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Abstract
This paper analyzes the dynamic behavior and develops the equations of motion of an origami folded spacecraft
structure. The dynamics model is derived using the augmented approach for closed-chain forward dynamics. This
is a multi-body approach developed in the literature for complex robotic manipulator systems. In this paper, we
demonstrate the applicability of this approach to folded deployable spacecraft structures. This approach is desirable
due to the computational efficiency of the algorithm and the ability to implement multiple types of complex internal

hinge behavior without reformulation of the dynamics algorithm.

1. Nomenclature
2. Acronyms/Abbreviations
3. Introduction

The size and weight constraints of launch vehicles have
inspired the development of innovated deployable space-
craft structures technologies!’ An emerging area in this
field takes inspiration from origami folding techniques to
stow flat structures with large area relative to the space-
craft bus size, such as solar arrays,2 star occulters? and
antenna® A central challenge for this concept is the
deployment dynamics and deployment actuation of the
folded structure and spacecraft system. These concepts
are often studied through expensive physical testing and
prototyping or time costly finite element modeling. This
paper considers modeling the system dynamics using
multi-body techniques with potential energy at the fold
hinges to actuate the deployment.

This paper analyzes the dynamic behavior and devel-
ops the equations of motion of an origami folded space-
craft structure. The dynamics model is derived using the
augmented approach for closed-chain forward dynamics.
This is a multi-body approach developed in the literature
for complex robotic manipulator systems® In this pa-
per, the applicability of this approach is demonstrated to
folded deployable spacecraft structures. This approach is
desirable due to the computational efficiency of the al-
gorithm and the ability to implement multiple types of
complex internal hinge behavior without reformulation of
the dynamics algorithm. Investigations following the La-
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grangian approach provide initial understand of the prob-
lem,® but are insufficient for scaling to multiple closed
chain systems. Additionally, Kane’s method” is found to
be insufficient in comparison to the framework provided
by the spatial operator based model here. The advanta-
geous partial velocities defined by Kane’s method are also
represented in the spatial operator models, however main-
taining the full spatial operator model enables further al-
gorithm development. Therefore, the model structure of
the spatial operator format is viewed by some as a refine-
ment of Kane’s equations >

Fig. 1: Example concept: A spacecraft hub with a radially fold-
ing deployable structure.

Origami fold patterns with repeating structure, such

as the Miura-Ori® and Scheel patterns.,9 are considered.
These patterns share the common property of having no
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more than four panels meeting at each vertex. Therefore,
the subsystem case of a four-panel set is analyzed in de-
tail as a starting point. A generic set of four panels fold-
ing at a vertex can be modeled as an undirected multiply
connected graph or as a directed acyclic graph with sim-
ilar qualities to a four bar mechanism. These two model-
ing options and their consequences are explored and dis-
cussed. The closed four-body chain is approached as two
two-body arms subject to a system loop constraint and an
algorithm to derive the generic equations of motion is de-
veloped. Error control methods on the loop constraint are
implemented and discussed. The scalability of the algo-
rithm to multiple-loop systems, as would be seen in a re-
peating origami pattern, is evaluated. Modeling the hinge
actuation behavior is studied in detail.

Self-actuated deployable space structures are structures
that stow internal strain or potential energy within the
structural components when in the stowed configuration,
that actuate the deployment when released, and that typ-
ically have no stored energy in the deployed configura-
tion ¥ A simple example of this is a torsion spring actuat-
ing a single axis rotation to deploy a solar panel. High
strain (large deformation) composites are an emerging
technology that can provide self actuation at low mass and
have diverse application'"!2" Implementing high strain
composite hinges in the joints of folded deployable struc-
tures eliminates the complexity and mass of a motorized
external actuation structure while adding rigidity across
joints. However, such hinges are flexible in multiple de-
grees of freedom and therefore have complex force and
moment behavior. A primary motivation for selecting
the articulated body forward dynamics algorithm for this
modeling case is the analysis advantages provided by the
hinge motion representation. These models must accom-
modate complex internal hinge models with multiple de-
grees of freedom. Furthermore, the constraints and pa-
rameters of the hinge motion must be able to be updated
in a modular fashion as the internal hinge models are cur-
rently under development. This requirement is met by im-
plementing the motion constraints of the hinges through
the hinge map matrix definition, H7(k), and providing
the internal hinge behavior through the hinge force, T'(k).

4. Graph Theory and Folded Structures
4.1 Overview of Theory

A system of hinge-connected rigid bodies can be repre-
sented using graph theory by treating the rigid bodies as
nodes and the hinges or fold lines as edges. This repre-
sentation will aid in breaking down the complex system
into a form that can be efficiently analyzed. The manner
in which the system of nodes is connected determines the
classification of the system. For a given graph, the node
from which an edge leads from is designated the parent
node, and the node at the destination of that edge is re-
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ferred to as the child node. A parent node can have mul-
tiple child nodes, and if these nodes do not share edges
within the graph, the graph is referred to as a tree topol-
ogy. The basis of the dynamics algorithm discussed here
is written to recursively solve for a serial chain of bod-
ies, following the branch of a tree. At initial considera-
tion, the closed-loop patterns of a folded spacecraft struc-
ture is a multiply connected digraph where multiple child
nodes span from a parent node and are interconnected,
and there exist paths in the graph that lead back to a given
node. Then the first step in modeling a folded spacecraft
structure is to identify edges of the system to “cut” such
that the bodies are segmented into a tree topology. These
cut edges must then be constrained to enforce the desired
topology. The graph showing how these systems are bro-
ken down is referred to as a digraph.

4.2 Kinematic Chains of Planar Origami Patterns

The development and analysis of origami-inspired fold
patterns appropriate for use in spacecraft structures is
an active area of interest. A select number of patterns
have received more study due to the clear applicability
to spacecraft needs. The Miura-ori pattern, illustrated in
Figure [2] is a highly efficient folding scheme with one
theoretical degree of freedom that deploys linearly in a
two direction, planar fashion and that is thoroughly stud-
ied in literature. Similarly, the Scheel pattern illustrated
in Figure[3]is a radially wrapped pattern that is commonly
studied for spacecraft structure applications.

Q>P>Q>0>0>9
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Fig. 2: Linearly configured Miura-ori folding pattern and exam-
ple system digraph with cut edges.

Fig. 3: Radially configured Scheel folding pattern and example
digraph with cut edges.

Figures [2| and [3] also display example digraph patterns
for their corresponding origami pattern. The patterns are
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segmented such that a single root parent node spawns the
serial chains of the origami pattern in a manner that itself
displays a repeatable and expandable pattern. These serial
chains are then constrained to each other at each adjacent
node of their chains.

Fig. 4: Subgraph of 4 body closed-chain structure.

In both of these prominent patterns, and in many more
not mentioned here, the complex systems of intercon-
nected bodies are entirely comprised of four-body sub-
graphs, as illustrated in Figure 4] Additionally, the four-
body system is the simplest system that embodies the
challenges presented by closed-chain systems, where one
cut-edge constraint is included. Therefore, the remainder
of this analysis uses the four-body case to illustrate the
approach. Additionally, the four-body subgraph is rem-
iniscent of the classic four bar mechanism, although in
this problem, the joint kinematics remain free in multiple
degrees of freedom, where the four bar mechanism is typ-
ically constrained to one rotation per joint. However, fur-
ther constraining the four-body model to mimic the four-
bar mechanism provides a simple point of verification if
needed.

5. Dynamics Theory

The dynamics algorithm applied here is derived from the
O(N) Articulated-Body Forward Dynamics (ABFD) al-
gorithm developed independently by Featherstone! and
Rodriguez'* and detailed in a unified manner by Jainl>
The algorithm is developed to be appropriate for any
multi-body robotic system that is treated as a network of
serial-chain rigid bodies. The full derivation of the algo-
rithm can be reviewed in the literature, but key formula-
tions are repeated here to provide context to the deriva-
tions developed here for spacecraft and deployable struc-
ture systems. In the articulated-body model, each of the
rigid bodies down-chain of the current body being con-
sidered are treated as completely free with zero hinge
force. Under this assumption, the articulated body inertia
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is calculated to represent those free bodies and a correc-
tion term is included to compensate for this assumption.
This approach is in contrast to the composite body model,
which treats the connected rigid bodies as fixed relative to
each other, and uses a similar composite body inertia and
correction term to derive the hinge force. However, the ar-
ticulated body model is more appropriate for the forward
dynamics problem.

5.1 Spatial Vectors

The ABFD algorithm is structured using spatial vectors
for computational and mathematical efficiency. Spatial
vector algebra uses six dimensional representations of
rigid body properties to capture both the rotational and
linear components in a single expression. For example,
a rigid body’s orientation and position, referred to as the
spatial coordinates of frame G with respect to frame F as

wro- (175

where 6 is a three coordinate representation of orienta-
tion and [ is the position vector in 3D Euclidean space.
In this application, the orientation is represented by the
standard 3-2-1 Euler Angles'® Similarly, the spatial ve-
locity is chosen as the angular rotation rate and the linear
velocity of the body

(D

w(F, g)] )

ﬁ(f,g) = [U(}-7g)

Where the relative angular velocity is a non-integrable
quasi-velocity, meaning it is not the time derivative of the
spatial coordinates, and the notation w(F, G) denotes the
angular velocity of frame G with respect to frame F. The
spatial orientations and spatial angular velocities are then
related to each other using a linear transformation. For

3-2-1 Euler angles, this transformation jglo
. 1 0 803 003
0= e 0 clhacls —cbzs03 | w=[B]“w (3)
2 692 892893 892093

where s and ¢ are abbreviations for sin and cos respec-
tively. Then the full spatial transformation is

i~ - |0 e

05 I “4)

5.1.1 Spatial Rigid Body Transformation

A key spatial vector operation to develop is the rigid body
transformation between frames. For a frame that is both
translating and rotating with respect to a reference frame,
the 6 x 6 transformation that transforms a vector expressed
in the G frame to one expressed in the F frame is

Fq=0¢(F.6)% (5)
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where

¢(f,g)_[é§ [ri(i,g)]] [[@G] [Jgag]] ©

where the 3 x 3 direction cosine matrix between frames
F and G is represented by [FG], I3 is the 3 x 3 identity
matrix, Os is a 3 x 3 zero matrix, and the tilde operator is
the cross product matrix operation for a 3 vector, defined
as

) 0 —ls b
=11 0 - (7
—ls l1 0

5.1.2 Spatial Rigid Body Transformation Derivative

The time derivative of the transposed spatial transforma-
tion is needed throughout the dynamics development to
follow. Following Equation [6] and the matrix property

il = il

o790 - [T @nl| iy 1) ©

Using the chain rules

SoT(F.0) =
RO | e
+[[gof] [gjf]]i[—[fiff,g)] (}ﬂ )

The time derivative of the direction cosine matrix is
known!® to be

SI6F] = ~@(F.0GF] o)

and the derivative of the position vector expressed in
frame F is denoted as vz (F,G), then

d oo [-[@(Fg 0 :
gorEo - [eFol e
03 0

3
+ [—[f;f(}i )l 03] ¢T(F,G)
(1)
Simplifying,

d T _ [JJ(}',Q)] 0: T
a? (79) = [[mwﬂ ((F, g)]] 17, 9)

12)
Defining a spatial vectrix operator as

[w(F,9)] 03

Vr(F.0) = [[ﬁfmg)] [ab(f,gﬂ] o
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Then the spatial transformation derivative is expressed as

SOTF.G) = ~VE(F.G)6"(F,0)

Note the similarities of structure with Equation [I0] how-
ever the inclusion of the position offset of the frames to
the transformation definition leads to an additional term.

(14)

5.1.3 Derivatives of Spatial Vectors

Consider the spatial vector transformation of a spatial vec-
tor expressed in the G frame to the F frame

Y2 = ¢T(F,G)  x (15)

Differentiating this expression using the chain rule yields

dg,_9d.s F T dr
= O F G w0 (FG) T

Using Equation [T4] this expression becomes

(16)

d ~ d
5 &= VEFGN(F 9w+ ¢(F,G) T
a7
Then considering the coordinate-free notation, the time
derivative of a spatial vector with respect to a given frame
can be related to the time derivative of that spatial vec-
tor with respect to another frame through the following
expression
9d 7d ~
—x=—x -V,
TR Ak
This equation draws parallels with the Transport Theorem

for vectors in 3D Euclidean space.
5.2 Serial-chain ABFD Framework

(18)

The ABFD framework outlined by Jain® provides the ba-
sis of the version implemented here, with a few key adap-
tations that are described here as needed. The generalized
spatial coordinates are chosen as hinge coordinates at the
k™ hinge, or the k™ rigid body’s outboard hinge frame,
Oy, orientation and position with respect to the &+ 1 rigid
body’s inboard hinge frame, (9;, as illustrated in Figure

Bl

(0, 0y)
k) = ko 19
(I( ) [l((’),j,(’)k) (19)
and the generalized velocities are chosen as the hinge spa-
tial velocities, taken as the time derivative with respect to

the k + 1 frame

k) = ko 20
For a given set of rigid bodies, these are collected in the
full coordinate and velocity sets

a(1) B(1)
¢=|a®) s=|sk)| @
a(n) B(n)
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kth hinge

D)
k + 1th body

kth body

Fig. 5: Vector and frame notation between the k + 1th and the kth body.

Where the tip of the chain is denoted as body 1 and the
base body is denoted as body n. This leads to system
equations of motion in the form

M(q)B+C(q,B) =T (22)

where M(q) is the full system mass matrix, C(g, /) con-
tains the Coriolis contributions, and 7’ is the vector of sys-
tem generalized forces. The use of the quasi-velocities di-
verges from the assumptions implemented in Jain’s text.
In the forward dynamics problem, q [ and T are known
quantities and the time derivative (3 is the desired quan-
tity. Direct inversion of the mass matrix M is typically
done for small order systems, but is a computationally ex-
pensive O(N3) matrix operation for an A\ size matrix.
This becomes prohibitively slow for large DOF multi-
body systems. The computational efficiency of the ABFD
algorithm is achieved by applying the Innovations Oper-
ator Factorization of the mass matrix M and deriving an
explicit and analytical expression of the inverse, M ™!,
The details of this factorization are left to the literature.
The dynamics are derived using body frame derivatives.
The algorithm is set up in the following way. First, a re-
cursive sweep that solves the velocities and Coriolis ac-
celerations of the chain is run from the base body to the
tip. Then, the articulated body inertias and corrections are
solved for in a tip to base recursion. The final set is to do
a base to tip recursion to solve for the body accelerations,
yielding the system equations of motion.

5.2.1 Recursive Articulated Body Spatial Inertia

For a general rigid body where the hinge frame is not lo-
cated at the center of mass, the spatial mass matrix about
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the hinge frame, M (k), is
J(k) m(k)[p(k)]
MO | i) oty |2
where
J(k) = J(c) + m(k)[p(k)][p(k)]T (24)

is the body inertia about point k, m(k) is the mass of the
body, and p(k) is the position vector from the hinge frame
to the center of mass frame of the kth body, illustrated in
Figure |5| and expressed in the kth frame. The articulated
body spatial inertia, P(k) is then calculated as

P(k) = ¢k, k—1)P+(k—1)¢T (k, k—1)+ M (k) (25)

where P (k — 1) is the projection of the k& — 1 articulated
body inertia across the hinge frames. The correction force
of the kth body is then

C(k) = ¢k, k= 1)¢*(k — 1) + P(k)a(k) + b(k) (26)

where ¢ (k — 1) is the projection of the k — 1 correction
force and b(k) is the Gyroscopic term, defined as

b(k) = V (k)M (k)V (k) @7)

and the spatial bar operator is related to the spatial tilde
operator as & = — 7.
5.2.2 Recursive Velocity Kinematics

The spatial velocity kinematics for the n serial-chain bod-
ies can be calculated recursively given the hinge coordi-
nates and hinge velocities, where the (n + 1) body rep-
resents the non-accelerating fixed inertial frame and the
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recursion runs from the base, nth, body to the tip, body 1.

V(k)=¢T(k+1,E)V(k+1)+ HT(k)B(k) (28)

where the relative velocity between bodies is the spatial
hinge velocity

w(OlJcrﬂ Ok)

Ao(k) = K080 = 170|408 0 | @)

5.2.3 Recursive Acceleration Derivation
The spatial acceleration is derived from the spatial veloc-
ity using Equation [T§]

kd k+1d
= —VI(k) =
dt (k) dt

a(k) V(k) — Av(k + 1,k)V (k)
(30)
For a rigid body, w(O;", Ox) = w(O41, Of) and there-

fore w(k) = w(k + 1, k). The relative velocity

k+1

d
l 1,k) =
o Lkt 1E)

v(k+1,k) =

k+14 k+14
7l(01€+1, Ok+) + Fl(okr ) Ok)

de
= v(0f,0) (D

and therefore Av(k + 1,k) = Av(k). The k + 1 frame
derivative of the spatial velocity is

k+1d k+1d ;
p” V(k) = pm oT(k+1L,E)V(k+1)
k+1d
+¢T(k+1,k) p” V(k+1)
k+1d k+1
+ HT(k)B(k) + HT (k) B(k) (32)

dt dt

The hinge map matrix is assumed to be invariant for this
k+1 . .

case and therefore TdH T(k) is zero. The spatial accel-

eration can then be expressed as

a(k) = ¢T(k+1,k)a(k + 1)+ HT(k)B(k)
k+1

dt

PT(k+1,k)V(k+1)— Av(k + 1,k)V (k)
(33)

+

Defining the Coriolis acceleration for the kth body as

k+1d ~
0Tk LRV (k1) = Av(k+ 1K)V (k)

(34)

a(k) =
the acceleration term is then
a(k) = ¢T(k+1,k)a(k+1)+HT(k)B(k)+a(k) (35)

and this expression also possesses a recursive structure.
The Coriolis acceleration expression is then completed,
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where from Equation [T4] the derivative of the spatial
transformation matrix is

k+1d
dt

Then the Coriolis acceleration is

OT(k+1,k) = —Av(k + 1,k)¢T(k + 1,k) (36)

alk) = —Av(k+1,k)¢T(k+1,k)V(k+1)
—Av(k+1,E)V(E) (37)

5.3 Capturing Complex Hinge Behavior
5.3.1 Hinge Mapping

The interaction of adjacent bodies in the chain are gov-
erned by the properties of the hinge connecting these bod-
ies. The hinge map matrix, HT(k), for a rigid body
joint k defines the configuration dependence of the hinge
behavior and maps the hinge velocities to the general-
ized spatial velocities of the body. Where r, (k) is the
number of velocity degrees of freedom across the hinge,
HT(k) € R%*™(K)_ For a free-floating rigid body in
space, the hinge map matrix is a 6 x 6 identity matrix,
Is. Therefore, the spacecraft base-body is mapped to iner-
tial space with Is. This mapping introduces a simple and
modular way to implement velocity constraints across the
hinge of two adjacent bodies without reformulation of the
dynamics algorithm. To maintain generality, the hinges of
the four panel system are each given full six degrees of
freedom.

5.3.2 Internal Hinge Forces

The spatial force acting at hinge %k due to the interaction
with body k+1 is denoted f(k), where f (k) acts at the O,
hinge frame and an equal but opposite force — f (k) acts
at the O,': frame on the k£ + 1 body. Then the generalized
force on the k™ hinge, T'(k), is the projection of the spatial
force through the hinge degrees of freedom, defined as

T(k) = H(K)f(K) (38)

This force can be defined by the components in the hinge
system. Examples of simple uncontrolled hinge forces are
linear and torsion springs. Additionally, actuation compo-
nents such as those used in robot arms could be installed
at the hinge to control the multi-body motion. These type
of actuators are not relevant to deployable origami struc-
ture research, however, due to the pursuit of a free, self-
actuated deployment system. The hinges are therefore ex-
pected to contain strain or potential energy driven forces
that are a function of the general coordinates.

5.4 Conserved Principles for Multi-body Systems

The conservation of energy and the conservation of mo-
mentum provide robust verification of the approach ap-
plied here. These principles are defined for spatial nota-
tion as follows.
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5.4.1 Energy

The energy of a body is invariant across all points on the
body, therefore for a given body k, the kinetic energy of
the body about it’s hinge frame is the same as the kinetic
energy about it’s center of mass. In spatial coordinates,
this can be expressed as

1

KE(k) = §V(k)M(k)V(k) (39)

And for a hinge with simple springs, the potential energy
is

1

Sa(k) K (K)q(k)
Where K (k) is the stiffness matrix for the kth hinge, as-
suming a liner spring force as a function of the hinge gen-
eral coordinates. The energy calculated at a each body is
invariant to the frame that it is calculated at, so the total
system energy can be calculated, independent of frame as

= i KE(k)
k=1

5.4.2 Angular Momentum

PE(K) = (40)

+ PE(k) (41)

The magnitude of the angular momentum of a single body
about the body center of mass is conserved, where the an-
gular momentum can be written in spatial coordinates as

= ¢(C, k)h(k) M(k)V (k)

(42)
For a system of rigid bodies, the angular momentum of
each body expressed in the inertial frame is conserved.
Therefore, the angular momentum of the system is calcu-
lated in the inertial frame as

h = zn] hi(k) =
k=1

Where the n + 1 body referenced in the serial chain is
the inertial reference frame, the rigid body transformation
from a given hinge frame k to the inertial frame can be
solved recursively

= ¢(Ca k)

n

> S k)M (k)

V(k) (43)

n

n (i+1,1)

o(n+1,k) (44)

5.5 Closed-Chain Forward Dynamics

As discussed in Section[d] capturing the closed-chain be-
havior is achieved by cutting an edge of a closed-chain
system and treating each leg of the cut as an open serial
chain, emulating a tree topology. Then the cut edges are
treated as motion constraints imposed on the free dynam-
ics of the tree. There are several approaches to enforcing
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the closure constraints. The augmented approach com-
pensates for the cut edge by including a correction, result-
ing in additional motion constraint equations and a non-
minimal coordinate set. This approach requires the use
of differential-algebraic equation integrators and faces is-
sues with error drift that must be compensated for with
error control techniques. The direct approach uses ma-
trix solvers and absolute coordinates, resulting in a much
larger system and greater computational complexity. This
approach also shares similar issues as the augmented ap-
proach, and therefore is not considered, as the augmented
approach is more desirable for this application. A new
technique that provides a minimal coordinate set is the
constraint embedding approach. In this approach, the
non-tree digraph is transformed into a tree topology by ag-
gregating the closed-chain structures of the topology into
a representative node. This is suitable for systems with a
clear tree-like structure behind the closed-chain elements.
The folded structures of interest contain multiply depen-
dent systems of closed loops, as demonstrated in Figures
[2]and [3] and therefore this approach is not well suited to
the problems of interest and is not currently considered.
Therefore, the augmented approach is selected and devel-
oped for the four body closed-chain example structure.

5.5.1 Augmented Approach to Closed Chain Structures

Implementing a correction term to account for the motion
constraints is captured in the system equations of motion
by introducing the Lagrange Multipliers” denoted as A,
to represent the constraint forces. Additionally, a new set
of equations must be considered to include the constraint
expression. Defining a holonomic constraint expression
as

d(q, 45)

Taking the derivative, the holonomic constraint can be ex-
pressed in terms of a non-integrable set of velocity coor-
dinates as

d(B,4,t) = Ge(a, t)[B(¢)]6 — U(t) = 0

where [B] is defined in Equation[4] the term U is defined
as

=0

(46)

0
U(t) = —=d(g.1) (47)
and
Ge(q,t) = Vyd(g,t) (48)

Then, defining the constraint force as GI (g, )\, the full
equations of motion are written as

M@ +C(0,0) ~GHa)A=T (49
Gea,D[B@IB=U®)  (50)

The generalized acceleration is then redefined as
B =Bs+Be 51)
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where 5 ¢ are the free unconstrained accelerations and Bc
are the correction accelerations. The correction accelera-
tion is derived from the constraint expression, and is ex-
pressed in terms of spatial operators as

Be = [I — HOK|D ' HBQTA (52)
where H is the hinge map matrix, ¢ is the spatial trans-
formation matrix, K is a spatial operator referred to in
literature as the shifted Kalman gain operator, D is the ar-
ticulated body hinge inertia, B is a node pick-off operator
that identifies relevant nodes on the bodies of the system,
@ is the constraint matrix, and A is the Lagrange Multi-
pliers. These are defined for loop constraints as

A= —[QAQT'd

where A is the operation space compliance matrix A =
BT¢TH 1 D~'¢HB. Differentiating the constraint ex-
pression,

d(B,a,t) = G, ) ([B(@)]B + [B(g)]8) - U(t) (54)

These equations establish the basis of the augmented ap-
proach for solving a system of closed-chain rigid bodies
described using quasi-velocities as the generalized spatial
velocities, where the literature has established this frame-
work for using the time derivative of the spatial coordi-
nates as the spatial velocities.

5.6 Closed-Chain Algorithm

An algorithm for solving the dynamics of a set of rigid
bodies subject to a loop constraint is summarized in Ta-
ble[T} This algorithm is applicable to systems beyond the
four-body case of interest here, and can be extended to
multiple closed-chain constraints within a system. The
resulting equations of motion are subject to differential-
algebraic equation integration to simulate the time history
of the system.

(53)

Table 1: Closed-chain with loop constraint algorithm.

a. Define cut edges of digraph nodes
b. Solve for 5 t> ¢y using ABFD for each tree branch
1. base to tip recursion for velocities, coriolis
and gyroscopics
2. tip to base recursion for articulated inertias
3. base to tip recursion for hinge accelerations
c. compute d, A, solve for Lagrange multipliers, A
d. Compute Equation |52|for correcting accelerations
e. Compute Equation [51|for generalized accelerations

6. The Four-Body Structure Case

The closed-chain theory is now applied to the four-body
structure case. Using the notation displayed in Figure [6]
the cut edge is selected at the internal edge connecting

TAC-18.C1.4.3x42523

Fig. 6: Notation of 4 body closed-chain structure.

nodes k and [, where the root parent node is selected as
node ¢. Due to the non-integrable spatial velocities, the
closure constraint is better expressed as a non-holonomic
constraint, expressed in the Pfaffian form as

d(B,t) = QVad—U = [Qi —Q4] [‘Z]U =0 (55)

where () is the constraint matrix relating rigidly con-
strained velocity degrees of freedom between nodes / and
k. A fully constrained node would have an identity matrix
for the corresponding constraint matrix. Using the spatial
velocity based expression in the Pfaffian form avoids the
need for coordinate partials.

6.1 Loop Constraints and Error Control

By treating the closed-chain constraint as a correction to
be applied to a free system, the problem becomes set up
such that error in the correction becomes a greater con-
cern. The correction error must be managed over time.
It is suggested that this error be managed by introducing
a stabilization term, such as the Baumgarte stabilization
technique, to bound position and velocity errors'Z Inves-
tigating this is left to future work.

7. Conclusions and Future Work

The challenges of developing a forward dynamics model
of a self-actuated folded deployable spacecraft structure
are outlined. Techniques developed for robotics applica-
tions are explored and found to be uniquely able to ad-
dress the challenges of this problem. The articulated body
forward dynamics algorithm is outlined as the basis for the
approach, and derivations that generalize the ABFD algo-
rithm to the spacecraft folded deployable structure sce-
nario are provided. Approaches to the closed-chain con-
straint problem are outlined, and the augmented approach
is developed for the four-body spacecraft structure. It is
found that this approach provides significant value over
the Lagrangian approach or Kane’s equations. This is
due to the computation gains of the recursive structure of
the equations of motion and that the algorithm provides
a framework for working with multiple rigid bodies. Fu-
ture work will focus on developing algorithms for solv-
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ing multiple closed-chain loops and integrating complex
hinge force models.
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