
(Preprint) AAS 23-116

A COMPARISON OF DEEP REINFORCEMENT LEARNING
ALGORITHMS FOR EARTH-OBSERVING SATELLITE

SCHEDULING

Adam Herrmann∗ and Hanspeter Schaub†

Deep reinforcement learning (DRL) has shown promise for on-board planning
and scheduling, particularly for Earth-observing satellites (EOS), due to the abil-
ity of trained policies to achieve optimal planning and scheduling performance at
very fast execution times. However, the question of which DRL algorithms are
best suited for EOS scheduling problems has not been comprehensively explored.
This work compares value-based and policy-based reinforcement learning algo-
rithms for EOS scheduling. A reference problem in which a satellite attempts
to maximize the amount of science data collected from two separate instruments
while managing resource constraints such as power and reaction wheel speeds is
constructed. Value-based and policy gradient DRL algorithms are applied to the
problem and compared on the basis of performance, training time, and model com-
plexity. Proximal policy optimization (PPO), a policy-based method, and MCTS-
Train, a value-based method, are applied to the problem for various combinations
of hyperparameters. PPO is shown to produce the highest performing policies,
achieving 0.750 average reward out of a maximum of 1 reward for networks with
8 · 104 trainable parameters. PPO also produces the smallest models that are capa-
ble of achieving 0.696 average reward with only 184 trainable parameters. MCTS-
Train produces at most 0.614 reward, with the best performing model using 8 ·104

trainable parameters. Both algorithms require the same order of magnitude of
training time for large hyperparameter searches, but PPO is faster if only a single
network is required.

INTRODUCTION

Spacecraft planning and scheduling is the process by which the set of tasks and the corresponding
order in which they are executed for a spacecraft to achieve its mission objectives are computed.
Historically, planning and scheduling is a ground-based process in which a planning software com-
putes a spacecraft plan that is uplinked to the spacecraft for open-loop execution. Many different
techniques may be used to generate the plan, including mixed-integer programming and metaheuris-
tic optimization.1–4 However, a ground-based planning and open-loop execution paradigm is brittle
to opportunistic science events or tasks taking either longer or shorter than expected. The CASPER5

system at NASA’s Jet Propulsion Laboratory addresses this issue by using iterative repair to correct
apriori spacecraft plans as necessary. However, reinforcement learning, which may execute a policy
in a closed-loop fashion on-board spacecraft after training, has recently emerged as another potential

∗PhD Candidate, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder,
Boulder, CO, 80309. AIAA Member.
†Glenn L. Murphy Chair of Engineering, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University
of Colorado, Boulder, 431 UCB, Colorado Center for Astrodynamics Research, Boulder, CO, 80309. AAS Fellow, AIAA
Fellow.

1

1. Charging
Mode

2. Desaturation
Mode

3. Sensor A

4. Sensor B

Figure 1: Multi-Sensor Earth-Observing Satellite Scheduling Problem.

technique for on-board planning and scheduling due to its optimality potential and fast execution
time.

Past work has demonstrated the ability of value-based6, 7 and policy gradient8, 9 reinforcement
learning methods to solve the Earth-observing satellite (EOS) scheduling problem. However, little
work has compared these two categories of deep reinforcement learning algorithms for the purposes
of solving EOS scheduling problems. The objective in a reinforcement learning problem is to learn
a policy that maps states to actions, π : S → A, to maximize a numerical reward signal. Value-
based reinforcement learning algorithms do this implicitly by solving for the value or action-value
function and then compute the policy afterwards. However, small errors in the computation of the
value function may lead to large errors in the derived policy. Furthermore, the model required to
approximate the value function may be larger than the model required to solve only for the optimal
policy. Policy-based methods solve for the policy directly to avoid these issues, but they have a ten-
dency to get stuck in local optima because they rely on gradient-ascent to compute the policy. Harris
and Schaub apply policy gradient methods, specifically proximal policy optimization (PPO), to an
EOS scheduling problem. To improve convergence, the authors use shielded deep reinforcement
learning.8 In shielded deep reinforcement learning, a low-fidelity safety MDP is constructed using
the states most relevant to resource constraint violations. A shield policy is derived that ensures
the low-fidelity safety MDP will never enter an off-nominal mode. The shield is then utilized in
training and deployment, ensuring that the agent does not take unsafe actions. Reference 8 utilizes
the shield within PPO, demonstrating that SDRL can improve the speed of convergence of policy-
gradient methods for EOS scheduling. Reference 6 utilizes the shield policy as a heuristic policy in
Monte Carlo tree search, using the state-action value estimates generated by MCTS to train a neural
network approximation of the value function. This training architecture is referred to as MCTS-
Train. The heuristic policy demonstrates a large performance improvement over a random rollout
policy. However, these results are not compared to the DRL approaches (shielded and otherwise)
taken by Reference 8. This work compares PPO (unshielded) and heuristic-rollout MCTS-Train.

First, the EOS scheduling problem is formulated where the objective is to maximize the amount of

2

science data collected using two sensors while avoiding resource constraint violations. Resources
modeled on-board the spacecraft include power and reaction wheel speeds. This problem is de-
picted in Figure 1. The algorithms applied to solve the algorithm are then described. Value-based
(MCTS-Train) and policy gradient (PPO) methods are applied to solve a Markov decision process
formulation of the problem. For each algorithm, an extensive hyperparameter search is presented.
Each of these algorithms are then compared on the basis of performance and the model complexity
required to achieve optimal performance.

REFERENCE PROBLEM

Overview

In the reference problem constructed for this comparison, a spacecraft in low-Earth orbit attempts
to maximize the sum of images collected with the correct sensor while managing the battery charge
level and reaction wheel speeds. A planning horizon of 270 minutes is split into 90 decision-making
intervals, called planning intervals. At each planning interval, the spacecraft enters into one of four
possible modes. The modes include: a.) spacecraft charging, b.) reaction wheel desaturation, c.)
imaging with sensor A, and d.) imaging with sensor B. This problem is depicted in Figure 1. Several
different subsystems are modeled in the problem.

Simulation Architecture

The reference problem is simulated using the Basilisk∗ astrodynamics software architecture.
Basilisk provides a Python interface for scripting but implements the simulation code in C/C++
for speed.10 A system diagram of the simulation is provided in Figure 2. There are seven separate
tasks - a dynamics task, an environment task, and five separate flight software-related tasks. Each
task contains a collection of modules most relevant to the task description. Each colored block rep-
resents a separate module, which have certain inputs and outputs to and from other modules that are
not depicted in the system diagram for simplicity.

The Basilisk simulation models several subsystems which are relevant to the planning and schedul-
ing problem. A full attitude control system is implemented to simulate a representative spacecraft
mission where many systems are coupled to the attitude dynamics. Various location-pointing ref-
erence frames are switched between based on the specific mode and passed to an attitude error
computation module, which then passes the attitude error to an MRP feedback control law. The
location pointing frames include a sun-pointing reference for battery charging, an anti sun-pointing
reference for desaturation (to ensure a power penalty when desaturating), and a nadir-pointing ref-
erence for imaging. The MRP feedback control law sends torque commands to the three reaction
wheels, which change the dynamics of the spacecraft. The reaction wheels are modeled after the
Honeywell HR16 reaction wheels. A momentum dumping module is also implemented, which maps
reaction wheel momentum to thrust commands to remove momentum from the reaction wheels. The
thrusters are modeled after the Moog Monarc-1 thrusters. Random external torque is implemented
to build up momentum in the reaction wheels over time.

A power system is also simulated, leveraging Basilisk’s high-fidelity dynamics capabilities to
accurately compute power consumption and generation. Simulated solar panels generate power
based on incidence angle, panel area, and efficiency. The effects of eclipse are also considered.

∗http://hanspeterschaub.info/basilisk

3

http://hanspeterschaub.info/basilisk

Dynamics Task

Sun-Pointing Task Anti Sun-Pointing TaskNadir-Pointing Task

Desaturation TaskMRP Control Task

spiceObject()

ephemerisConverter()

spacecraft()

simpleNav() rwStateEffector() x 3

thrusterDynamicEffector() x 8

Environment Task

groundLocation()

eclipse()

extForceTorque()

simpleSolarPanel()

simplePowerSink() x 2

simpleBattery()

reactionWheelPower() x 3

locationPointing() locationPointing()locationPointing()

attTrackingError()

mrpFeedback()

rwMotorTorque()

thrForceMapping()

thrMomentumDumping()

thrMomentumManagement()

Figure 2: Basilisk Simulation Framework Illustration.

Generated power is stored in a modeled battery, and the imagers consume power from the battery.
Static power draw is also included.

Markov Decision Process

The multi-sensor Earth-observing satellite scheduling problem is formulated as a Markov deci-
sion process (MDP), which is defined by the 5-tuple (S, A, T, R, γ). An MDP is a sequential
decision-making problem in which an agent observes the current state si and selects an action ai
following a policy π : S × A. The policy maps states to actions. The agent takes the action ai and
observes a new state si+1 and receives a reward ri based on the reward function R : S × A → R.
MDPs follow the Markov assumption, meaning the next state is conditionally dependent only on
the current state and action: T (si+1|si, ai) = T (si+1|si, ai, si−1, ai−1, ..., s0, a0).

State Space All relevant state information for the purposes of maintaining the Markov assump-
tion must be included in the state space, S. The state space for this problem was originally developed
by Nazmy et al.,11 but has been modified slightly and is summarized below:

• Spacecraft relative position in the SEZ frame, SEZrs/c

• Spacecraft relative velocity in the SEZ frame, SEZvs/c

• L2 norm of MRP attitude error, εatt

• L2 norm of attitude rate, ||BωB/N ||

4

• L2 norm of reaction wheel speeds normalized by maximum wheel speed, ||Ω||/Ωmax

• Stored battery charge normalized by maximum charge, z/zmax

• Target access indicator

• Target sensor type

• Eclipse indicator

The relative position and velocity of the spacecraft in the SEZ frame, as well as the target access
indicator and target sensor type states, are included in the state space to aid the decision-making
agent in completing the science objectives. The SEZ position and velocity are transformed into
canonical coordinates using Equations (1) and (2). The position is normalized by the radius of the
Earth at the equator, and the velocity is normalized by the velocity of a circular orbit at the equator
of the Earth.

rcan =
r

Req
(1)

vcan =
v√
µ/Req

(2)

The target access indicator indicates whether or not the spacecraft has access to the target location
(0 or 1). The target sensor type denotes the desired sensor type of the upcoming target (0 for target
A, 1 for target B). The attitude states provide information on the attitude control system. The battery
charge, eclipse indicator, and L2 norm of the reaction wheel speeds provides state information for
the purposes of resource management.

Action Space A discrete action space is constructed using mode-based approach where each
mode represents a high-level spacecraft behavior. The low-level behavior of each mode is dic-
tated by the attitude reference and on/off states of each spacecraft subsystem. Each mode is entered
for a total of three minutes, which is primarily constrained by the rate at which the attitude control
system can converge to the attitude reference. The spacecraft can enter into four separate modes:
a.) charging, b.) desaturation, c.) image with sensor A, and d.) image with sensor B.

In the charging mode, the spacecraft turns off the instruments and points its solar panels at the sun.
In the desaturation mode, the spacecraft points the solar panels away from the sun and the spacecraft
thrusters are used to remove momentum from the reaction wheels. The panels point away from the
sun in order to construct a scenario in which there is a tradeoff between the spacecraft charging and
desaturation modes in terms of power. In the imaging modes, the spacecraft points its instruments
in the nadir direction and takes an image once the spacecraft is within the elevation and range
requirements of the target.

Transition Function It is difficult to construct an explicit transition function using conditional
probabilities that accurately captures the state transitions in the multi-sensor Earth-observing satel-
lite scheduling problem. Therefore, the transition function is represented with a generative model
G(si, ai) given in Equation (3). A generative model returns a new state si+1 and reward ri by in-
tegrating equations of motion, sampling a probability distribution, or some combination of both. In
this problem, the generative transition function is the previously described Basilisk simulation.

si+1, ri = G(si, ai) (3)

5

The Basilisk simulation is wrapped within a Gym∗ environment, which is a standard interface for
decision-making agents. The Gym interface turns the Basilisk modes on or off, runs the simulation,
constructs the observations, computes the reward, and returns the information back to the decision-
making agent. The Gym environment used in this work, called the leoObservingMultiSensor env(),
may be found on the develop branch of the Basilisk Gym Interface† library.

Reward Function The reward function was first described by Nazmy et al.11 and will be sum-
marized here. A piecewise reward function is formulated such that the maximum undiscounted
cumulative reward is 1 and the minimum is -1. The reward function is provided in Equations (4)
and (5).

R(si, ai, si+1) =



−1 if failure

f

N
· 1

1 + ε2att
if els/c > elmin and ai ∈ {Image A, Image B}

0 otherwise

(4)

f =

1 if ai == apreferred

0 otherwise
(5)

The first condition checked for is failure. The failure condition is true if the battery is drained to
zero charge or any of the reaction wheel speeds exceed the maximum speed. If failure does not
occur and the spacecraft enters the imaging mode corresponding to the correct sensor type, a reward
of 1.0 is returned. This reward is scaled by 1/N , the maximum number of imaging targets, and
1/(1 + ε2att). If the spacecraft takes every possible image with zero attitude error and never fails to
manage its resources, the cumulative reward will be 1.

METHODS

MCTS-Train

MCTS-Train is a reinforcement learning pipeline inspired by AlphaZero12 that utilizes Monte
Carlo tree search13 to generate estimates of the state-action value function and supervised learning
to regress over these estimates. References 6 and 14 show that MCTS-Train produces near-optimal
policies for Earth-observing satellite scheduling problems. A diagram of MCTS-Train is shown in
Figure 3, and the associated algorithm is presented in Algorithm 1.

In the first step of MCTS-Train, Monte Carlo tree search is used to generate estimates of the
state-action value function, Q̂(s, a), following the policy found by MCTS. Monte Carlo tree search
works by simulating hundreds or thousands of interactions with the environment, building a search
tree based on the experience in the environment. At each step through the environment, MCTS
runs a number of simulations-per-step to determine what the next best action to take is. This is
done through a combination of selection steps that exploit current knowledge of the state-action
value function and rollout steps that execute a random or hand-crafted policy if MCTS reaches a
state is has not encountered yet. For the purposes of data generation, MCTS solves the MDP for
thousands of initial conditions, generating on the order of 104–105 data points to form the training

∗https://www.gymlibrary.dev/
†https://bitbucket.org/avslab/basilisk-gym-interface/src/develop/basilisk env/envs/

6

https://www.gymlibrary.dev/
https://bitbucket.org/avslab/basilisk-gym-interface/src/develop/basilisk_env/envs/

1. MCTS Training Data Generation 2. Supervised Learning 3. Validation and Benchmarking

Q̂(s, a)

<latexit sha1_base64="SQdDUbI3olrDl7DV/4pF6P4d388=">AAADuHicfVJtaxNBEN7mfKnxrdWPfjkMhaol5KSiKEKrBhUUW2raQvaoe3uTy9G93XN3TxOW/Rv9qn/Lf+NcmtIk1Q4sPDwzz7ztJKXIje10/iw1gitXr11fvtG8eev2nbsrq/f2jao0hx5XQunDhBkQuYSeza2Aw1IDKxIBB8nx29p/8AO0yZX8asclxAXLZD7IObNIUTpk1u36dbPBHh2ttDrtzsTCiyCaghaZ2s7RauOEpopXBUjLBTOmH3VKGzumbc4F+CatDJSMH7MM+gglK8DEbtK0D9eQScOB0vikDSfsrMKxwphxkWBkwezQLPpq8l++fmUHL2KXy7KyIPlpoUElQqvCegNhmmvgVowRMK5z7DXkQ6YZt7in5lwZA9Ygnh/FMZEp1A2L/9A5H83PLhXINK4DSgMVrkyldUoNEn5yVRRMpnRGbYcg3SX+VF3mxVK1G5kUBm6v6/t7vTfbn97H7qNM8ae868r0DHq3IKWhX5uILYzs4zPJDHMubtLzBhwtBQ78HfPVH6JBuCf+NYa8A7wMDZ+R/FKCZlZpR7vTsCRxXb+Qh+msYCPfj2JHKyyk8Q9cK0KFmurrM8IbyzzdmOdqnaevfBMvOVq824tg/2k72mw/291sbW1Pb3qZPCAPyTqJyHOyRT6QHdIjnJTkhPwiv4OXwbcgC/LT0MbSVHOfzFmg/wKLxkM/</latexit>

Q✓(s, a)

<latexit sha1_base64="k+jdMoeWf3dsNB44FoL3kRFZv2s=">AAADvXicfVJtaxNBEN7mfKnxpal+9MthKFQtIVcqLYjYqkEFxZaatpA7wt7eJDm6t3vu7tmEZf+GX/yqP8p/41x6pUmqHVh4eGaeedmZOOepNu32n6Wad+PmrdvLd+p3791/sNJYfXikZaEYdJnkUp3EVANPBXRNajic5ApoFnM4jk/flv7j76B0KsVXM8khyuhQpIOUUYNUv7Fy0LehGYGhbl1v0Kf9RrPdak/NvwqCCjRJZfv91dqPMJGsyEAYxqnWvaCdm8hSZVLGwdXDQkNO2SkdQg+hoBnoyE47d/4aMok/kAqfMP6UnVVYmmk9yWKMzKgZ6UVfSf7L1yvMYCeyqcgLA4KdFxoU3DfSL7/BT1IFzPAJAspUir36bEQVZQY/qz5XRoPRiOdHsZQPJepG2X/olI3nZxcSRBKVAbmGAr9MJmVKBQLOmMwyKpJwRo07EfYafyKv82Kp0o1MAgN72HG9w+6bvU/vI/tRJLgpZzsiuYDOLkhD361NxQbG5tmFZIa5FNfDywZsmHMc+BvmKxeigNvn7hWGvAO8DAWfkfySg6JGKht2qrA4th23kIeqYUbHrhdENiywkMId2GaAClnpyzPCGxu6cGOeK3UufOnqeMnB4t1eBUebrWCr9eJgq7m7V930MnlMnpB1EpBtsks+kH3SJYwU5Cf5RX57rz3wuCfOQ2tLleYRmTPv7C+/T0TG</latexit>

Hyperparameters Initial Conditions

Basilisk Gym
Environment

action

reward, observation

⇡(s) =

arg max
a

Q✓(s, a)

<latexit sha1_base64="M6UOztJSlNnl6lz0GKTxksV+/JA=">AAAEBHicfVLdahNBFJ42/tT401QvvVkMhbaGkpWKghRaNaig2FKTFjJLmJ09SYbuzqwzs9oyzK2P4FN4J96J7+Gtt/oQnk1TmqTagYHDd853fr84T4WxzebPufnKpctXri5cq16/cfPWYm3pdseoQnNoc5UqfRAzA6mQ0LbCpnCQa2BZnMJ+fPis9O9/AG2Eku/scQ5RxgZS9AVnFqFerUNjGAjpBswOQUPiqzQXK2Y12KQ0oCoHzazSkmWw5pge0EbGjnzPMb/bcxQplvkV02CrVQoyOcvSq9Wb683RC84b4diok/Hb6S3Nf6aJ4kUG0vKUGdMNm7mNsKYVPAVsqzCQM37IBtBFs+zIRG60AB8sI5IEfaXxSxuM0EmGY5kxx1mMkRm2aGZ9JfgvX7ew/ceREzIvLEh+UqhfpIFVQbnNIBEauE2P0WBcC+w14EOmGbe48+pUGQPWoD09imPpQCFvmP0HFvxoenapcNFRGZAbKHBlKilTapDwkassYzKhE2y8h3QX+BN1kbe8KboRSaDv9lq+u9d+uv36ReReyQQv5V1LJqemdzNUGvjlEdnCkV07pUwgZ+QqPWvA0TzFgd9jvvIgGlJ3329iyHNAZWh4g+DbsTAdbY3D4ti1/EweFGwp124YOVpgIY03cPUQGZPCLnXtaWMaK3mePvFVVHI4q9vzRufBerix/nB3o761Pdb0ArlL7pEVEpJHZIu8JDukTTj5Tn6R3+RP5VPlS+Vr5dtJ6PzcmHOHTL3Kj79sPGKF</latexit>

Figure 3: MCTS-Train Architecture.

data set Q. After the data generation step, supervised learning is applied over the dataset to produce
a neural network approximation of the state-action value function, Qθ(s, a). Optionally, many
different neural network hyperparameters can be input into the training process for experimentation
purposes. These hyperparameters include the size of the networks, the probability of dropout, the
activation function, and parameters specific to the activation function. Typically, mean squared error
is used for the loss function,

L(θ) =
∑
si∈Q

(
Qθ(si, ai)− Q̂(si, ai)

)2
, (6)

and the Adam optimizer is selected as the optimization algorithm to update the weights of the
network(s). After training, the neural networks are validated in the environment using the following
policy:

π(s) = arg max
a

Qθ(s, a) (7)

Proximal Policy Optimization

Proximal policy optimization (PPO) is a popular policy gradient method based on Trust Region
Policy Optimization (TRPO) that avoids the use of TRPO’s hard constraint that ensures the size of
the policy update is not too large.15 PPO does this by reformulating the loss function to penalize
steps too far from the current policy using a clipping function. This is provided in Equation (8),

where rt(θ) =
πθ(at|st)
πθold(at|st)

and Ât is an estimate of the advantage at time t. The ε parameter is

usually set around 0.2.

LCLIP (θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
(8)

The stable-baselines3∗ (SB3) implementation of proximal policy optimization with multiprocessing
is utilized for this work. A custom policy is implemented so that additional hyperparameters, such as
dropout and parameters specific to the activation functions, can be modified, which is not supported
by SB3’s vanilla PPO implementation. The parameters of the neural network are shared between
the policy and value function and are updated using Equation (9), where c1 and c2 are coefficients
that control the contribution of the value function loss and entropy bonus, S.

LCLIP+V F+S(θ) = Êt
[
LCLIPt (θ)− c1LV Ft (θ) + c2S[πθ](st)

]
(9)

∗https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html

7

https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html

Algorithm 1 MCTS-Train Algorithm.
1.) generate training data

1: initialize set of training data, Q = {}
2: for k = 1:N
3: initialize env, MCTS
4: for i = 1:MAX STEPS
5: ai = MCTS.selectAction(si)
6: si+1, ri, info, done = env.step(ai)

7: Q ∪ {MCTS.Q̂(si, ai) ∀ si, ai ∈MCTS}
8: MCTS.clear()

2.) train networks
9: initialize hyperparameters

10: initialize set of trained networks, Qθ = {}
11: for hp ∈ hyperparameters
12: initialize Qθ with hyperparameters
13: Qθ.train(N epochs)
14: Qθ ∪ {Qθ}

3.) validate trained networks
15: initialize env
16: initialize performance metrics
17: for Qθ ∈ Qθ

18: reward sum = 0

19: si = env.reset()
20: for i = 1: MAX STEPS
21: Q(si, ai) = Qθ.predict(si)
22: ai = arg max

ai

Q(si, ai)

23: si, ri, info, done = env.step(ai)
24: reward sum += ri

25: update performance metrics with reward sum, env.metrics

During each iteration of the policy, N actors collect experience in the environment. The loss func-
tion is computed using the collected data and the policy is optimized using the Adam optimizer for
K epochs. The full algorithm is provided in the original paper by Schulman et. al. in 15.

RESULTS

MCTS-Train

The Monte Carlo tree search algorithm is central to the MCTS-Train pipeline. Before MCTS can
be utilized within the MCTS-Train pipeline, it must be correctly parameterized. Specifically, the

8

Algorithm 2 Proximal Policy Optimization Algorithm.
1: initialize policy πθold

2: initialize N actors
3: for iteration 1:MAX ITERATIONS
4: for actor i = 1:N
5: run πθold in environment for MAX STEPS
6: compute advantage estimates Â1 · · · ÂMAX STEPS

7: optimize L(θ) wrt θ, with K epochs and batch size M ≤ N(MAX STEPS)

8: θold ← θ

exploration constant and the number of simulations-per-step through the environment must be set.
If the exploration constant is too low, MCTS will not explore the search space and default to the
first action available. If the exploration constant is too large, MCTS will equalize the number of
times each action is taken and inadequately exploit the knowledge it does have about which actions
are good and which are not. In the case of the number of simulations-per-step, too few simulations-
per-step will result in very shallow trees. Too many simulations-per-step will result in unnecessary
computation time.

Before generating the training data, an experiment is first performed to determine which ex-
ploration constant and number of simulations-per-step are required to generate policies with good
performance at as few simulations-per-step as possible. Exploration constants of {0.1, 0.5, 1, 2, 4}
and simulations-per-step of {5, 10, 20, 40, 80} are utilized for the experiment. Furthermore, two
separate rollout policies are explored. First, a more conservative rollout policy that takes safety
actions at normalized reaction wheel speeds of ||Ω||/Ωmax = 0.5 and normalized battery charge
of z/zmax = 0.5 is utilized. Then, a more aggressive rollout policy that takes safe actions at
||Ω||/Ωmax = 0.8 and z/zmax = 0.2 is used. The results of this experiment are provided in Figure 4.
For the conservative rollout policy, performance plateaus just below 0.6 reward for exploration con-
stants of {1, 2} and simulations-per-step of {40, 80}. The more aggressive rollout policy plateaus
somewhere between 0.6-0.7, and all hyperparameter combinations either perform the same or better
than the conservative rollout policy.

Given the results of the MCTS hyperparameter experiment, the aggressive rollout policy with an
exploration constant of 4 and 20 simulations-per-step is selected for data generation. MCTS is used
to solve the planning problem for 1,000 unique initial conditions. Using 30 processes in parallel, the
training data took 40 hours to generate using a 3.8 GHz AMD 3960x Threadripper CPU with 64 GB
of RAM. After data generation, a hyperparameter search is performed over various neural network
hyperparameters. After these networks are trained, they are benchmarked in the environment using
random initial conditions. For the first network hyperparameter search, {1, 2, 4} hidden layers
and {10, 20, 40, 80, 160} nodes per hidden layer are utilized. The results of this experiment are
provided in Table 1. The networks trained in under an hour using an Nvidia 3070 graphics card.
In general, networks between 80-160 nodes wide with 2-4 hidden layers are required to produce
good performance. Furthermore, the addition of a small amount of dropout appears to help with
overfitting, resulting in better performance for the larger networks. However, these networks are
rather large, and most networks achieve very poor performance. Several other experiments, not
shown here, are performed over the batch size and number of training epochs. However, these did
not result in any appreciable increase in performance. Future work will further investigate smaller

9

5 10 20 40 80
Simulations-Per-Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Re
wa

rd

Exploration Constant
0.1
0.5

1
2

4

(a) Conservative Rollout Policy.

5 10 20 40 80
Simulations-Per-Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Re
wa

rd

Exploration Constant
0.1
0.5

1
2

4

(b) Aggressive Rollout Policy.

Figure 4: MCTS Hyperparameter Search Over Exploration Constant and Simulations-Per-Step.

Table 1: MCTS-Train Network Size Search. Batch Size = 4.5e4. Epochs = 5e3

(a) p(dropout) = 0.0

Nodes
Hidden
Layers

10 20 40 80 160

1 -0.393 -0.485 -0.495 -0.219 0.180
2 -0.456 -0.096 -0.249 0.229 0.564
4 -0.402 -0.341 -0.123 -0.018 0.614

(b) p(dropout) = 0.05

Nodes
Hidden
Layers

10 20 40 80 160

1 -0.414 -0.384 -0.183 0.204 0.471
2 -0.422 -0.483 -0.353 0.641 0.558
4 -0.428 -0.470 -0.204 0.516 0.552

networks, as well as the impact of the rollout policy in MCTS on the final trained policy.

Proximal Policy Optimization

Several hyperparameter searches are conducted for proximal policy optimization to ensure the
algorithm is correctly parameterized for the multi-sensor EOS scheduling environment. In the first
hyperparameter search, a search over the number of hidden layers and the number of nodes in each
hidden layers is conducted. Two separate dropout rates are considered, p(dropout) = {0.0, 0.05}.
The batch size is set to 2 ·NUM CORES ·MAX STEPS = 2 · 46 · 90 = 8280, where NUM CORES
is the number of actors working in parallel and MAX STEPS is the maximum number of steps in
the environment. Only 5 epochs are selected for each update. This combination of batch size and
number of epochs is selected to keep training stable. After training, the performance of each policy
is benchmarked on a set of 3 · 46 random initial conditions. The results of this hyperparameter
search are presented in Table 2. Networks that achieve less than 0.3 reward are highlighted in red,
networks that achieve at least 0.3 but less than 0.6 reward are highlighted in yellow, and networks
that achieve at least 0.6 reward are highlighted in green. Based on this search, one would assume
that larger networks are required to converge to high-performing policies as only policies with 80 -
160 nodes and 2 - 4 hidden layers achieve more than 0.6 reward.

Based on the results of the previous hyperparameter search, one would assume that between 8·103

10

Table 2: PPO Network Size Search. Batch Size = 8280. Epochs = 5

(a) p(dropout) = 0.0

Nodes
Hidden
Layers

10 20 40 80 160

1 0.111 0.174 0.305 0.441 0.505
2 0.112 0.163 0.496 0.663 0.690
4 0.134 0.328 0.711 0.722 0.750

(b) p(dropout) = 0.05

Nodes
Hidden
Layers

10 20 40 80 160

1 0.113 0.156 0.285 0.389 0.507
2 0.095 0.251 0.380 0.684 0.724
4 0.100 0.178 0.328 0.736 0.717

0 2000 4000 6000 8000 10000
Episodes

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
wa

rd

(a) 1 Hidden Layer. 10 Nodes Wide.

0 2000 4000 6000 8000 10000
Episodes

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
wa

rd

(b) 4 Hidden Layers. 160 Nodes Wide.

Figure 5: Example Reward Curves for Batch Size = 8180. Epochs = 5. No Dropout.

– 8 · 104 trainable parameters are required to produce good policies. However, before dismissing
smaller networks as not having enough capacity to learn good policies, more searches should be
conducted to determine if smaller networks can be tuned to produce good policies. It is desirable
to have smaller policies because the proposed use case is on-board planning and scheduling where
memory is limited. Larger networks take up more memory and require more execution time. An-
other hyperparameter search is conducted over the batch size and number of epochs per batch of
data to determine if these parameters can be tuned further. The number of hidden layers is fixed at
4, and the number of nodes are fixed at 20, resulting in a policy with around 1.6 · 103 trainable pa-
rameters. The set of training epochs considered is {5, 25, 50}, and the set of batch sizes considered
is {2070, 4140, 8280}. The results of this search are presented in Table 3 for three different dropout
rates, {0.0, 0.05, 0.1}. First and foremost, it is apparent that a very small amount of dropout or
no dropout is preferable. Second, performance is typically best for large numbers of epochs (>5).
Batch sizes of 4140 and 8280 perform poorly for ≤ 5 epochs. If larger batch sizes are used, then
large numbers of training epochs are required. With either a small batch size or a large batch size
and number of training epochs, the small policy now performs about as well as the larger policies.

To ensure that the conclusions drawn about a large number of epochs and a small batch size holds
for all networks, the first experiment is repeated for a batch size of 2070 and 50 epochs. These
results are presented in Table 4. Again, it is shown that no dropout is preferable. The smallest
networks perform best without any dropout. It is also shown that the small batch size and large

11

Table 3: Search over Batch Size and Number of Epochs. Hidden Layers = 4. Nodes = 20.

(a) p(dropout) = 0.

Batch Size
Epochs 2070 4140 8280

5 0.657 0.370 0.294
25 0.666 0.705 0.674
50 0.617 0.642 0.656

(b) p(dropout) = 0.05.

Batch Size
Epochs 2070 4140 8280

5 0.180 0.110 0.215
25 0.629 0.603 0.439
50 0.652 0.544 0.677

(c) p(dropout) = 0.1.

Batch Size
Epochs 2070 4140 8280

5 0.158 0.133 0.05
25 0.404 0.264 0.210
50 0.632 0.498 0.570

0 2000 4000 6000 8000 10000
Episodes

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
wa

rd

Figure 6: Reward Curve for 4 Hidden Layers. 20 Nodes. Batch Size = 2070. Epochs = 50.

number of epochs works well for network smaller than those presented in the prior experiment.
As the networks get larger, though, performance begins to degrade to below the levels of the first
experiment performed with the large batch size and small number of epochs. This suggests that
for small networks, small batch sizes and many epochs are preferable, but for larger networks,
larger batch sizes and fewer epochs are preferable. This relationship is well demonstrated for small
networks as evidenced by experiment 2. However, more experiments would need to be conducted to
prove this for larger networks. In the interest of time, and because larger networks are not preferable
for on-board execution, this experiment is not performed in this work.

Comparisons

This work compares PPO and MCTS-Train for the multi-sensor EOS scheduling problem on the
basis of performance, training time, and required model complexity. PPO produces the best per-
forming networks across all sizes of networks after detailed hyperparameter tuning. The maximum
reward achieved by PPO is approximately 0.75 reward. This is achieved both in training and in
validation, as evidenced by Figure 5b. This performance is not even achieved by MCTS running
80 simulations-per-step. Furthermore, after function approximation, the highest reward achieved by

12

Table 4: PPO Network Size Search. Batch Size = 2070. Epochs = 50.

(a) p(dropout) = 0.

Nodes
Hidden
Layers

10 20 40 80 160

1 0.696 0.678 0.681 0.668 0.637
2 0.677 0.677 0.637 0.612 0.556
4 0.698 0.637 0.587 0.556 0.532

(b) p(dropout) = 0.05.

Nodes
Hidden
Layers

10 20 40 80 160

1 0.485 0.586 0.633 0.652 0.640
2 0.498 0.625 0.670 0.613 0.621
4 0.338 0.563 0.600 0.605 0.570

0 2000 4000 6000 8000 10000
Episodes

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
wa

rd

(a) 1 Hidden Layer. 10 Nodes Wide.

0 2000 4000 6000 8000 10000
Episodes

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
wa

rd

(b) 4 Hidden Layers. 160 Nodes Wide.

Figure 7: Example Reward Curves for Batch Size = 2070. Epochs = 50. No Dropout.

MCTS-Train is 0.64. This is an unexpected result considering that MCTS-Train produces optimal
policies in References 6 and 14. However, this work uses planning horizons that are 90 decision-
making intervals long. Past work uses 45 decision-making intervals. With 90 decision making
intervals and 4 actions, the total number of potential trajectories is 490. In past work, there are
only 445 potential trajectories. While this is still a large amount, 490 trajectories likely requires
exponentially more simulations-per-step to produce optimal behavior.

PPO typically requires 3.5 hours of training time for each network. MCTS-Train requires 40
hours to generate the data and less than an hour to train the networks. Therefore, it is difficult
to compare the two algorithms on execution time. If the goal is to perform large hyperparameter
searches, they both take on the order of days to finish the experiment. However, if the goal is to
train a single network, PPO is far superior as MCTS-Train will always require the intensive training
data generation step.

After detailed hyperparameter tuning, PPO achieves more than 0.6 reward for most of sizes of
neural networks. MCTS-Train, however, only achieves more than 0.6 reward for a couple of net-
works, which are extremely large. Based on the experiments, it appears that PPO’s required model
complexity is much smaller than MCTS-Train’s. This is not a surprising result because policies
are theoretically easier to learn than value functions. A small error in the computation of the value
function can lead to a large error in the resulting policy. However, more work must be performed
to determine if this is the explanation for MCTS-Train’s relatively poor performance and if any-
thing can be done to improve the algorithm’s performance, especially when considering the fact

13

that MCTS itself was not able to achieve the reward found by PPO. Furthermore, other value-based
and policy-based methods should be compared to determine if this holds for those algorithms as
well.

CONCLUSION

In this work, a multi-sensor Earth-observing satellite (EOS) scheduling problem is formulated
as a Markov decision process (MDP). A high-fidelity astrodynamics simulation wrapped within
a Gym environment is created for the problem to train decision-making agents. Proximal policy
optimization (PPO) and MCTS-Train are applied to solve the problem and compared to one another
on the basis of performance, training time, and required model complexity. PPO is shown to be the
far superior algorithm in terms of performance and required model complexity. For hyperparameter
searches, both algorithms take about the same amount of time to execute. However, if only a single
network is required, PPO is the better algorithm because MCTS-Train takes 40 hours to generate
the batch of training data.

Future work will compare other value-based methods (such as DQN) to other policy-gradient or
actor-critic methods (i.e. A2C). Furthermore, additional EOS and small body science operations
MDPs and environments will be investigated to provide a more comprehensive comparison for deep
reinforcement learning EOS planning and scheduling. The hyperparameter searches for MCTS-
Train will be expanded to determine if other combinations of parameters can produce better training
data and better networks.

ACKNOWLEDGEMENT

This work is partially supported by a NASA Space Technology Graduate Research Opportunity
(NSTGRO) grant, 80NSSC20K1162. This work is also partially supported by the Air Force STTR
Program, FA8649-22-P-0833.

REFERENCES
[1] D.-H. Cho, J.-H. Kim, H.-L. Choi, and J. Ahn, “Optimization-Based Scheduling Method for Agile

Earth-Observing Satellite Constellation,” Journal of Aerospace Information Systems, Vol. 15, No. 11,
2018, pp. 611–626, 10.2514/1.I010620.

[2] X. Chen, G. Reinelt, G. Dai, and A. Spitz, “A Mixed Integer Linear Programming Model for Multi-
Satellite Scheduling,” European Journal of Operational Research, Vol. 275, No. 2, 2019, pp. 694–707,
https://doi.org/10.1016/j.ejor.2018.11.058.

[3] G. Peng, R. Dewil, C. Verbeeck, A. Gunawan, L. Xing, and P. Vansteenwegen, “Ag-
ile Earth Observation Satellite Scheduling: An Orienteering Problem with Time-Dependent
Profits and Travel Times,” Computers & Operations Research, Vol. 111, 2019, pp. 84–98,
https://doi.org/10.1016/j.cor.2019.05.030.

[4] S. Spangelo, J. Cutler, K. Gilson, and A. Cohn, “Optimization-based Scheduling for the Single-satellite,
Multi-ground Station Communication Problem,” Computers and Operations Research, Vol. 57, May
2015, 10.1016/j.cor.2014.11.004.

[5] S. Knight, G. Rabideau, S. Chien, B. Engelhardt, and R. Sherwood, “CASPER: Space Exploration
Through Continuous Planning,” IEEE Intelligent Systems, Vol. 16, September 2001, pp. 70–75,
10.1109/MIS.2001.956084.

[6] A. P. Herrmann and H. Schaub, “Monte Carlo Tree Search Methods for the Earth-Observing Satellite
Scheduling Problem,” Journal of Aerospace Information Systems, 2021, pp. 1–13, 10.2514/1.I010992.

[7] Y. He, L. Xing, Y. Chen, W. Pedrycz, L. Wang, and G. Wu, “A Generic Markov Decision Process
Model and Reinforcement Learning Method for Scheduling Agile Earth Observation Satellites,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[8] A. T. Harris, Autonomous Management and Control of Multi-Spacecraft Operations Leveraging
Atmospheric Forces. PhD thesis, University of Colorado at Boulder, 2021.

14

[9] X. Zhao, Z. Wang, and G. Zheng, “Two-phase Neural Combinatorial Optimization with Reinforcement
Learning for Agile Satellite Scheduling,” Journal of Aerospace Information Systems, Vol. 17, No. 7,
2020, pp. 346–357.

[10] P. W. Kenneally et al., “Basilisk: A Flexible, Scalable and Modular Astrodynamics Simulation Frame-
work,” 7th International Conference on Astrodynamics Tools and Techniques (ICATT), DLR Oberpfaf-
fenhofen, Germany, Nov. 6–9 2018.

[11] I. Nazmy, A. Harris, M. Lahijanian, and H. Schaub, “Shielded Deep Reinforcement Learning for Multi-
Sensor Spacecraft Imaging,” American Control Conference, Atlanta, Georgia, June 8–10 2022.

[12] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Driessche, T. Graepel, and D. Hassabis,
“Mastering the Game of Go Without Human Knowledge,” Nature, Vol. 550, 10 2017, pp. 354–359,
10.1038/nature24270.

[13] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and Application, ch. Sequential Prob-
lems, pp. 102–103. Massachusetts Institute of Technology, 2015.

[14] A. Herrmann and H. Schaub, “Autonomous On-board Planning for Earth-orbiting Spacecraft,” IEEE
Aerospace Conference, Big Sky, MT, March 5-12 2022.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization Algo-
rithms,” 2017, 10.48550/ARXIV.1707.06347.

15

	Introduction
	Reference Problem
	Overview
	Simulation Architecture
	Markov Decision Process
	State Space
	Action Space
	Transition Function
	Reward Function

	Methods
	MCTS-Train
	Proximal Policy Optimization

	Results
	MCTS-Train
	Proximal Policy Optimization
	Comparisons

	Conclusion
	ACKNOWLEDGEMENT

