by a controller (Control). Several effective algorithms suitable for im-
plementation on-board have been proposed, as documented in references.3 However, additional criteria can
be introduced. First, to handle more intricate dynamical environments where engineering modeling would
be impractical, these algorithms should be model-free. Second, they should incorporate an integrated G&C
law, eliminating the need to break down the high-level task into separate processes for reference computation
and tracking. Reinforcement Learning (RL) possesses the aforementioned characteristics.4 RL agents have
the capability to undergo training by utilizing high-fidelity simulators. This training allows them to learn
the optimal closed-loop policy, rather than being explicitly designed. When the policy is tested on-board, it
only needs minimal computational resources. Additionally, RL can directly optimize the task-level objective
and utilize domain randomization to handle model uncertainty. This allows for the identification of control
responses that are more empirically reliable, as mentioned in Ref. 5.

Deep-Reinforcement Learning (Deep-RL) is currently demonstrating effectiveness in cutting-edge applica-
tions, including robotics,6 automotive,7 and aerospace.8 Employing agents equipped with Artificial Neural
Networks (ANNs), Deep-RL is adept at addressing sequential decision-making problems, known as Markov
Decision Process (MDPs), through interactive engagement with the environment. Neural networks excel in
accurately estimating functions, making them well suited, for example, to learn optimal closed-loop G&C
policies by estimating the solution to the Hamilton-Jacobi-Bellman (HJB) equations.9 The development of
GNC autonomous systems presents a major challenge in terms of robustness to uncertain spacecraft models
and environments. RL deep agents, such as Feedforward ANNs, are usually successful in learning within
the training distributions, but often have difficulty extrapolating beyond them (low generalization capability).
This can lead to an unstable guidance law when the spacecraft encounters states that are not part of the training
distribution. Moreover, traditional RL requires a large amount of experience to even learn basic tasks (sam-
ple inefficiency). To address these two main weaknesses, recent advances in Meta-Reinforcement Learning
(Meta-RL) have been made. This is a Machine Learning (ML) technique in which an agent is taught a range
of tasks (that is, randomized environment parameters) instead of just one, allowing it to create a meta-policy
that can quickly adjust to new and unseen tasks with minimal experience.10 This transfer learning ability
has been referred to as ”learn to learn” by Ref. 11. There are numerous approaches to implementing these
ideas in practice, such as Meta-Agnostic-Meta-Learning (MAML), Task-Agnostic Meta-Learning (TAML),
REPTILE, Meta-SGD, and many more.12 One of the most popular approaches, as proposed by Ref. 13,
is to employ Long Short-Term Memory (LSTM) networks within a RL agent trained through gradient-based
methods, referred to as Meta-Recurrent Neural Networks (Meta-RNN). This approach has been studied in
the aerospace field and has been shown to be more effective than traditional RL in managing uncertain envi-
ronments, actuator failures, and Partially Observable MDPs (POMDPs).14, 15 The hidden states, acting as an
internal memory, of LSTMs networks provide them with an internal dynamics that is continually updated by
new observations along the trajectory. This contributes to better learning in high-uncertainty environments
during the training phase and allows for an adaptive policy during the testing phase. The resulting G&C algo-
rithm has a higher overall robustness due to these properties, which is especially important after deployment.
Unlike Multi-Layer Perceptrons (MLPs), LSTMs can modify their hidden state and adjust in real time to cap-
ture data that have not been modeled, such as dynamical disturbances or hardware failure, during spacecraft
operations. Meta-RL has shown its effectiveness in a range of spacecraft G&C applications, including plan-
etary landing,14 under-actuated cubesat,16 trajectory design,15 rendezvous missions,17 and asteroid proximity
operations.18 All of these studies employ a particular actor-critic gradient-based RL algorithm, Proximal
Policy Optimization (PPO), to optimize Meta-RL policies. PPO has been shown to be highly effective for
continuous control applications and is currently the state-of-the-art method.19

This study will address, through the proposed Meta-RL solution, the challenge of autonomous relative
Guidance and Control (G&C) in cislunar space. This is especially pertinent in the context of NASA’s
ARTEMIS project, which intends to establish a Lunar Gateway, a cislunar space station, in the next decade.20



Positioned at the Southern 9:2 Resonant L2 Near-Rectilinear Halo Orbit (NRHO) of the Earth-Moon sys-
tem, the station’s construction and operations necessitate rendezvous and docking missions. Autonomous
Rendezvous, Proximity Operations and Docking (ARPOD) capabilities in cislunar space have the potential to
significantly improve the deployment and functionality of the Lunar Gateway. Nevertheless, the dynamics
within non-Keplerian environments, characterized by high non-linearity and chaoticity, still demand a thor-
ough examination today.21 Traditional protocols employed in the Apollo/Shuttle programs and automated
ISS operations of ATV/HTV, originally designed for robust gravitational fields, prove inadequate for the
complexity of cislunar space. Consequently, to overcome these challenges, there is a pressing need for the
design of innovative RVD algorithms and procedures. Recent research21, 22 has partially addressed this need
by formalizing the various safety constraints that should be applied in this scenario (e.g., keep-out sphere,
approach corridors, etc.). The researchers also analyzed the effectiveness of different equations of motion,
highlighting that non-linear equations of motion are necessary for designing accurate G&C solutions. The
works of Ref. 23, 24 introduced a combination of stable/unstable manifold exploitation with impulsive con-
trol for passive safety during far-range rendezvous. In addition, they used traditional G&C algorithms, such
as PID, SDRE, etc., with continuous control for active safety in close-range rendezvous and docking proce-
dures. Despite these contributions, there is still a notable scarcity of research on GNC algorithms specifically
designed for relative multi-body dynamics.

CISLUNAR SPACE RELATIVE DYNAMICS
This section presents a summary of the equations of motion and the reference frame employed in this study

to model the relative motion between a target and a chaser spacecraft in the cislunar space environment.

Relative Circular Restricted Three-Body Problem

The motion of a massless particle influenced by two massive bodies is described by the Restricted Three-
Body Problem (R3BP). This model considers the mass of the particle mB and the masses of massive bodies
m1 and m2, assuming mB ≪ m1, m2 and m1 > m2. The problem can be simplified by representing
the equations in a rotating reference frame and assuming circular motion of the primary bodies, leading to
the Circular Restricted Three-Body Problem (CR3BP). This problem is studied in its normalized form. The
CR3BP is an autonomous system of equations, where the only parameter defining the three-body system is
the mass parameter µ. In the Earth-Moon case, this parameter is denoted as µ = 0.012150584269542.

The equations of motion for the Relative Circular Restricted Three-Body Problem (RCR3BP) can be ob-
tained by subtracting the absolute CR3BP equations of motion of the chaser and the target, resulting in
δx = xC − xT . These non-autonomous equations are expressed in the Relative Synodic Earth-Moon frame
(Figure 1) and are as follows:

δẍ = 2δẏ + δx+ (1− µ)

[
xT + µ

∥r1T∥3
− xT + δx+ µ

∥r1T + ρ∥3

]
+ µ

[
xT − µ− 1

∥r2T∥3
− xT + δx+ µ− 1

∥r2T + ρ∥3

]

δÿ = −2δẋ+ δy + (1− µ)

[
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∥r1T∥3
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]
+ µ

[
yT

∥r2T∥3
− yT + δy

∥r2T + ρ∥3

]

δz̈ = (1− µ)

[
zT

∥r1T∥3
− zT + δz

∥r1T + ρ∥3

]
+ µ

[
zT

∥r2T∥3
− zT + δz

∥r2T + ρ∥3

] (1)

Given ρ = [δx, δy, δz], and with r1T and r2T defined as
[
xT + µ, yT , zT

]
and

[
xT + µ− 1, yT , zT

]
,

respectively. In the literature, various types of relative equations of motion for Near-Rectilinear Halo Orbits
(NRHOs) have been explored. The work of Ref. 21 delved into the study of Clohessy–Wiltshire (CW) and
Linearized Relative Equations (LRE). Meanwhile, Ref. 25 proposed a set of Non-Linear Relative (NLR)
equations in the Local-Vertical/Local-Horizon (LVLH) frame, necessitating the computation of the target’s
angular velocity and acceleration vectors during its orbit around the Moon. However, the RCR3BP equations
stand out for their generalization and simplicity.



Relative Synodic Reference Frame

The Circular Restricted Three-Body Problem (CR3BP) can be described in a rotating reference frame
centered on the barycenter of two massive bodies. This frame rotates with a constant angular velocity ωs and
has a right-handed coordinate system with the x̂-axis pointing from the larger body to the smaller one, the
ẑ-axis aligned with the system’s angular momentum, and the ŷ-axis completing the right-handed coordinate
system. The relative motion between a target and a chaser spacecraft in the CR3BP can be expressed in
this frame, with masses mT and mC . The assumed origin of the three axes, taking into account δx, is now
positioned at the opening of the target’s docking port. This establishes CT : {x̂, ŷ, ẑ}, as in Figure 1.

Figure 1: Relative synodic reference frame centered in the target body. Source: Ref. 26.

REINFORCEMENT LEARNING
This section introduces Reinforcement Learning (RL) with a focus on the Markov Decision Process (MDP)

as the modeling framework. The discussion then highlights Proximal Policy Optimization (PPO) as a key
gradient-based RL technique.

Markov Decision Process

Reinforcement Learning (RL) is a form of learning that associates actions with situations in order to max-
imize a reward signal. It is formulated based on the principles of dynamical systems, particularly utilizing
Markov Decision Processes (MDPs) to model sequential decision-making. An agent interacts with an envi-
ronment over discrete time steps (t = 0, 1, 2, 3, ...). The agent receives a state representation St ∈ S, selects
an action At ∈ A (s), and obtains a numerical reward Rt+1 ∈ R. This interaction creates a trajectory starting
with: S0, A0, R1, S1, A1, R2, etc. (Figure 2).

Figure 2: The agent-environment interaction at each discrete time step in a Markov Decision Process (MDP).
Source: Ref. 9.



To employ this modeling framework, the foundational assumptions encompass the complete observability
of the state, finite sets of states S and actions A, and rewards R, along with the Markov Property. The latter
asserts that the probability of each possible value for St and Rt is only influenced by St−1 and Rt−1, and not
by any previous states and actions. The MDP environment is described by a discrete probability distribution
p : S ×R× S ×A → [0, 1], which determines the dynamics of the system as:

p
(
s′, r | s, a

) .
= Pr

(
St = s′, Rt = r | St−1 = s, At−1 = a

)
(2)

For all s′ ∈ S, s ∈ S, r ∈ R and a ∈ A (s).

The agent’s objective is to maximize the long-term cumulative reward rather than the immediate rewards
Rt ∈ R. Typically, the interaction between an agent and its environment is divided into sequences known
as episodes. At the conclusion of each episode, a specific state called the terminal state is reached, which
signifies the completion or non-completion of the task. Following this, the system is restored to either a
default initial state or a randomly chosen initial state from a standard distribution. In order to avoid excessive
cumulative rewards and promote convergence, the agent usually employs the idea of discounting to determine
which actions will maximize the total benefits it will receive in the future. Specifically, it selects action At to
maximize the discounted return, represented as Gt in Eq. 3.

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... = Rt+1 + γGt+1 =

T∑
k=t+1

γk−t−1Rk (3)

Where γ ∈ [0, 1] is the discount rate. The discount rate determines the current value of a future reward.
A policy π can be formally expressed as a mapping of states to the likelihood of selecting each potential
action; specifically, π

(
a|s
)

is the probability that At = a when St = s. The expected discounted return
when starting in a state s ∈ S and following policy π is known as the state-value function vπ . This is defined
as follows:

vπ (s)
.
= Eπ

[
Gt | St = s

]
(4)

The expected value of a random variable is denoted as Eπ [·] when the agent follows the policy π. The
expected discounted return when beginning in a state s ∈ S and taking an action a ∈ A (s) according to the
policy π is denoted by the action-value function qπ:

qπ (s, a)
.
= Eπ

[
Gt | St = s, At = a

]
(5)

The primary objective in reinforcement learning is to find a policy that maximizes the expected discounted
return. A policy π is considered better than or equal to another policy π′ if vπ (s) ≥ vπ′ (s) for all states
s ∈ S . The most favorable policy is referred to as the optimal policy denoted by π∗. Its optimal state-value
function v∗ is defined as:

v∗ (s) = max
π

vπ (s) (6)

Proximal Policy Optimization

Policy Gradient Methods, including Proximal Policy Optimization (PPO), are a type of approximated
method solution that is commonly used to solve RL problems in large state spaces. These methods are
preferred because they offer greater stability and the assurance of convergence, as demonstrated in Ref. 4.
They achieve this by utilizing parameterized functions, such as Artificial Neural Networks (ANNs), to ap-
proximate functions, which makes them well suited for dealing with high-dimensional, continuous-state, and



continuous-action spaces. Unlike traditional value-based methods, such as Q-learning, policy gradient meth-
ods calculate the policy directly without requiring a model. However, they are generally less data-efficient. To
address this problem, an actor-critic framework, which is also utilized by PPO, can be utilized. This approach
aids in reducing the variance in the estimated policy gradient, making it well-suited for online applications.

These methods acquire a parameterized policy* and make action selections without the need to compute
a value function. The parameter vector is expressed as θ ∈ Rd and the policy as πθ

(
a|s
)
. The algorithms

for solving the policy parameters are based on the gradient of a scalar performance measure J (θ). They are
designed to maximize performance, so the update of the parameters at the training step k follows the gradient
ascent of J :

θk+1 = θk + α∇̂J (θk) (7)

Where ∇̂J (θk) is an estimate of the gradient of the performance metric with respect to the current policy
parameters θk, and the step size is determined by the learning rate α.

PPO is renowned as a state-of-the-art algorithm for continuous control in reinforcement learning.19 It is
a first-order approximation of the Thrust Region Policy Optimization (TRPO) method. As an actor-critic
method, PPO introduces bias through a bootstrapping critic and uses a learned weight vector w ∈ Rm to
estimate the state-value function v̂w. In PPO, a clipped surrogate objective function is used to produce a
pessimistic and conservative approximation of policy performance. The corresponding figure of merit is
displayed below:

max
θ

Êπ

[
min

(
rt (θ) Ât, clip

(
rt (θ) , 1− ε, 1 + ε

)
Ât

)]
(8)

The probability ratio rt is expressed as:

rt (θ) =
πθ

(
At | St

)
πθ,old

(
At | St

) (9)

The Advantage Function, denoted as At (s, a) = qπ (St, At) − vw (St), serves as an indicator of the
additional reward that the agent can take when returning a specific action from a given state. In practical
PPO implementations, it is crucial to estimate both the advantage function Ât (dependent on the unknown
environment) and the expectation operator Êπ .

META-REINFORCEMENT LEARNING
As discussed in the introduction, Meta-Reinforcement Learning (Meta-RL), embodied as the Meta-Recurrent

Network (Meta-RNN) according to Ref. 13, integrates Long-Short Term Memory (LSTM)27 into the RL
agent. Subsequently, the agent undergoes training using gradient-based techniques such as PPO. This im-
plementation aims to make the agent well suited for models with numerous free parameters, simultaneously
enhancing the algorithmic framework’s simplicity compared to other meta-learning algorithms. The Meta-
RNN approach excels in handling highly non-stationary time-series and has demonstrated its applicability to
learning and autonomous systems.

Training Algorithm

The PPO algorithm, which is a model-free method, has been previously discussed, and it has been noted
that it requires the estimation of the advantage function in order to operate. To address this, the Generalized

*The policy πθ

(
a | s

)
is typically designed to be stochastic for exploration purposes. In the context of continuous action spaces, the

policy can be formulated as a normal Probability Density Function (PDF). As learning progresses, the focus shifts from exploration to
exploitation, resulting in the standard deviation of the PDF converging to zero.



Advantage Estimate (GAE)28 is used and can be adjusted using the coefficient λ to strike a balance between
bias and variance. The GAE formula, as shown in Eq. 10, is truncated at the end of each episode (t = T ) to
accommodate LSTM-based networks.29

ÂGAE
t =

∞∑
k=0

(γλ)
k
δvt+k (10)

Referring to Ref. 30, the definition of the Residual Temporal-Difference (Residual TD) for the discounted
value function can be expressed as δvt = Rt + γvπ (St+1) − vπ (St). In order to estimate ÂGAE

t , it is
necessary to estimate the state-value function. When a non-linear function approximator is used to represent
the state-value function, a commonly employed approach involves solving a non-linear regression problem
by minimizing the Mean Square Error (MSE) in the following manner:

JMSE (w) = Êπ


vw (St)−

T∑
k=t

γk−tRt

2
 (11)

Batch learning is a machine learning technique used to estimate expectancy operators. It works by gener-
ating a batch of trajectories (or roll-outs), with the number of trajectories controlled by the hyperparameter
called batch size, before each training cycle. After processing the entire training dataset, the model is up-
dated in a single iteration, adjusting all parameters at once. For a more detailed explanation of the algorithm’s
architecture, see Figure 3.

Gradient ascent is subsequently applied to both unrolled LSTM-based Actor and Critic networks, and
Backpropagation Through Time (BPTT) is used to compute the gradients of the parameters θ and w. In
each epoch k of the gradient-based optimizer, such as the Adaptive Moment (ADAM) Estimation method, the
update equations (similar to Eq. 7) are implemented as follows:

θk+1 = θk + βθ∇̂J (θk)

wk+1 = wk + βw∇̂J (wk)

(12)

(13)

For each set of roll-out data, the gradient descent step is applied a certain number of times, called epochs,
which is a hyperparameter. The algorithm will stop when the maximum number of predetermined learning
steps is reached.

Figure 3: Meta-Reinforcement Learning (Meta-RL) training architecture for Recurrent Proximal Policy Op-
timization (Recurrent PPO) algorithm. Source: Ref. 4.



The weights in the LSTM networks are initialized using an Orthogonal approach. This is a critical step, as
incorrect initialization can lead to issues such as all layers learning the same feature, or vanishing/exploding
gradients. This method avoids ill-conditioned gradients by initializing ANNs through the multiplication of
matrices with unitary eigenvalues. This involves creating a matrix from the weights obtained from a normal
distribution and then orthogonalizing the rows.

The algorithm described above, due to the specific version of GAE implemented and the use of BPTT,
produces a version of PPO that is suitable for use with LSTM networks, called Recurrent Proximal Policy
Optimization (Recurrent PPO).16 The following is an illustration of the algorithm:

Algorithm 1 Recurrent PPO

1: Initialization of neural network parameters θ and w
2: for step=1,2,..., learning steps do
3: Reset environment
4: for episode=1,2,..., batch size do
5: Run Policy πold in environment until done
6: Compute advantage estimate ÂGAE

t

7: Store trajectory into batch roll-out
8: end for
9: for iteration=1,2,..., epochs do

10: Unroll agent LSTMs
11: Optimize Actor JPPO wrt θ and Critic JMSE wrt w
12: θold ← θ, wold ← w
13: end for
14: end for

The implementation of Recurrent PPO, and PPO in general, involves a number of complex optimizations
that are not discussed in depth or even mentioned in Ref. 19. However, these optimizations have been found
to have a significant effect on the efficacy of PPO.31 To ensure robustness, consistency, and high flexibility,
this work utilizes the Stable-Baselines3 (SB3)† library in Python, an open-source machine learning library
created by the Facebook AI Research (FAIR) Laboratory.

PROBLEM FORMULATION

This project focuses on developing an autonomous G&C algorithm for the final approach and docking of
a spacecraft in cislunar space. The emphasis is on continuous control and active collision avoidance. The
chaser spacecraft initiates the maneuver from a holding point at the edge of the target Keep-Out-Sphere (KOS)
with a radius of 200 m. It is also assumed that the chaser spacecraft is already situated at the apolune of the
Southern L2 9:2 Resonant Near Rectilinear Halo Orbit (NRHO). The choice of this location for the final
rendezvous stages is based on its favorable slower dynamics, ensuring passive safety and fuel efficiency.21

Figure 4 illustrates this scenario, showing the initial absolute and relative conditions of the NRHO, together
with the natural motion along one orbit. These specific initial conditions can also serve as a holding point
until the chaser spacecraft receives the GO Final Approach. Utilizing this strategy ensures passive avoidance
of collisions with the target, thanks to the relative periodic central manifold. Furthermore, in this study, the
Lunar Gateway is assumed to be the target, and the chaser is the Orion spacecraft. As a result, the main
characteristics of the Orion spacecraft, including m = 21000 kg, umax = 29.3 kN , and Isp = 310 s, are
incorporated.

†https://stable-baselines3.readthedocs.io/en/master/index.html

https://stable-baselines3.readthedocs.io/en/master/index.html
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Figure 4: Chaser and target spacecraft on the Southern 9:2 Resonant Near-Rectilinear Halo Orbit (NRHO) of
the Earth-Moon system apolune at a relative distance of 200 meters, Keep-Out-Sphere (KOS) edge, during
one orbital motion.

To ensure the safety of the approach and proper docking, the RVD maneuver must meet specific require-
ments. Therefore, the algorithm must take into account the following list of constraints:

• Docking Port: the final relative position and velocity shall be ρf < 1 m and ρ̇f < 0.1 m/s, respec-
tively;

• Approach Corridor: the chaser spacecraft shall remain within a truncated cone (Figure 5) with a half
angle of β = 20 ◦ for safety and vision-based navigation purposes. Assuming that the target docking
port is located in its positive t̂2 direction, the requirement for a truncated cone is expressed as follows:

ρ∗ (t) · t̂2 − ρ∗ (t) cos (β) > 0 ∀δy ≥ 0,∀t

ρ∗ (t) = ρ (t) +

[
0,

ρf,max

tanβ
, 0

]T (14)

(15)

Figure 5: The approach corridor is represented by a truncated cone with a maximum semi-angle of β
and a small frustum base designed to satisfy the docking port requirements.

Using a truncated cone, also known as a frustum,20 provides a more realistic representation of the
docking port.1 Moreover, this model avoids singularities, which improves the convergence properties
of the algorithm. The constraint involves an alternative relative position ρ∗ from a point in the −t̂2
direction. This vector is designed to meet the docking port requirements at the small frustum base,
considering an angular distance from the approach axis of β. Additionally, since this requirement
is defined in the target’s body frame and is attitude-dependent, it is assumed that the target remains
cooperative and aligned with the Earth-Moon Synodic frame, with t̂2 ≡ ŷ.



• Maximum Time-Of-Flight: the maneuver shall be accomplished within a restricted time of flight,
therefore, t < ToFmax = 100 s must be satisfied;

• Thrusters Performance: the maximum thrust value specified in the data sheet shall be followed to
formulate a feasible control action profile, ensuring that u < umax = 23.9 kN .

Optimal Control Problem Formulation

Taking into account the requirements mentioned above, it is simple to design an OCP: ”Find the control
action profile that minimizes control effort and such that dynamics, initial conditions, maximum control ac-
tion, maximum time of flight, approach corridor and final docking port requirements are respected”. It can
be expressed mathematically as follows:

min
u

J =

∫ tf

t0

||u (t) ||dt

s.t. ẋ (t) = f
(
x (t) ,u (t)

)
∀t

x (t0) = x0

u (t) < umax ∀t
t < ToFmax

ρ∗ (t) · t̂2 − ρ∗ (t) cos (β) > 0 ∀δy ≥ 0,∀t
ρ
(
tf
)
− ρf,max < 0

ρ̇
(
tf
)
− ρ̇f,max < 0

(16)

The system’s equations of motion, represented by f , encompass the absolute target state, the relative chaser
state, and its associated mass. In order to address this OCP using Meta-Reinforcement Learning (Meta-RL),
it is essential to transform it into an MDP, as explained in the following subsection.

Markov Decision Process Formulation

The agent’s goal in a MDP is: ”Find the control policy π∗ that maximizes the discounted expected return
of rewards received along a trajectory and such that the policy, the environment’s dynamics, and the initial
conditions are respected”. The MDP is mathematically expressed as follows:

max
π

J = Eπ

[
Gt | St

]
s.t. At = π (St)

St+1 = ϕ (St, At)

S0 ∼ N
(
Ŝ0, C

) (17)

The second constraint considers the dynamics of the MDP environment, resulting in the update of its state
St at each time step t. To improve the robustness of the algorithm, the MDP, in contrast to the straightforward
OCP formulation, can leverage domain randomization.5 In this scenario, the dynamics of the spacecraft will
be modified to include random processes and stochastic effects. Additionally, uncertainty will be introduced
in the initial state by sampling it from a normal distribution, just as in the final restriction of Eq. 17. Moreover,
it is crucial to note that operational constraints will be ”translated” through the definition of the reward
function. MDPs face challenges in handling constraints compared to OCPs. In MDPs, constraints should be
represented as significant positive or negative rewards or as the conclusion of an episode.



State and Action Spaces The agent’s neural networks utilize the state space as input to generate the action
(Actor) or predict the state-value function (Critic). In spacecraft RVD problems, it is advantageous to incorpo-
rate both the absolute target and relative chaser states. The inclusion of the chaser’s mass becomes necessary
for optimizing fuel consumption in the reward function. To learn how to comply with time constraints, the
remaining flight time ∆Tt = ToFmax − t is also taken into account. Moreover, observations include the
action and reward from the previous time step, enabling LSTMs to update their dynamics.13 Consequently,
the state space S ∈ R18 encompasses:

St =
[
xT
t , δxt, mt, ∆Tt, ut−1, Rt−1

]
(18)

Normalizing the inputs of neural networks is essential to bring all input features to a comparable scale and
improve numerical stability. Therefore, a simple Min-Max normalization is applied. The state is normalized
to be within S∗

t ∈ [−1,+1] using the following method:

S∗
t,i = 2

(
St,i − Smin,i

Smax,i − Smin,i

)
− 1 (19)

Once the problem is defined, the extremal components of St are identified. The actor network generates
a set of all possible actions that the agent can perform in the environment, termed the action space. In this
specific study, which focuses on a 3-degree-of-freedom (3DOF) spacecraft model, the action space is intended
to depict thrust control. The suitable representation for this research case32 includes an action space At ∈ R3

and its unscaled control action ut, defined as:

At =
[
ũx,t, ũy,t, ũz,t

]
ut = σũt (20)

The control action ut serves as input to the spacecraft equations of motion. To maintain adherence to the
maximum thrust value, the scaling coefficient is defined as σ = umax/∥13∥, since the output of the neural
network is limited to the range of [−1, 1].

Reward Function The reward signal’s purpose is to convey the desired outcome to the agent, rather than
specifying how it should be achieved. In scenarios where rewards are inherently sparse, such as the one
described, RL tends to exhibit sub-par performance. To improve them, it is recommended to employ reward
shaping techniques.33 In such cases, one can make use of non-linear functions, such as logarithmic and expo-
nential functions, leveraging their characteristic of increasing the first derivative near attractive or repulsive
states. This contributes to a smoother appearance of the reward landscape. Additionally, squaring is used to
enhance convergence performance.34 The specific reward function employed is described below:

Rt = α log

(
∥δxt ⊘ δxmax∥

∥16∥

)2

− λ exp

(
acos

(
ρ̂∗
t · t̂2

)
π

)2

− γ exp

(
ut

umax

)2

+
(
ρt < ρf,max ∧ ρ̇t < ρ̇f,max ⇒

)
ζ −

(
ρ∗
t · t̂2 − ρ∗t cos (β) < 0⇒

)
κ

(21)

The reward function consists of two main parts:

• The dense rewards provide ongoing feedback within each episode, featuring a primary bonus compo-
nent for approaching the goal state δx = 0, a penalty for the distance from the approach corridor as
the second component, and a penalty for the control effort as the third. All inputs to these non-linear
functions are normalized to be within the range [0, 1]. However, particular attention during reward
engineering has been dedicated to the first dense component (the logarithmic one). The incorporation
of the Hadamard operator, L2-norm, and division by∥16∥ aims to generate a scalar value that ensures



equal importance for each state component and offers no reward for the greatest distances and high
velocities;

• Episodic rewards deliver feedback at the conclusion of a task, featuring a primary bonus component
when the docking port requirements are satisfied and a secondary penalty component when a collision
with the approach corridor occurs. These components also signal the completion of the episode to the
environment.

The reward shaping logic, using logarithmic and exponential functions (with numerical values provided
solely for demonstration), is summarized and illustrated in Figure 6.
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Figure 6: Graphic illustration of the reward shaping employing logarithmic and exponential functions. The
bonus and penalty axes represent their input arguments.

Environment’s Dynamics In the realm of an RVD problem, given its continuous nature, it is more appro-
priate to represent the transition function using a generative model, expressed as St+1 = ϕ (St, At). This
model facilitates updates for both the absolute target and the relative chaser state by integrating the CR3BP
and the RCR3BP. The equations of motion, denoted by f , undergo discretization into discrete steps through
integration, taking into account a constant control action. Additionally, the model includes updates for the
residual flight time, as well as the action and reward from the preceding time step. At the beginning of each
MDP episode, a random initial state S0 is selected. This randomness specifically influences the initial condi-
tions of the relative chaser dynamics δx0 = [ρ, ρ̇] and its initial mass m0, derived from three as broad normal
distributions as possible. Standard deviations are configured as follows: σρ0 = 0.1ρ0, σρ̇0 = 0.5 m/s, and
σm0

= 100 kg. Furthermore, the environment sends out a done when the flight time exceeds its highest value
(ToFmax).

Process noise is included in the chaser spacecraft dynamics to account for unmodeled accelerations (e.g.
SRP, the gravity of other celestial bodies, thrust uncertainty, etc.). Hence, the equations of motion for the
chaser, taking into account h as the non-autonomous RCR3BP, can be expressed as:

δẋ (t) = h
(
δx (t) ,u (t) ,xT (t)

)
+w (t) w (t) ∼ N

(
0, diag

(
03,10

−8
3

))
(22)

N represents a Gaussian White Noise (GWN), featuring a covariance that matches the non-dimensional
magnitude (σ = 10−4) of typical NRHO disturbances. The robustness of the algorithm is further enhanced
by taking into account and modeling the possibility of a random failure in the control action. At the beginning
of each episode, the environment randomly selects a control direction in which to reduce the magnitude of
the thrust by 50% or have no failure. Each scenario has an equal probability of 25%, as illustrated in Table 1.

Table 1: Multinomial discrete distribution modeling a breakdown in 6DOF control.

Failure Type 0.5 · ux 0.5 · uy 0.5 · uz No Failure
Probability 0.25 0.25 0.25 0.25



Artificial Neural Networks Architecture and Hyperparameters

The architecture of the model is inspired by Stable-Baseline3 (SB3) Recurrent PPO, featuring layers of
LSTM followed by layers of MLP extractor, as shown in the Table 2. The use of a combination of LSTM
networks and MLP extractor layers is a common approach in RL.35 This is because LSTMs are particularly
adept at capturing sequential dependencies, but may not be able to provide a suitable final representation.
An MLP-layer at the end can be used to condense the variable-length sequence of LSTM outputs into a
fixed-size representation, making it easier to make decisions or take actions. This combination of sequence
modeling (handled by LSTMs) and representation learning (handled by MLPs) allows the model to effectively
use sequential information in RL tasks. In this study, the size of the neural network is determined through
experimentation to guarantee a high level of generalization and to accurately fit the optimal solution.

Table 2: Architecture of the Artificial Neural Network (ANN) implemented in the Actor (A) and Critic (C)
networks of the agent.

Layer Neurons (A/C) Activation Type
Hidden 1 256/256 Tanh LSTM
Hidden 2 256/256 Tanh LSTM
Hidden 3 64/64 Tanh MLP
Hidden 4 64/64 Tanh MLP

The hyperparameters used in this study are described in Table 3. These selected hyperparameters closely
align with the default settings9 and required only minor adjustments determined by trial and error. It is crucial
to note that gradient clipping has become a highly significant hyperparameter for LSTM networks, given their
susceptibility to catastrophic forgetting.36

Table 3: Hyperparameters for Actor’s training using Proximal Policy Optimization (PPO) and Critic’s train-
ing through Mean Squared Error (MSE) algorithms.

Actor PPO Critic MSE
Batch Size 64 64
Number Epochs 10 10
GAE Lambda (λ) 1
Discount Factor (γ) 0.99
Clip Parameter (ε) 0.1
Learning Rate (α) 0.00005 0.00005
Entropy Coefficient 0.0001
Clip Gradient 0.1 0.1

NUMERICAL RESULTS

Reinforcement learning encompasses two primary phases: training and testing. In the context of space-
craft G&C applications, ground-based high-fidelity simulators should be used for training, with testing of
the policy occurring directly on-board during operations. The equations of motion are solved in the MDP
environment with the scipy.integrate library in Python, using the non-stiff Adam predictor-corrector, called
LSODA, method with relative and absolute tolerances of 2.22 · 10−14. The integration time step to convert
continuous dynamics to an MDP is set to dt = 0.5 s. The device used for this work is a Laptop PC with an
Intel(R) Core(TM) i7-8565U CPU 1.99 GHz and 16.0 GB of RAM.

Training

The algorithm is trained for 7 million steps, which corresponds to 40.5 days in the simulated environment.
This training duration spans 3.2 days, and the resulting training curve, which illustrates the mean discounted
cumulative reward of trajectory roll-outs in relation to the learning step, is shown in Figure 7. Furthermore, a
standard PPO is also employed for training a simple fully connected MLP-policy. This serves as a benchmark



for Meta-RL performance. The MLP-policy employed in this comparison shares identical environmental
setup, network width and depth, and hyperparameters. The results are presented within the same figure.
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Figure 7: Mean discounted cumulative rewards of the trajectory roll-outs during the training phases.

Both learning curves exhibit a plateau, indicating the effectiveness of the training. The LSTM-agent, which
has six times the number of parameters compared to the MLP-agent, clearly requires more training steps and
wall-time. However, it consistently achieves higher cumulative rewards. Meta-RL employs a recurrent agent,
which allows the policy to adapt and modify its actions within the same episode based on the given inputs.
Consequently, during training, an MLP-policy acquires a generally effective strategy, while an LSTM-policy
also learns to dynamically adjust itself to optimize performance for each task in a specific way.

Testing

The LSTM-policy, which has been trained, is currently being evaluated in the environment, taking into
account the same uncertainty regarding the initial conditions of the MDP. The deployment results, depicted
in Figures 8 and Figure 9, are derived from a single episode.
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Figure 8: Trained LSTM-policy deployed in the environment and tested for a single episode. Trajectory
inside the approach corridor starting from a randomized initial condition.

Figure 8 shows that the chaser spacecraft, originating from a random initial condition, effectively reaches
the target (δxf =

[
0.612 m, 0.085 m/s

]
), fulfilling safety requirements. The confirmation of adherence

to the maximum flight time constraint is visible in Figures 9a, 9b. Figure 9c specifically displays the mass
profile over time and, according to Tsiolkovsky’s equation, a ∆V = 13.113 m/s is required. Furthermore,
Figure 9d shows compliance with the restriction on maximum control action. It is essential to emphasize that
the policy adeptly handles unforeseen thrust failures by learning to utilize half of the maximum thrust.
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Figure 9: Trained LSTM-policy deployed in the environment and tested for a single episode. Relative
position, relative velocity, mass, and control action along the trajectory of Figure 8.

Testing is currently underway on the trained LSTM-policy and MLP-policy, generating 500 trajectories,
each with a different initial state due to the randomness of the MDP. This Monte Carlo campaign aims to
evaluate the robustness and computational efficiency of Meta-RL as an autonomous G&C algorithm for on-
board deployment. Additionally, it involves a performance comparison with the non-recurrent policy. The
trajectories are shown in Figure 10, and a summary of the results is presented in Table 4. To evaluate the fuel
optimality of the Meta-RL approach in this study, a state-of-the-art OCP direct pseudospectral method37 is
utilized as a reference. The results of the Monte Carlo campaign with the OCP method, considering the same
initial condition uncertainties as the MDP but not accounting for process noise and actuator malfunctions, are
presented in the same table.
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Figure 10: Trained LSTM-policy deployed in the environment and tested for a batch of episodes. Trajectories
inside the approach corridor starting from a randomized initial condition.



Table 4: Monte Carlo performance of the trained LSTM-policy, trained MLP-policy tested in the environ-
ment, alongside the OCP pseudospectral solution.

LSTM-policy: µ± σ MLP-policy: µ± σ OCP: µ± σ

Success Rate: Sr

[
%
]

100 100
Final Position ρf [m] 0.561± 0.096 0.719± 0.051
Final Velocity ρ̇f

[
m/s

]
0.082± 0.004 0.088± 0.003

Fuel Consumption ∆V
[
m/s

]
11.981± 0.495 18.669± 0.537 11.153± 0.772

Time of Flight ToF [s] 82.571± 1.571 61.571± 1.274 76.619± 2.115
CPU-Time Step dtCPU [ms] 2.334± 0.138

The LSTM-policy and the MLP-policy demonstrate success in all situations, obtaining a Sr = 100%,
where Sr is the proportion of trajectories that meet all requirements. In spite of the numerous uncertainties
and the potential for failure, the policies have effectively guided the spacecraft to the intended final state with
minimal deviation in every instance. However, the MLP-policy has much higher fuel consumption, whereas
the LSTM-policy is near-optimal. Recurrent layers generate an adaptive policy that can more effectively
optimize the trajectory of each episode. Therefore, the LSTM policy showed robustness, achieving the highest
possible success rate, near-optimality, and computational efficiency (dtCPU = 2.33 ms, as illustrated in
Figure 13) in Monte Carlo simulations. This makes it well-suited for real-time on-board applications.

The trained LSTM-policy is now subjected to an additional testing phase, encompassing a set of 500 tra-
jectories in an enhanced environment similar to the one described. The enhanced environment eliminates
process noise and introduces into the chaser dynamics the following elements: the Sun’s fourth-body gravi-
tational effect, considering the Bicircular Restricted Four-Body Problem (BR4BP),38 and the Solar Radiation
Pressure (SRP), modeled with the cannonball method.39 The objective is to show that the deployed policy
can withstand unmodeled accelerations by introducing noise during training. The results are in Figure 11 and
Table 5, which demonstrate that the LSTM-policy is effective in handling unmodeled accelerations.
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Figure 11: Trained LSTM-policy deployed in an environment with unmodeled accelerations, and tested for a
batch of episodes. Trajectories inside the approach corridor starting from a randomized initial condition.

Table 5: Monte Carlo performance of the trained LSTM-policy tested with unmodeled accelerations.

Success Rate: Sr = 100% Results MC: µ± σ
Final Position ρf [m] 0.497± 0.084
Final Velocity ρ̇f

[
m/s

]
0.094± 0.001

Fuel Consumption ∆V
[
m/s

]
12.263± 0.524

Time of Flight ToF [s] 81.713± 0.955



STABILITY ANALYSIS
A G&C algorithm should ensure the asymptotic stability (Def. 1) of the controlled system in order to

achieve mission success, avoiding any erratic behavior and guaranteeing predictable vehicle performance,
while also avoiding potential accidents or deviations from the intended trajectory. In the literature, there
are a few analytical methods30 that address the convergence of RL algorithms with function approximators.
RL methods involve optimizing a criterion, inherently constraining states along the optimal trajectory, and
stabilizing the system. However, in this section, the Lyapunov’s Direct Method40 is employed to highlight
system stability from the standpoint of non-linear equations of motion. This approach, based on Lyapunov’s
Second Stability Theorem (Thm. 1), is advantageous as it enables the assessment of the stability of the
controlled system without the need for linearization around an equilibrium solution.

In this setting, the RCR3BP is viewed as an autonomous dynamical system. This assumption holds pro-
vided that the target’s absolute state xT remains constant during the maneuver. This feasibility arises from
the chaser’s time of flight being considered negligible in comparison to the orbital target period. With these
assumptions, a positive-definite quadratic, ”energy-error-like”, Candidate Lyapunov Function in R6 can be
employed as follows:

V (δx) = δxTPδx (23)

The diagonal weight matrix considered is P = diag (0.56), and the equilibrium point is δx∗ = 0, repre-
senting the desired outcome of the RVD maneuver. This equilibrium point would result in h (δx∗, u) = 0
in the RCR3BP equations. The stability assessment utilizes a Monte Carlo technique by randomly selecting
the chaser’s initial conditions, as defined for the MDP. A set of 500 trajectories is simulated with the trained
LSTM-policy deployed in the environment, and the numerical values of V (δx) and V̇ (δx) are determined
along these trajectories. The results are shown in Figure 12, where the L2-norm of the relative state vector
serves as the abscissa in each graph. The developed LSTM-policy demonstrates asymptotic stability, as indi-
cated by the identification of a Candidate Lyapunov Function that meets the criteria outlined in Lyapunov’s
Second Stability Theorem.
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Figure 12: Trained LSTM-policy deployed in the environment and tested for a batch of episodes. Candidate
Lyapunov Function and its time-derivative with regard to the distance from the equilibrium point.

CONCLUSIONS
This work demonstrates the efficacy of Meta-RL in effectively handling the formulated MDP. More specif-

ically, it is applied to address the final approach and docking scenario of a spacecraft within a Southern L2 9:2
Resonant Near-Rectilinear Halo Orbit (NRHO) in the Earth-Moon system. Despite a great deal of uncertainty
in initial conditions, process noise, and actuator malfunctions, all objectives have been achieved. The learning
curve shows that the LSTM-agent training phase was successful, as it reached the expected plateau. During
the testing phase, the LSTM-agent is evaluated through a Monte Carlo campaign. The results demonstrate



that the trained policy consistently meets all imposed requirements on the entire set of generated trajectories.
As a result, the Meta-RL algorithm has proven its ability to effectively learn a G&C policy tailored for RVD
maneuvers within the cislunar space. Furthermore, the reliability of the method has been confirmed through
Monte Carlo simulations conducted not only in the training environment, but also in an enhanced setting that
incorporates unmodeled dynamics not present during the learning phase. The computational efficiency for
on-board execution of the LSTM-policy has been demonstrated, its fuel optimality has been verified through
a comparison with a state-of-the-art OCP pseudospectral direct solution, and the asymptotical stability of
the controlled system has been established from a nonlinear equations of motion perspective. Consequently,
it can be considered a promising solution for autonomous G&C applications. For the sake of comparison,
a fully MLP-agent has also been trained. It successfully learns the proposed MDP, reaching the expected
plateau during training, and achieving the highest possible success rate in the Monte Carlo testing campaign.
However, the LSTM-policy outperforms the MLP-policy by acquiring greater cumulative rewards during
training and demonstrating significantly higher fuel efficiency during testing. The internal memory of the
LSTM-policy enables it to generate an adaptive G&C policy better suited to the optimal solution of the prob-
lem. This highlights the evident success of recurrent policies over non-recurrent ones when addressing tasks
characterized by significant parameter randomization.
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APPENDIX A: COMPUTATIONAL EFFICIENCY

In the course of the Monte Carlo simulation depicted in Figure 10, the computational efficiency of the
policy has been assessed at each step. The policy evaluation had an average CPU-Time per step of 2.334ms,
which is equivalent to 18.672 ms (53.68 Hz) when taking into account the clock frequency of 250 MHz
on a LEON3FT‡ on-board spacecraft processor in an average performance configuration. This value implies
that the algorithm can be implemented in Orion’s real flight software, which typically runs the GNC blocks§

at a rate of 40 Hz. The method’s computational efficiency is attributed to the fact that, once the agent has
been trained on a high-fidelity simulator on the ground, the on-board policy evaluation during testing only
requires a small number of matrix multiplications.

‡https://www.gaisler.com/index.php/products/boards/gr712rc-board?task=view&id=364
§https://ntrs.nasa.gov/api/citations/20190000011/downloads/20190000011.pdf

https://www.gaisler.com/index.php/products/boards/gr712rc-board?task=view&id=364
https://ntrs.nasa.gov/api/citations/20190000011/downloads/20190000011.pdf
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Figure 13: Trained LSTM-policy deployed in the environment and tested for a batch of episodes. CPU-Time
for each policy evaluation step during testing.

APPENDIX B: LYAPUNOV’S STABILITY THEORY
Definition 1 (Lyapunov’s Stability). Consider an autonomous non-linear dynamics system described by:

ẋ = f (x) , f (x∗) = 0 (24)

Where x∗ is an isolated equilibrium point. Then the equilibrium point is said to be:

1. Stable: for ∀ε > 0, there ∃∂ > 0 such that if
∥∥x (0)− x∗

∥∥ < ∂ then
∥∥x (t)− x∗

∥∥ < ε ∀t > 0;

2. Asymptotically Stable: the equilibrium point x∗ is stable and
∥∥x (t)− x∗

∥∥→ 0 as t→∞.

The definitions describe a local stability in the vicinity of the equilibrium point; if the region ∂ is un-
bounded, the definitions describe a global stability.

Theorem 1 (Lyapunov’s Second Stability Theorem). Consider an autonomous non-linear dynamics system
described by:

ẋ = f (x) , f (x∗) = 0 (25)

Where x∗ is an isolated equilibrium point. If there exists in some finite neighborhood D of the equilibrium
point x∗, a scalar function V (x) with a continuous first partial derivative with respect to x such that the
following conditions hold:

(i) V (x) > 0, ∀x ̸= x∗ ∈ D ∧ V (x∗) = 0

(ii) V̇ (x) < 0, ∀x ̸= x∗ ∈ D ∧ V̇ (x∗) ≤ 0
(26)

Then the system is said to be asymptotically stable. If D includes all possible states, the system is said to
be globally asymptotically stable. If V̇ (x) ≤ 0 ∀x ∈ D then the system is said to be stable.


	Introduction
	Cislunar Space Relative Dynamics
	Relative Circular Restricted Three-Body Problem
	Relative Synodic Reference Frame

	Reinforcement Learning
	Markov Decision Process
	Proximal Policy Optimization

	Meta-Reinforcement Learning
	Training Algorithm

	Problem Formulation
	Optimal Control Problem Formulation
	Markov Decision Process Formulation
	Artificial Neural Networks Architecture and Hyperparameters

	Numerical Results
	Training
	Testing

	Stability Analysis
	Conclusions
	Acknowledgment

