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DESENSITIZED OPTIMAL ATTITUDE GUIDANCE FOR
DIFFERENTIAL-DRAG RENDEZVOUS

Andrew Harris∗, Ethan Burnett, and Hanspeter Schaub†

Growing interest in fuel-constrained small satellites, large Low Earth Orbit (LEO)
constellations, and robustness to thruster failure has motivated the use of drag
forces for orbit control. This work presents a novel method of achieving differential-
drag formation flight using only attitude control and spacecraft geometry while
desensitizing the control to uncertainties in atmospheric properties. This work
applies and extends the theory of desensitized optimal control to the attitude-
driven differential drag problem and derives new strategies for coping with sys-
tems whose control sensitivities are dependent on uncertain parameters. These
new attitude guidance strategies are compared versus traditional LQR-based strate-
gies in nominal cases and under the presence of large deviations in atmospheric
density.

INTRODUCTION

Constellation- and formation-flight of spacecraft requires substantial on-board control effort and
could benefit from the use of environmental forces, such as atmospheric drag, to conduct maneuvers
in place of propellant-consuming thrusters. At present, the unpredictable nature of atmospheric drag
due to the turbulent upper atmosphere has restricted the precision and utility of drag-based maneu-
vering. This work aims to apply sensitivity-minimization techniques to differential drag control to
mitigate the coupling between uncertain environmental conditions and control results.

While controlling spacecraft using atmospheric forces has been proposed since the 1980s, uncer-
tainty surrounding both atmospheric neutral density models and atmosphere-surface interaction has
hampered its practical application. Neutral atmospheric density in LEO can vary by orders of mag-
nitude depending on solar forcing, geomagnetic activity, and diurnal variation.1 This alone presents
a substantial challenge to using differential drag for regular space operations, and is further com-
pounded by the limited progress that has been made in predictive modeling for atmospheric density.2

While higher accuracy models are potentially possible by incorporating live density estimates–for
example, by measuring orbit variations in tracked orbital debris, as shown by3–these models rely
on the availability of high-accuracy tracking data and spacecraft drag models, which are not widely
available. This limitation severely constraints the types of missions and applications for differential-
drag control to those that can tolerate substantial uncertainty in control accuracy, settling time, and
other performance indices.
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While a variety of methods for leveraging atmospheric drag for spacecraft have been proposed
,4–9 few have directly studied methods for mitigating the impact of mis-modeled atmospheric den-
sity. Time-optimal or bang-bang differential drag strategies can be naturally robust to these vari-
ations, as their control depends only upon the sign of the commanded acceleration rather than the
magnitude;10 however, their performance can vary considerably. Prior work in formulating the
attitude-driven differential-drag formation control problem as a linear regulation problem11 has also
shown to be reasonably robust with respect to density variation. While these methods are robust
to variation, their performance can vary significantly as the atmospheric density changes, thereby
hampering mission operations that depend on relatively precise timing or positioning. This work
aims to develop techniques for differential-drag control that minimize performance variation with
respect to density changes.

Desensitized optimal control is a family of related techniques for minimizing the dependence of
a given trajectory or control strategy to selected environmental parameters. Originating in the 1960s
with the sensitivity-vector approach described by Kahne,12 desensitized optimal control has been
successfully applied in other fields, such as optimal landing guidance13 and multi-body structures.14

Seywald15 presents a method for considering state sensitivities to system parameters by constructing
a state transition matrix for those states and adding cost penalties for exciting those states, allowing
the desensitized optimal control problem to be applied to general nonlinear problems. Makkapati16

presents an alternative formulation using sensitivity functions, which are both similar to the orig-
inal approach developed by Kahne and which offer improved computational efficiency versus the
sensitivity matrix approach. This work develops an alternative derivation of the sensitivity-vector
approach for linear systems that can be considered a restricted case of Makkapati’s sensitivity func-
tion control.

This work is arranged as follows. First, a brief overview of the drag-perturbed linearized relative
dynamics model and attitude effect is reviewed. Next, the theory of desensitized optimal control is
reviewed and extended to consider sensitivities arising directly from control inputs. This extended
methodology is then applied to the differential drag formation flying case, and demonstrated in sim-
ulation versus previously-shown static LQR controllers. Finally, Monte Carlo simulations demon-
strating the impact of density uncertainty and measurement noise are presented to demonstrate the
realized robustness of the desensitized approach.

PROBLEM STATEMENT

Differential drag formation flight is a long-standing technique for achieving in-plane formation
control without the use of expensive, failure-prone thrusters. Prior work has shown that, given
non-uniform geometries, attitude control alone is sufficient to achieve controllability between two
spacecraft using differential drag.11 The derived attitude-dependent linearized equations of motion
take the form of the Hill-Clohessy-Wiltshire equations plus several drag terms dependent on the
spacecraft ballistic coefficient as derived by Silva17 and refined in Reference:11

ẍ = 2ẏn+ 3n2x− 1

2
βdPdnrcẋ (1)

ÿ = −2ẋn− n2r2c
1

2
(βCPC − βdPd)− βdPdnrcẏ (2)

z̈ = −zn2 − 1

2
(βdPdrcn)ż (3)
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The sensitivity of these equations with respect to the ballistic coefficient is taken from Reference11

as:

∂ẍ

∂σp
= −1

2
Pdnrcẋ0

∂βd
∂σp

(4)

∂ÿ

∂σp
= (

1

2
n2r2cPd − Pdnrcẏ0)

∂βd
∂σp

(5)

∂z̈

∂σp
= −1

2
(Pdrcn)ż0

∂βd
∂σp

(6)

and the derivative of the ballistic coefficient with respect to attitude (which is defined in terms of
MRPs for their amicable linearization) for a faceted spacecraft with constant drag coefficients across
each facet is taken from Reference11 to be

∂βd
∂σp

=
1

mi

n∑
i=1

−4CD,iAin̂i
T ∂

∂σp
([σp×][BN(σr)]v̂) (7)

While these equations are linear in both the relative states and the linearized MRPs, both the state
dynamics and the control effects contain an implicit dependence on the time-varying neutral density,
Pd, and the chief radius and mean motion, rc and n respectively. These parameters vary as drag acts
to reduce the orbital radius of the chief and deputy alike, representing a source of modeling error
within the dynamics.

Atmospheric Model

For the purposes of this work, a simple exponential atmospheric model is used for the controller’s
design due to its analytical form. Exponential atmospheric models have the following form:

ρ = ρ0e−
|r−rE |

h (8)

where r is the inertial, Earth-centric spacecraft position, rE is the Earth’s mean radius, ρ0 is the
atmospheric density at the Earth’s surface, and h is the scale height of the atmosphere. In general,
these properties are only coarsely known, and can vary substantially with changes in geomagnetic
or solar weather.

DESENSITIZED OPTIMAL CONTROL

Desensitized optimal control is a subset of optimal control techniques that attempts to generate
optimal control solutions or trajectories under the presence of perturbations in parameters. The
methodology of Kahne12 is briefly summarized here for reference, with an additional extension to
sensitivities in the control matrix B.

As described by Kahne, the sensitivities of a linear system ẋ = [A]x+ [B]u are best understood
as the gradient of the system’s state dynamics with respect to a parameter α:

ṡ =
∂ẋ

∂α
= [A]s+ [C]x, s(0) = 0 (9)

where [A] are the linear state dynamics, and the state sensitivity matrix [C] is defined by Cij =
∂Aij

∂α . Notably, this expression ignores the dependence of the sensitivities upon the control inputs,12
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which are assumed to be independent of the sensitivity parameter; however, if the control effects
matrix is affected by the sensitivities, an additional matrix [D] is introduced (similarly defined as
Dij =

∂Bij

∂α ), yielding the updated sensitivity dynamics:

ṡ = [A]s+ [C]x+ [D]u (10)

Using this definition of the sensitivities, the objective of minimizing the overall system sensitivity
is defined by the sensitivity cost

Js =

∫ tf

t0

s(t)TΣs(t)dt (11)

which can be readily combined with the classical LQR cost function to yield

J = xTfNxf +

∫ tf

t0

x(t)TQx(t) + u(t)TRu(t) + s(t)TΣs(t) (12)

From this, the formal statement of the desensitized optimal control problem is stated as:

minimize
u

J = xTfNxf +

∫ tf

t0

x(t)TQx(t) + u(t)TRu(t) + s(t)TΣs(t)

subject to ẋ = [A]x(t) + [B]u(t), ṡ = [A]s(t) + [C]x(t) + [D]u(t)

The Hamiltonian for this problem is written using a separate set of co-states for each constraint,
denoted p for the state dynamic constraint and λ for the sensitivity dynamics.

H = x(t)TQx(t)+u(t)TRu(t)+s(t)TΣ+p(t)T ([A]x(t)+[B]u(t))+λT ([A]s(t)+[C]x(t)+[D]u(t))
(13)

The cannonical equations of this system are:

ẋ =
∂H

∂p
= [A]x(t) + [B]u(t)

ṡ =
∂H

∂λ
= [A]s(t) + [C]x(t) + [D]u(t)

ṗ = −∂H
∂x

= −Qx− [A]Tp− [C]Tλ

λ̇ = −∂H
∂s

= −Σs− [A]Ts

(14)

The control parameter, u, can be solved for using the additional property

∂H

∂u
= 0 (15)

which yields
0 = [R]u+ [B]Tp+ [D]Tλ (16)

u = −[R]−1([B]Tp+ [D]Tλ) (17)

Substituting this back into Equation 14 and collecting the terms yields the following total system
dynamics matrix:

ẋ
ṡ
ṗ

λ̇

 =


[A] 0 −[B][R]−1[B]T −[B][R]−1[D]T

[C] [A] −[D][R]−1[B]T −[D][R]−1[D]T

−[Q] 0 −AT −CT
0 −[Σ] 0 −AT



x
s
p
λ

 (18)
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The initial conditions of this equation are given by:

x(0) = x0

s(0) = 0

p(tf ) = Fx(tf )

λ(tf ) = 0

(19)

These equations form a linear system in time whose state transition matrix, Φ, can be solved for.
The elements of this matrix are written in terms of the super-state, z(t) =

[
x(t) s(t)

]T , and the

adjoint super-state, ψ(t) =
[
p(t) λ(t)

]T :

[
z
ψ

]
=

[
φ11(t, t0) φ12(t, t0)
φ21(t, t0) φ22(t, t0)

] [
z0
ψ0

]
(20)

From Kahne,12 this matrix and its submatrices are invertable, allowing us to solve for the dynam-
ics of the costates over time:

ψ(t) = [φ22(T, t)−Gφ12(T, t)]−1[Gφ11 − φ21(T, t)]z(t) = K(t)z(t) (21)

where K(t) denotes the optimal linear feedback gain. Differentiating this equation with respect
to time and substituting in the state and co-state dynamics yields a modified version of the Matrix
Ricatti equation:

K̇(t) +K(t)L(t) + P (t)K(t)−K(t)M(t)K(t) +N(t) = 0 (22)

L(t) =

[
[A] 0
[C] [A]

]
(23)

P (t) =

[
−AT −CT
0 −[A]

]
(24)

M(t) =

[
−[B][R]−1[B]T −[B][R]−1[D]T

−[D][R]−1[B]T −[D][R]−1[D]T

]
(25)

N(t) =

[
−[Q] 0
0 −[Σ]

]
(26)

The optimal gain matrices are found by integrating this equation backwards in time from the termi-
nal condition K11(tf ) = Fx(tf ); in terms of the gain matrix elements, this can be rewritten as a
set of coupled ordinary differential equations:

K̇11 = −K11A−K12C −A′K11 − C ′K21 +K11BR
−1B′K11 −Q (27)

K̇12 = −K12A−A′K12 − C ′K22 +K11BR
−1B′K12 (28)

K̇21 = −K21A+K22C +ATK21 −K21BR
−1BT (29)

K̇22 −−K22A−A′K22 +K21BR
−1B′K12 − Σ (30)

Finally, the optimal closed-loop control trajectory is found using

u(t) = −R−1B(K11(t)x(t) +K12(t)s(t)) (31)
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Reachability and Controllability of Sensitivities

A critical consideration for the application of desensitized control to a system is whether the
system sensitivities are adequately coupled to the states and control inputs such that they can be
affected. Because both the state and sensitivity dynamics are linear and coupled, it is possible to
construct an augmented system consisting of both the states and their corresponding sensitivities:[

ẋ
ṡ

]
=

[
[A] 0n×n
[C] [A]

] [
x
s

]
+

[
[B]
[D]

]
u (32)

This augmented system is itself a linear system and can therefore be analyzed with standard tools in
linear controls. The reachable subspace of the system given the inputs can be computed by analyzing
the system controllability matrix, [O], for its rank (which reflects the number of controllable eigen-
directions). Likewise, a basis for the controllable subspace can be found by analyzing the QR
decomposition of [O] and examining the first rank(O) columns.

APPLICATIONS

Mass-Spring-Damper with Force Control

The simplest example of a dynamical system with sensitivities to a coarsely-known parameter is a
mass-spring-damper system with a variable mass. The equations of motion for this system assuming
a linear spring and damper are given in state-space form as

[A] =

[
0 1

− k
m − c

m

]
, x =

[
x
ẋ

]
(33)

[B] =

[
0
1
m

]
, u =

[
F
]

(34)

The sensitivity matrices are given by

[C] =

[
0 0
k
m2

c
m2

]
, [D] =

[
0
− 1
m

]
(35)

To demonstrate the efficacy of the control-desensitized approach in comparison to prior methods,
simulations were run across a range of mass values with 1 kilogram as the reference value. Figure 1
demonstrates how the control-desensitized and desensitized approach compare to a finite-time LQR
solution at the design value and at an extreme mass value; the finite-time LQR approach produces
much different behavior at the extremes, while the desensitized and control-desensitized approaches
produce similar outcomes at varying values of the system mass.

To extend this comparison, the trajectory energy xTx was integrated over time at various values
of mass; in these cases, reduced trajectory energy corresponds to faster system settling times, and
is used as a comparative performance metric. The results, shown in Figure 2, show that the control-
desensitized trajectories vary less with the uncertain parameter than the finite-time LQR or state-
desensitized LQR approaches.
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(a) Finite-Time LQR trajectory
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(b) Desensitized Trajectory
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(c) Control-Desensitized Trajectory

Figure 1: State values versus time for nominal (m = 1) and off-nominal m = 100 LQR, DOC,
and CDOC controllers for the spring-mass-damper system.

Differential Drag Formation Flight

Controlling relative spacecraft position and velocity with differential drag introduces a coupling
between the system’s controllability and the local atmospheric density, the latter of which is often
only coarsely known. In addition, formulations that depend on knowledge of other orbital parame-
ters, such as the Hill-Clohessy-Wiltshire derived differential drag formation flight system described
by Eqn. 1-3, which are also coarsely-known. As such, these systems are prime candidates for the
application of desensitized optimal control.

To maintain numerical conditioning of the resulting matrices, it is desirable for the magnitude
of the sensitivity matrix to be on the same order as the state dynamics. Noting that the system is
linear in many uncertain parameters–namely n, Pd, rc, and the reference deputy ballistic coefficient
βd– we introduce an additional scaling parameter α on these quantities, and seek to minimize our
sensitivity to variations in α. This is equivalent to minimizing the sensitivity of the system to any
of the designated values, but without the potential for numerical conditioning issues. Incorporating
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Figure 2: Trajectory energy vs. system mass for LQR, DOC, and CDOC controllers.

this additional parameter and reducing the state dynamics to the in-plane controllable states yields

A =
∂F

∂x
=


0 0 1 0
0 0 0 1

3n2 0 1
2αβdPdnrc 2n

0 0 −2n −αβdPdnrc

 , [C] =
∂A

∂α
=


0 0 0 0
0 0 0 0
0 0 1

2βdPdnrc 0
0 0 0 −βdPdnrc


(36)

D =
∂B

∂α
=


03×3

0
1
2n

2r2cPd
∂βd
∂σp

0

 , u =

σp,1σp,2
σp,3

 (37)

where αnom = 1 is used to maintain numerical conditioning. From these expressions, it is apparent
that the sensitivity of the system to variations in the presumed environmental parameters results
directly from the amplitude of the planar relative velocity and the spacecraft’s attitude variation.

This information maps to the dynamics of attitude-driven differential drag, as the matrix elements
for those states arise directly from the drag-coupled dynamics terms. [C], which represents the
mapping from states to sensitivities, has two marginally stable eigenvalues, one stable one, and one
unstable eigenvalue. Likewise, these matrices show that the dominant contributors to the system’s
sensitivity to variations in atmospheric density are the planar velocity states and the control input
attitude. In this sense, the derived [C] and [D] matrices provide analytical insight into the sources of
uncertainty within the system, thereby providing designers with additional information for heuristic
maneuver planning or formation design.

Expected Controllability

While the in-plane relative states are known to be controllable, the sensitivities of those states
must be examined. To do so, the augmented linear system described by Eqn. 32 is constructed
for the desensitized differential drag system described by Eqns. 36-37. The results of this analysis
are shown in Table 1, and show that while the in-plane states remain controllable as expected,
only the radial position sensitivity (s1) is controllable given the assumed input. Uncontrollable
eigendirections exist in both the y-position sensitivity s2 and the planar velocity sensitivities s3 and
s4, though these states are partially controlled through a coupling to the planar velocities.
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Table 1: Controllability analysis results.

Control Type Rank([O])
LQR 4
DOC 5

CDOC 5

PERFORMANCE CHARACTERIZATION

Prior work has shown control results for this system using LQR-based control using static gains.
This approach is used as a baseline with which the optimal control techniques described in Section
can be compared. To this end, three specific guidance approaches are demonstrated:

1. Finite-time LQR

2. Desensitized optimal control w/o control dependence

3. Desensitized optimal control with control dependence

These strategies are compared in a semi-realistic design environment, in which the control gains are
designed on the linear differential drag model described by Equations 36–37 but simulated using
the nonlinear equations for two-body dynamics plus a facet-based drag model; for more details on
the propagation environment, see Reference 11.

To provide apples-to-apples comparisons, solution-specific results such as the overall cost are not
presented; additionally, each controller was tuned individually using combinations of state, control,
sensitivity, and final error weights. The final values used for each controller are listed in Table 3.
Additionally, the initial conditions for the control scenario–designed to represent a 500 meter along-
track maneuver in LEO – are listed in Table 2. The environmental and spacecraft parameters used
are listed in Table 4.

Table 2: Orbital elements for both the deputy and chief spacecraft.

Orbital Element Chief Value Deputy Value
a 230km + req 230km + req
i 45◦ 45.◦

e 0 0
Ω 20.0◦ 20.0◦

ω 30.0◦ 30.0 ◦

M0 20.0◦ 19.99◦

Table 3: Selected control gains each strategy.

Control Design Variable LQR Desensitized Optimal Control-Desensitized Optimal
Q 1.3 1 2
R 1e7 1e7 1e8
U 0 8e2 5e-5
N 1 1 1
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Table 4: Spacecraft and environment parameters.

Parameter Value
ρ0 1.020 kg

m3

h 8, 000m
Ai 2 m2

mi 6 kg
Cd,i 2.2

Linear Results

To demonstrate these results, controllers were evaluated for a 1-km slot-hopping maneuver using
the linear dynamics. The state and state sensitivity results show that, while the states converge to
the reference value, some sensitivity states either do not converge or retain oscillations relating to
the described uncontrollable modes.

First, Hill-frame trajectories are displayed in Figure 6, with time histories of both the relative
position and velocity trajectories shown in Figure 7. From these, note that the LQR and Control-
Desensitized approaches both appear to successfully drive the deputy spacecraft to the origin in
roughly 10-15 orbits, while the Desensitized approach merely moves the spacecraft towards the
origin and prefers to minimize the initial motion of the spacecraft.

In comparing the LQR and Control-Desensitized approaches, it is apparent in looking at Figure 7a
and Figure 7c that the control-desensitized approach produces much smaller relative velocities than
the LQR-derived approach while achieving the same control objective in similar time; however, os-
cillations remain present in the Control-Desensitized trajectory that are damped out in the pure-LQR
guidance approach. These results reflect a fundamental trade-off in the application of desensitized
optimal control; in cases where control authority is limited, including penalties for sensitivities in
the cost function J necessarily reduces the control’s performance in the states. In addition, com-
paring the linear and nonlinear results suggests that the control-desensitized optimal controller and
to a lesser extent the standard desensitized optimal controller appear to produce trajectories that
resemble those generated by the linear system. To quantify this, the following non-linearity index
is utilized:

ν(t, t0) =
1

t− t0

∫ t

t0

||xnl(t)− xl(t)||
||xl(t)||

dt (38)

where xnl(t) is the state propagated by the true nonlinear system and xl(t) is the state propagated
by the linear system. This metric was evaluated for all three controllers throughout the simulated
maneuver; the resulting plot is shown in Figure 10. Here, it is apparent that the control-desensitized
approach reduces the impact of nonlinearities on the system trajectory arising from the sensitivities.

ROBUSTNESS CHARACTERIZATION

Robustness Metrics and Methodolgy

For the purposes of this study, two performance metrics are used as figures of merit to compare
the performance of the three outlined control strategies:

1. Terminal miss distance/velocity
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2. Terminal and maximum nonlinearity indices

Exponential Atmosphere Parameter Changes

To demonstrate the performance of the CDOC and DOC control strategies on their proposed
primary merit–reducing the variability of control performance with respect to density variation–two
scenarios are examined under density variation: the 500m along-track maneuver of the previous
section, where each control avoids the specified attitude boundaries and reaches the objective; and
a 1500m along-track, 100m radial maneuver with the same gains where the control must encounter
the linearity constraints to succeed. This allows us to compare the control strategies both at their
designed performance and at the limit of their feasibility.

500m Along-Track Maneuver: Variation in the density of the atmosphere is a primary driver
for uncertainty in differential drag formation flight and a key motivator for this work. To validate
that this strategy indeed reduces the uncertainty associated with variable atmospheric density, the
maneuver described in Section was simulated over a range of values for the base exponential density
reflective of variation within LEO. In general, all of the control strategies remain convergent across
density values; however, both the finite-time LQR control and the DOC control produce trajectories
with wide variation from their linear predictions, while the CDOC strategy remains relatively close
to the linear prediction despite large differences in atmospheric density. At the same time, the CDOC
strategy is notably less accurate across the span of densities, though it still produces sub-meter
positioning accuracy and sub-millimeter per second velocity accuracy. This loss of accuracy for
the DOC and CDOC strategies again reflects the fundamental tradeoff between state and sensitivity
performance described in Section . While the CDOC results appear to be less precise than the
DOC or LQR results, they are much more consistent with respect to density variation, producing
approximately the same terminal miss distances and velocities at 0.5 and 3 times the design density
as at the reference.

From these analyses, it is evident that the control-desensitized approach produces slightly less
accurate terminal position and velocity accuracy while remaining more consistent with its predicted
linear trajectory across a range of density values. This is consistent with the theory of desensi-
tized optimal control presented in Section . Notably, the control accuracy still produces sub-meter
positioning accuracy and sub-millimeter-per-second velocity accuracy for the maneuver. This sim-
ulation represents a best-case scenario for each controller, which remains far from the linearity con-
straints imposed by the assumed attitude guidance input and converges relatively quickly given the
allotted time; under these circumstances, the natural robustness of LQR-based control is apparent
and the need for desensitization is reduced.

1500m Along-Track,100m Radial Maneuver: To better display the benefits of the CDOC ap-
proach, a larger maneuver based on the previous example was constructed by increasing the along-
track separation to 2,500m and adding a radial offset of 100m. In the reference case, the LQR and
DOC controllers reach the attitude saturation limit, but ultimately converge; the CDOC controller
does not saturate, and converges before the other two. This more strenuous case was run over the
same density range as the previous example, and the results are shown in Figures 13-14. In these
cases, where the non-linearities in the system are more pressing, the control-desensitized strategy
produces both better accuracy and less non-linearity than its competitors.
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(a) LQR-Derived Hill-frame trajectory
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(b) [Desensitized Trajectory
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(c) Control-Desensitized Trajectory
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Figure 3: Hill-frame performance of LQR, Desensitized, and Control-Desensitized Trajectories
under linear dynamics
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ẏ
(m

/s
)

(c) Control-Desensitized State Trajectory

Figure 4: Comparison of Hill-frame relative positions using the three control types.
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Figure 5: Comparison of Hill-frame relative positions using the three control types.
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Figure 6: Hill-frame performance of LQR, Desensitized, and Control-Desensitized Trajectories
under truth dynamics
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Figure 7: Comparison of Hill-frame relative positions using the three control types.
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Figure 8: Hill-frame performance of LQR, Desensitized, and Control-Desensitized Trajectories
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Figure 9: Attitude trajectories for each control over the maneuver.
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Figure 10: Nonlinearity indicies for each control type over the slot-hopping maneuver.
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Figure 11: Terminal x and y states. Black lines represent the boundaries of 1,2,and 3 σ covariance
ellipsoids, while orange dots represent samples. Blue dots represent the mean states. Plots are
centered on the origin, and do not include all outliers.
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Figure 12: Terminal and maximum nonlinear indices between the nominal linear trajectory and the
realized nonlinear trajectory for each system.
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Figure 13: Terminal x and y states. Black lines represent the boundaries of 1,2,and 3 σ covariance
ellipsoids, while orange dots represent samples. Blue dots represent the mean states. Plots are
centered on the origin, and do not include all outliers.
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Figure 14: Terminal and maximum nonlinear indices between the nominal linear trajectory and the
realized nonlinear trajectory for each system.
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CONCLUSIONS

A novel strategy for applying desensitized optimal control to systems whose control inputs are
functions of the sensitive parameters has been derived and compared to both traditional desensitized
optimal control and finite-horizon LQR control. This strategy has then been applied to the attitude-
guidance for differential drag rendezvous problem, and demonstrated in simulation 500m . This
new strategy allows mission planners to trade maneuver accuracy for predictability vis-a-vis linear
simulations. Additionally, a new strategy for identifying promising cases for desensitized optimal
control using standard linear controllability tools is presented to explain the results of applying
control-desensitized optimal control to the nonlinear differential drag control problem.
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