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REINFORCEMENT LEARNING FOR MULTI-SATELLITE AGILE
EARTH OBSERVING SCHEDULING UNDER VARIOUS

COMMUNICATION ASSUMPTIONS

Adam Herrmann*, Mark Stephenson†, and Hanspeter Schaub‡

This work explores the use of reinforcement learning (RL) for the multi-satellite
agile Earth-observing (MSAEO) scheduling problem. In this work, a policy is
trained in a single satellite environment on a fixed number of imaging targets
where the status is updated as they are imaged and downlinked by the spacecraft.
The policy is then deployed in a multi-satellite scenario where each spacecraft
has its own list of imaging targets. Each spacecraft in the multi-satellite scenario
has its own copy of the policy and makes decisions using a local observation of
the state. The spacecraft communicate with one another to update their lists of
targets. While the method applied to this problem generates sub-optimal poli-
cies in terms of global reward, the distributed nature of the architecture simplifies
the training process and required training time. Furthermore, this method readily
scales with changing numbers of satellites as no assumptions are made regarding
the constellation design in training. This autonomous scheduling approach is eval-
uated and benchmarked for four cross-link communication assumptions, namely
free communication, two line-of-sight communication methods, and no commu-
nication. A range of Walker-Delta constellations are explored to determine how
the performance of the trained agents relates to both the communication method
and constellation design. Experimental results demonstrate that the free commu-
nication assumption produces the best performance (i.e. fewer duplicate targets),
and the no communication assumption produces the worst performance (more du-
plicate targets). The performance of the line-of-sight communication assumption
depends heavily on the design of the constellation and how frequently the space-
craft can communicate with one another.

INTRODUCTION

In the multi-satellite agile Earth-observing (MSAEO) scheduling problem, a constellation of
spacecraft attempt to maximize the weighted sum of imaging targets collected and downlinked
while avoiding resource constraint violations. Each spacecraft maintains its own list of imaging
targets, which may be shared between spacecraft. These lists of targets may be modified in multi-
ple ways, either by the ground or another Earth-observing satellite outside of the constellation. An
example of this problem is depicted in Figure 1, where a constellation of SmallSats are tasked with
lists of imaging targets that are modified by both the ground station and a polar-orbiting satellite.
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Figure 1: Multi-Satellite Agile Earth-Observing Scheduling Problem.

The traditional approach to EOS planning and scheduling formulates and solves an optimization
problem over some planning horizon. The solution to this problem is sequenced into commands,
which are uplinked to the spacecraft and executed open-loop. Many mixed-integer programming
formulations of the multi-satellite EO scheduling problem are prevalent in the literature and address
challenges specific to EO scheduling.1–4 Both Planet5 and Spire Global6 take MIP-based optimiza-
tion approaches for their constellations. One of the primary challenges in Earth-observing satellite
scheduling that is difficult for optimization-based formulations and solutions to address is replan-
ning in the event of opportunistic science events, missed ground contacts, mismodeling, or task
execution taking longer or shorter than anticipated. Several authors have posed solutions to this
problem. Chien et al. use iterative repair in real on-board planning systems to improve science re-
turn.7–10 Valicka et al. formulate multi-stage stochastic MIP models for a constellation of satellites
that addresses cloud coverage uncertainty, which could necessitate re-planning in deterministic plan-
ning systems.11 The Scheduling Planning Routing Inter-satellite Network Tool (SPRINT) addresses
these issues by utilizing a global planner for constellation-level management and local planners to
handle unexpected opportunities and events.12, 13 In addition to optimization-based solutions, rein-
forcement learning has become popular for the multi-satellite agile EO scheduling problem. Rein-
forcement learning-based approaches are desirable because the planning is inherently closed-loop,
so the decision-making agent is always acting based on the current state of the environment. Wei
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et al. formulate a scheduling and timing problem for a constellation of Earth-observing satellites
and apply actor-critic reinforcement learning, showing that it can outperform a genetic algorithm in
terms of optimality and execution time.14 The authors do not consider power or data constraints.
Cui et al. apply double DQN for communication scheduling of a constellation of Earth-orbiting
satellites.15 The authors do consider power as a resource and demonstrate that their algorithm is
superior to a genetic algorithm in terms of performance and computation time. Dalin et al. formu-
late a scheduling problem for multi-satellite tasking with both data and power constraints (although
it’s important to note that these are not replenishable resources) and apply the multi-agent deep de-
terministic policy gradient (MADDPG) algorithm to solve the problem.16 The performance of the
MADDPG algorithm is shown to be comparable to other solvers for this problem.

Reinforcement learning is an appealing approach for the MSAEO scheduling problem due to
the ability of policy-based decision-making agents to rapidly plan in a closed-loop fashion, re-
sponding to the rapid changes in target requests. However, multi-agent reinforcement learning
comes with many challenges, especially when decentralized deployment is desired. Multi-agent
environments with limited to no communication between agents appear non-stationary to individ-
ual agents because other agents change the environment with their actions. The problem may be
cast as a decentralized partially observable Markov decision process (Dec-POMDP) to account for
the uncertainty in the environment due to other agents. Several multi-agent robotics problems us-
ing macro-actions have demonstrated the success of such an approach.17–19 However, finding an
optimal solution for a finite-horizon Dec-POMDP is NEXP-complete.20 Determining the observa-
tions required for coordination amongst agents is also non-trivial. If free communication between
agents and full observability of the environment is assumed, the Dec-POMDP can be reduced to a
multi-agent Markov decision process (MMDP).21, 22 Finding an optimal solution for a finite hori-
zon MDP is only P-complete,23 but the joint action space is exponential in the number of agents.
Furthermore, the assumption that each agent has full observability over all other agents is a dubi-
ous one. To avoid the computational requirements of solving a Dec-POMDP or MMDP, this work
explores a problem formulation that treats the environment like it’s an MDP for each individual
spacecraft. The other spacecraft may change the environment, but this happens in a predictable
manner if some assumptions are made about the behavior of the trained agents. The agents trained
following the MDP assumption are deployed in a multi-satellite constellation, where each space-
craft uses its own local observations and policy to make decisions. Performance is benchmarked for
various communication assumptions and various Walker-delta constellation designs to determine
how the communication assumptions affect duplication of effort, global reward, and local reward.
A past iteration of this work was presented at the 2022 Rocky Mountain Guidance, Navigation, and
Controls Conference.24 This work expands upon past work by investigating various communication
assumptions. Furthermore, a slightly modified environment and updated agents are used for this
work.

This paper first describes the single and multi-satellite agile EOS scheduling problems. The
Markov decision process formulations, communication assumptions, and simulation architecture for
each problem formulation are then presented. Four communication assumptions are presented: free
communication, no communication, single-degree line-of-sight communication, and multi-degree
line-of-sight communication. The Monte Carlo tree search and supervised learning-based training
method is discussed, as well as the deployment of the trained decision-making agents in the multi-
satellite environment. Finally, the results that explore how the various communication assumptions
impact performance are presented. The paper then concludes with a summary of the findings and a
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discussion of future work.

PROBLEM FORMULATION

Single Satellite Agile Earth-Observing Satellite Scheduling Problem

Overview In the single satellite agile Earth-observing satellite (SSAEO) scheduling problem,
a spacecraft in low-Earth orbit attempts to maximize the weighted sum of targets collected and
downlinked while avoiding data buffer, reaction wheel speed, and battery charge resource violations.
Over the course of its three orbit planning horizon, the spacecraft has a set of 135 targets along its
flight-path available, each with its own priority (1-3). This set of targets is referred to as T. The set is
ordered by spacecraft access time. The three orbit planning horizon is split into 45 decision-making
intervals, each of which last for a total of six minutes.

Markov Decision Process Formulation The Markov decision process (MDP) formulation for the
SSAEO scheduling problem is described in detail in Reference 25. A Markov decision process is a
sequential decision making problem in which a decision-making agent selects an action, ai, in some
state, si, based on a policy, π : S × A. The agent transitions to a new state, si+1, and receives a
reward, ri, based on the reward function of the MDP, R : S × A → R. MDPs follow the Markov
assumption, which states that the next state is conditionally dependent only on the current state and
action:

T (si+1|si, ai) = T (si+1|si, ai, si−1, ai−1, ..., s0, a0) (1)

The state space, S, must be constructed to maintain the Markov assumption. In the SSAEO
scheduling problem, the state space is given as follows to adhere to this assumption as closely as
possible:

• ECEF spacecraft position, Er

• ECEF spacecraft velocity, Ev

• Image tuples for targets cj ∈ U

– Target position in the spacecraft Hill frame, Hrj
– Priority, pj

• L2 norm of Modified Rodrigues Parameter (MRP) attitude error, ||σB/R||

• L2 norm of angular attitude rate vector, ||BωB/N ||

• Reaction wheel speeds, Ω

• Battery charge, z

• Eclipse indicator, k

• Stored data in buffer, b

• Data transmitted, h

• Ground station access indicators
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Information on the spacecraft geometry, attitude states and rates, imaging target states and prior-
ities, and spacecraft resources are included in the state space. Eclipse indicators and ground station
access indicators are also included in the state space.

The action space, A is given as follows:

• Charge

• Desaturate

• Downlink

• Image target c1 ∈ U

...

• Image target cj ∈ U

In the charging mode, the spacecraft points its solar panels at the sun to charge its batteries.
In the desaturation mode, the spacecraft points its solar panels at the sun to maintain power and
simultaneously maps reaction wheel momentum to thrust commands to remove momentum from
the wheels. In the downlink mode, the spacecraft points its antenna in the nadir direction and
downlinks data when a ground station is in view.

Finally, the last few modes deal with imaging. Because the spacecraft cannot image all targets
in T at any given timestep, only the next few upcoming targets are included in the action space for
imaging. The subset of upcoming targets, U, is defined in Equation 2, where J is the number of
targets in the state and action space. D is a subset of T that contains the targets that have been
imaged by the spacecraft or passed by already.

U = {cj ∈ (T−D) | ∀ j ∈ [1, J ]} (2)

Finally, a reward function is created that accounts for a.) the desire to avoid resource constraint
violations and b.) the desire to image and downlink targets. The reward function is given in Equa-
tion 3.

R(si, ai, si+1) =



−1 if failure

1

45

∑|T|
j H(dj) if ¬failure ∧ ai is downlink

0.1

45
H(wj) if ¬failure ∧ ai is image cj

0 otherwise

(3)

The first condition checked for is the failure condition. If the spacecraft exceeds the maximum
reaction wheel speeds, expends all charge in the battery, or overflows the data buffer then the failure
condition is true and the agent receives -1 reward.

failure = (z = 0 ∨ any(Ω̂ ≥ 1) ∨ b ≥ 1) (4)
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The second condition checked for handles the downlink of targets. If the downlink mode occurs,
the H(dj) function is computed for all targets using a downlink state, dj , which represents whether
or not target j has been downlinked. The total reward is summed and divided by 45, the total number
of planning intervals, to ensure the upper limit for this component of the reward is equal to 1.

H(xj) = (1/pj) if ¬xji ∧ xji+1 (5)

If the image target cj mode is initiated, the H(wj) operator for target cj is computed, returned,
and scaled by 0.1/45. The variable wj represents if the target has been imaged or not. The addition
of this small positive reward helps to make reward less sparse and ensures that the decision-making
agent still has incentive to image after all downlink windows have been passed.

Multi-Satellite Agile Earth-Observing Satellite Scheduling Problem

Overview In the multi-satellite agile Earth-observing satellite (MSAEO) scheduling problem,
more than one spacecraft attempt to maximize the number of images collected and downlinked
while avoiding resource constraint violations. In this work, the decision-making agents on-board
each spacecraft attempt to maximize local reward and do not coordinate with other spacecraft to
maximize global reward. The spacecraft have access to a global set of targets, M, and each space-
craft k has its own set of targets, Tk. Spacecraft may share targets within M. The satellite con-
stellations are designed using the Walker-Delta notation. The N satellites are distributed evenly
between P orbit planes. The orbital planes are distributed at 360/P deg intervals of the longitude
of ascending node. Relative phasing may be prescribed in Walker-delta constellations, but is not in
this work.

The Markov decision process formulation of the problem is largely unchanged, at least for in-
dividual decision-making agents. The complete state space is now given by S : {s0i , · · · , ski }, but
each decision-making agent maintains an observation over its own state, ski . The state changes with
the joint action space, A : A1 × · · · × Ak. The transition function is therefore a function of the
state space and joint actions, si+1, r

0
i , · · · , rki ∼ G(si,ai). Likewise, the joint reward function is a

function of the state space and joint actions, R(s,a) = (R0(s,a), · · · , Rk(s,a)). For the individual
decision-making agents, the reward function in Equation 3 is the same, but the H(xj) function now
sweeps through the global target set M to determine if a target was imaged or downlinked already.
If another spacecraft already imaged or downlinked the target, no new reward is returned.

The spacecraft may have the ability to communicate with one another to update whether or not
targets in Tk have already been imaged or downlinked. The spacecraft do not update their tar-
get lists based on contact with ground stations. Only inter-satellite communication is considered.
Several communication assumptions are explored in this work, including no communication, free
communication, and line-of-sight communication. During the communication step at the end of
each decision interval, the spacecraft that have communicated with one another during the previ-
ous interval of simulation loop through the lists of targets available from other spacecraft and mark
which targets have already been imaged or downlinked, which in turn prevents them from being
added to Uk and selected for imaging in the future. The four cases are as follows:

Free Communication Free communication models a scenario where additional communication
infrastructure supplements the imaging satellites, such as a communications constellation. In the
free communication case, every satellite is able to share imaged target lists with every other satellite
at the communication step of every decision interval; that is, if ci ∈ Tj is marked as imaged by
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spacecraft j, ci is also marked as imaged by any other spacecraft k for which ci ∈ Tk. This behavior
is illustrated in Figure 2d. Note that even with communication, satellites do not actively coordinate
their next actions, so two satellites can still image the same target if they make the decision to do so
at the same interval.

Single Degree Line-of-Sight Communication Single degree line-of-sight models a constellation
with limited inter-satellite communication bandwidth. Line-of-sight connectivity is defined as a
straight-line connection between two satellites unoccluded by Earth plus a 100km layer of atmo-
sphere. Each satellite updates its list against that of direct line-of-sight neighbors. Information is
only able to travel one degree through the network of satellites in a single communication step: If
satellites i ↔ j ↔ k have line-of-sign connections but not between i ̸↔ k, k will receive updates
from j’s list but not i’s list.

Multi-Degree Line-of-Sight Communication As opposed to the single degree model, multi-degree
line-of-sight assumes satellites have high bandwidths and fast communication speeds. If at the com-
munication step there is any connection in the satellite network between two satellites, they will
share imaged satellite information. For example, if satellites i ↔ j ↔ k but not between i ̸↔ k, k
will receive updates from i’s list via j.

No Communication The no communication case models the satellites as independent agents
without inter-satellite communication capabilities. Satellites never share information about imaged
targets with each other; if ci ∈ Tj is marked as imaged by satellite j, it does not affect any other
satellite k’s Tk.

Simulation Architecture

Both the single and multi-satellite agile EOS scheduling problems are simulated using the Basilisk*

astrodynamics software architecture, a high-fidelity simulation framework for astrodynamics prob-
lems.26 Each of the simulations are wrapped within a Gym environment, which is a standard inter-
face for reinforcement learning problems that allows decision-making agents to pass action to the
simulation and receive observations and rewards in return, which is depicted in Figure 3.

The Basilisk simulation for both the single and multi-satellite agile EOS scheduling problem con-
tains an attitude control system with reaction wheels and thrusters, a power system with batteries,
solar panels, and power sinks, and an on-board data storage system that includes a transmitter, in-
struments, and a data buffer. Ground stations on the surface of the Earth are also simulated to ensure
the transmitter only downlinks when a ground station is in view. The simulation architectures are
described in detail in References 24 and 27. Furthermore, the source code for each of the simulation
architectures may be found on the develop branch of the basilisk-gym-interface library† under the
names multiTgtEarthEnvironment and multiSatMultiTgtEarthEnvironment.

METHODS

MCTS-Train

The agents are trained using the MCTS-Train architecture, a training pipeline inspired by Alp-
haZero that is described in detail in References 25 and 27. A diagram of the MCTS-Train pipeline is

*https://hanspeterschaub.info/basilisk
†https://bitbucket.org/avslab/basilisk-gym-interface
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(a) No communication. (b) Single degree line-of-sight communication.

(c) Multi degree line-of-sight communication.

Global Data

(d) Free communication.

Figure 2: Communication Methods.

provided in Figure 4. In summary, MCTS-Train utilizes Monte Carlo tree search, an online search-
based algorithm commonly used for RL problems, to generate solutions over the planning horizon
as well as an estimate of the state-action value function, Q̂(s, a), in the form of thousands of data
points. The state-action value estimates are regressed over using various neural networks, each with
a unique combination of hyperparameters, to generate a neural network approximation of the state-
action value function, Qθ(s, a). The trained state-action value functions are then deployed in the
environment for validation using the following policy:

π(s) = arg max
a

Qθ(s, a) (6)

At the core of the MCTS-Train pipeline is Monte Carlo tree search (MCTS). At each step through
the environment, MCTS runs a number of simulations in the environment to determine the next best
action to take. During the simulation step, MCTS selects the action that maximizes the current
estimate of the state-action value function (represented in tabular form at this point, based on the
simulated states) and the exploration term. If MCTS reaches a state it has never visited before, it ini-
tializes Q̂ and executes a rollout policy, a heuristic policy that avoids resource constraint violations
and downlinks or images in the nominal states.
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Figure 4: MCTS-Train Pipeline.

To construct the rollout policy, a low dimensional safety MDP is first constructed. The state space
of this safety MDP is Ssafe : {tumbling, saturated, low power, buffer overflow}. The values take a
value of 0 or 1 based on whether or not the state exceeds a safety limit. The safety limits are tuned
such that the resource constraint violations in the reward function do not occur if the safe action is
taken. Safe actions include desaturation, charging, or downlink. A safety policy, referred to as the
“shield,” is constructed based on the value of the safety MDP. This policy is provided in Table 1 and
was originally developed in Reference 27.

If the spacecraft is in a nominal state, meaning an imaging action is returned by the safety shield,
then either imaging or downlink can be performed, depending on the availability of the ground
stations. If a ground station is available, then the downlink mode is initiated. If there is no ground
station available, then the nearest target is selected for imaging.

Deployment

After training in the single satellite EOS environment, the trained agents are deployed in the
multi-satellite scenario. Each spacecraft has a copy of the trained neural network and takes actions
according to the policy in Equation 6, using its observation of its own state ski . The safety MDP
constructed for use within MCTS is also used in deployment in the multi-satellite scenario. The
output of the network is compared to the policy constructed using the safety MDP. If the network
requests that an unsafe action is taken, like attempting to image when a data buffer overflow is
imminent, the shield action is taken instead. If the safety MDP is in a nominal state (i.e. an imaging
mode is returned), any action requested by the trained agent is permissible. A diagram of the
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Table 1: Shield Policy27

Tumbling Saturated Low Power Buffer Limit Action

1 1 1 1 Charge
1 1 1 0 Charge
1 1 0 1 Desaturate
1 1 0 0 Desaturate
1 0 1 1 Charge
1 0 1 0 Charge
1 0 0 1 Downlink
1 0 0 0 Image
0 1 1 1 Desaturate
0 1 1 0 Desaturate
0 1 0 1 Desaturate
0 1 0 0 Desaturate
0 0 1 1 Charge
0 0 1 0 Charge
0 0 0 1 Downlink
0 0 0 0 Image

shielded agent is provided in Figure 5.

Agent Environment

Shield Policy

action

action

reward
observation

observation

Figure 5: Shielded Agent Deployment.

RESULTS

To evaluate the performance of the policy in multi-agent constellations across different commu-
nication assumptions, two classes of cases are studied: single plane constellations, in which the
density of satellites in a single plane is varied to evaluate the impact of intra-plane communica-
tion; and multi-plane constellations, in which the number of planes is varied to evaluate the impact
of inter-plane communication. For each case, the performance is evaluated over a range of target
densities.

Single Plane

For each single plane case, a Walker-delta constellation is constructed using a 500km circular
orbit at a 45◦ inclination with N satellites equally distributed along the orbit.

Analytical predictions can be made about communication behavior in single plane constellations.
There exists some number N∗ below which no satellites have line-of-sight connections with their
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neighbors, and above which all satellites have line-of-sight with their neighbors. Considering oc-
clusion by the Earth plus 100km of atmosphere,

N∗ =
π

cos−1
(
RE+100km
RE+500km

) = 9.2 satellites (7)

Thus, for N < N∗ the single- and multi-degree line-of-sight communications cases is functionally
the same as the no communication case. For N > N∗ the multi-degree line-of-sight communication
case acts the same as the free communication case; single-degree line-of-sight does not collapse to
the free communication case because information propagation is not instantaneous throughout the
network.

To test this hypothesis, 16 simulations are run for each combination of N satellites ∈ {4, 7, 10, 15, 20, 30, 40}
and global targets M ∈ {200, 800, 1200, 1600, 3200}. The global targets are randomly generated
and distributed amongst the spacecraft based on the same access model used in training. Experi-
mental results are provided in Figures 6, 7, and 8.

Reward Figures 9a and 9b shows both 2D and 3D views of the global reward of all satellites.
The global reward is defined as the sum of the local reward of each spacecraft. The global reward
is limited by two factors: target density and maximum per-satellite reward. At low target densities
and a high number of satellites, the global reward saturates because there are not enough targets
for all satellites to maximize their individual performance. This is reflected in the per-satellite
reward curves in Figures 9c and 9d where satellites in the larger constellations underperform with
respect to their small-constellation counterparts. The reduced reward is due to competition for a
limited number of targets: either satellites have no available targets due to other satellites having
imaged them, or they are imaging the same target as another satellite in which case only the first
satellite to downlink the image is rewarded. This duplication behavior is further examined in the
next section. The second limiting factor is a maximum single-satellite reward achieved by the policy.
When targets are plentiful compared to the number of satellites, this maximum of ∼ 0.45/satellite
is approached, limiting the global reward to 0.45N . Note that the target density utilized in training
is 135 total targets for each satellite, all of which are long the orbital path of the spacecraft. This
corresponds to around 1000 global targets randomly distributed on the surface of the Earth.

The behavior of different communication models is visible in the reward plots. As predicted,
line-of-sight cases with fewer than N∗ satellites per plane (N = 4, 7 cases) perform the same as
the no communication case, which is poor relative to the free communication case because the no
communication model will reimage already imaged targets even when other non-imaged targets are
available. Once N∗ is exceeded (N ≥ 10 cases) multi-degree line-of-sight performs the same as
the free communication model, as predicted. Notably, the single degree line-of-sight model also
matches the performance of free communication. While this was not guaranteed to be the case,
the result is not surprising: Satellites receive updates to their target lists immediately from adjacent
satellites, which are most likely to be considering similar targets for imaging. While far satellites
receive information with a delay due to propagation through the network, the latency is shorter than
the time it takes for them to orbit to the region where the information is relevant.

The relationship between unique targets imaged (Figures 10a and 10b), unique targets downlinked
(Figures 10c and 10d), and global reward is also considered. Unique imaged and downlinked are
roughly proportional by a factor of ∼ 0.75. This behavior exists because the last downlink window
for a satellite can occur well before the end of the simulation. Any images taken after that point
are not downlinked within the simulation duration and thus receive relatively little reward (Eq. 3).
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(a) 2D View of Global Reward.
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(c) 2D View of Local Reward.
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Figure 6: Global and Local Reward for the Single Plane Experiment.

However, since the priority of targets is distributed evenly, the resulting global reward is likewise
proportional to the unique images and downlinks.

Target Duplication Target duplication statistics provide more insight into the behavior of each
communication method. Figure 8 gives the number of unique targets imaged over the total number
of images taken. A value of one implies that no target was imaged more than once, while values
approaching zero imply a high degree of image duplication. Two broad trends exist across all con-
stellations. The uniqueness of images increases as the density of targets increases and uniqueness
decreases as the number of satellites decreases. These trends are intuitive from probability. Ignoring
any intelligent behavior, fewer agents randomly selecting from more targets are less likely to select
the same target. The no communication cases exhibit these trends particularly well, as there is no
relationship between the targets imaged by two different satellites. Note that the decision-making
agents are not trained to coordinate and avoid duplicating efforts.

As seen in the reward curves, line-of-sight communication models exactly or nearly collapse to
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(b) 3D View of Imaged Targets.
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(c) 2D View of Downlinked Targets.
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Figure 7: Global Numbers of Unique Imaged and Downlinked Targets for the Singe Plane
Experiment.

the no communication (N < N∗) or free communication (N > N∗) models. The no communi-
cation cases display considerable image duplication because they have no mechanism to avoid it.
However, the (pseudo-)free communication cases do not guarantee no target duplication. As pre-
viously mentioned, there is no protection from two satellites selecting the same target at the same
decision interval, assuming they both have the same target in observation. With denser constellations
and sparser targets, this competitive behavior occurs more often, resulting in free communication
cases with poor duplication percentages. The best-case limiting behavior occurs in sparse constel-
lations (N ≤ 10) with free communication and a sufficient target density (≥800). In these cases, all
images taken are unique. Because six minute decision-making intervals are used, each spacecraft
covers roughly 24 degrees along its orbit in a single decision-making interval. As the spacecraft
increase in numbers, the amount of overlap in target coverage in a single decision-making interval
increases.
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Figure 8: Percent of Imaged Targets that are Unique for the Singe Plane Experiment.

Multiple Planes

For each multiple plane case, a Walker Delta constellation is constructed with P equally-phased
planes, each with 4 satellites in a 500km circular orbit at a 45◦ inclination. Note that the number
of satellites per plane is below N∗, so any communication is due to inter-plane line-of-sight con-
nections. P is odd for this experiment to avoid constellations with pairs of retrograde and prograde
planes, which obfuscates the interpretation of the experimental results.

As with the single-plane cases, larger constellations are expected to produce more line-of-sight
connections, causing the line-of-sight communication model to perform closer to the best-case free
communication model. With a small number of planes, line-of-sight connections will only occur
at high latitudes where the planes intersect. There exists some number of planes P ∗ where two
satellites in adjacent planes can communicate with each other at the equator, where the planes are
farthest apart:

P ∗ =
π

2 cos−1
(
RE+100km
RE+500km

) =
1

2
N∗ = 4.6 planes (8)

Unlike the single plane experiments, P ∗ does not provide a guarantee of particular behavior but
does imply that constellations with P > P ∗ will display very good line-of-sight communication.

16 simulations are run for each combination of P planes of satellites ∈ {1, 3, 5, 7, 9, 11} and
global targets M ∈ {200, 800, 1200, 1600, 3200}; results are given in Figures 9, 10, and 11.

Reward Similar to the single plane experiments, the multi-plane global reward plots (Figure 9a
and 9b) show that the target density and maximum per-satellite reward limit the global reward.
However, target density is less limiting than in the single plane cases; more orbital planes means
that a greater percent of the global targets fall along a ground track, decreasing the amount of
competition for the same targets. Thus for the same number of satellites, the multi-plane cases
outperform the single plane cases until unless the maximum per-satellite reward limit has been met
and they perform equally. This behavior is reflected in the per-satellite reward plots (Figure 9c

14
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(a) 2D View of Global Reward.
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(c) 2D View of Local Reward.
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Figure 9: Global and Local Reward for the Multiple Plane Experiment.

and 9d), in which the per-satellite maximum of ∼ 0.45 is more quickly approached with respect to
number of global targets across all constellations and communication models. The best-case model,
free communication, outperforms the worst-case model, no communication, in reward by a similar
factor of ∼ 1.3× in the single plane and multi-plane cases alike. Similarly, multi-plane unique
images and downlinks (Figure 10) are proportional with each other and with global reward, as in
the single plane cases.

The two line-of-sight communication models follow predicted trends. For constellations with
P > P ∗ (P ≥ 5), the amount of inter-plane communication was sufficient for both the single and
multi-degree line-of-sight models to perform equal to the free communication case. This result is
stronger than the P ∗ analysis implied, since P > P ∗ indicates that two satellites at the same latitude
on adjacent planes can always communicate, but does not make any guarantees that satellites are
frequently adjacent. Since satellites in adjacent planes orbit retrograde and at higher latitudes all of
the planes are closer together, it is unsurprising that the constellation maintains a well connected
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(c) 2D View of Downlinked Targets.
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Figure 10: Global Numbers of Unique Imaged and Downlinked Targets for the Multiple Plane
Experiment.

network.

For the single nontrivial case where P < P ∗, P = 3, the two line-of-sight models do not collapse
to either the free or no communication models, which is most easily seen in Figures 10a, 11a, and
11b. This is the only set of parameters in these experiments that produce this result. Multi-degree
line-of-sight outperforms single degree which implies that the constellation sometime forms chains
of line-of-sight connections that more effectively distribute information.

Target Duplication General trends in target duplication in Figure 11 are again similar to the
single plane cases: more targets and fewer satellites leads to less duplication. Just as the multi-
plane experiments yielded superior reward compared to single plane experiments, multi-plane cases
with (pseudo-)free communication have fewer duplicated images than a similar-sized single plane
constellation: more of the global targets are available to a multi-plane constellation, so statistically
fewer duplicates will occur.
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The nature of target duplication in the line-of-sight P = 3 cases is of note. Since the line-of-sight
models do not match the performance of free communication, there are frequent occurrences where
satellites pass over a region imaged by another satellite without having received information from
that satellite first. These duplicates can be attributed to a lack of information and not competition
in a single step since line-of-sight communication suffers from the latter to the same degree as free
communication, and with P = 3 free communication produces very few duplicates.
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Figure 11: Percent of Imaged Targets that are Unique for the Multiple Plane Experiment.

CONCLUSIONS

This work explores the deployment of independently trained decision-making agents in a Walker-
Delta satellite constellation under various communication assumptions for Earth-observing satellite
scheduling. The decision-making agents are trained in a single satellite environment, but deployed
as a part of a multi-satellite environment where each agent retains its own copy of the policy. The
agents communicate with one another to update their lists of targets. The performance of the agents
is benchmarked for various communication assumptions that include free communication, single
degree line-of-sight communication, multi-degree line-of-sight communication, and no communi-
cation. In all cases, the free communication assumption achieves the highest global and local reward
and least amount of duplication of efforts. Likewise, the no communication assumption achieves the
lowest global and local reward and most amount of target duplication. In a single-plane constella-
tion, the two line-of-sight assumptions match the performance of the no communication assumption
until some critical number of satellites, N∗ = 9.2, is reached. After that point, the line-of-sight as-
sumptions match the performance of the free communication case. This intuitively makes sense
because for values of N less than N∗ the satellites never communicate. In the multi-plane case, a
similar phenomenon is demonstrated based on the ability of satellites in different planes to com-
municate with one another at the equator. The critical number of planes is shown analytically and
experimentally to be P ∗ = 4.6.

Future work will determine an upper bound on performance if the agents coordinate with one an-
other to maximize global reward, not just their own local reward. This will motivate the exploration
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of problem formulations where agents coordinate with one another multiple orbits ahead. Further-
more, future work will explore alternative problem formulations with variable timestep imaging
modes. In theory, the imaging modes only need to last as long as it takes to capture an image, at
which point a new imaging target can be targeted.
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