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APPROPRIATE FIDELITY ELECTROSTATIC FORCE EVALUATION
CONSIDERING A RANGE OF SPACECRAFT SEPARATIONS

Joseph Hughes∗ and Hanspeter Schaub†

Charged spacecraft experience electrostatic forces and torques from both charged
neighboring spacecraft and the local space environment itself. The Multi Sphere
Method (MSM) is a recent methodology to numerically approximate electrostatic
forces significantly faster than realtime. This allows the simulation of the complex
charged astrodynamics that can occur with Coulomb tugging and detumbling oper-
ations, as well as predicting the charged debris dynamics. This paper develops re-
duced order electrostatic force models suitable for locally flat electric fields (large
separations) and radial fields (medium separation larger than 5-10 craft radii). Un-
like MSM, this reduced order expansion derives the force and torque from a first-
principles manner, and has no tuning parameters. This adds analytical insight but
can sacrifice accuracy in contrast with MSM by removing the tuning parameters.

INTRODUCTION

In the Geosynchronous Earth Orbit (GEO) regime satellites can charge to very high voltages (such
as 10s of kilo-Volts in the Earth’s shadow).1 The interactions of this charge with Earth’s magnetic
field cause significant translational and rotational perturbations of uncontrolled debris, especially
High Area to Mass Ratio (HAMR) objects.2 A 2 m diameter spacecraft in a LEO orbit charged
to 10 kV experiences force of about 2 µ-Newtons in strength, a perturbation that compares with
SRP, drag at 500 km, and Lunar gravity.3 Predicting these forces and torques accurately is essential
for high-fidelity tracking applications such as Space Situational Awareness (SSA). Spacecraft can
also take advantage of these electrostatic forces and torques by controlling their own voltage or
that of a neighboring spacecraft, with electron and ion emission.4 Strong forces and torques can be
applied between charged spacecraft which enable many novel touchless actuation concepts such as
the Electrostatic Tractor (ET).5–7

With the ET concept a tug or servicer satellite irradiates a passive deputy spacecraft with an elec-
tron beam such that the tug becomes positively charged and the deputy becomes negatively charged.
An attractive Coulomb force results from this charging. For two moderately sized spacecraft (3m
diameter) charged at ±20 kV, and separated by 7 craft radii, the deputy feels a 1.2 mN force that
could raise its orbit by more than 5 km/day.8 A tug craft equipped with an electron gun and low
thrust motors could move defunct GEO satellites to a graveyard orbit in a matter of months8 where
they would no longer pose a collision threat in a very valuable but threatened orbital region.9, 10

Spacecraft with non-symmetric charge distributions will also feel and apply torques through this
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Figure 1. Illustration of computation effort and accuracy for a variety of force and torque models21

charging.11 This torque can be used to touchlessly detumble non-cooperative space objects in a
matter of days.12 The ET allows a single mother craft equipped with attitude and position con-
trol devices to apply forces and torques to an entire constellation of spacecraft.13 Furthermore, if
only relative control is required, formation shape control can potentially be achieved with no fuel
expenditure.14, 15

One technology that makes use of environmental effects is the electrostatic sail.16 The sail con-
sists of a web of charged wires that deflect protons in the solar wind and absorb their momentum.
With very large tethers at high voltage, this can provide a sustained 0.5 Newtons. Another concept
uses the Lorentz force (F = qv ×B) to augment an orbit.17 Augmented LEO orbits,18 formation
flying constellations19 and assisted gravity assists20 are all attractive options.

Fast and accurate models of torque and force are needed in all of the above applications to pre-
scribe needed Voltages. The electrostatic force and torque can be computed using a range of meth-
ods as illustrated in Figure 1. The point charge method is the fastest, but does not take into account
any geometry or capacitance relations of the space object. The finite element method is the most
precise method but such solutions take a long time to compute. The single-to multi-sphere methods
illustrated in the middle sacrifice numerical accuracy for computational efficiency. MSM solutions
that are within a few percent can run 1000’s to 100,000’s times faster than the finite element so-
lution,21, 22 depending on the number of spheres used. However, given a specific MSM sphere
representation across a conducting space object, the charge evaluation requires a capacitance ma-
trix inverse whose computational efforts scales with N3, where N is the number of MSM spheres.
Further, to evaluate the force, the inter-sphere forces must be summed up across all spheres. This
leads to a somewhat increased computation effort, and yields an analytical MSM solution that is not
insightful for analytical charged astrodynamics analysis.

Rather, this paper investigates modified methods to evaluate the electrostatic forces and torques
using Appropriate Fidelity Measures (AFMs). The locally flat (∇E = ∇B = 0) electric and
magnetic field environment scenario is a good approximation of an isolated charged space object.
Next, a radial electric field is assumed to act on a general conducting body. This scenario applies to
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two charged spacecraft that are far enough apart that the complex body geometry can be neglected.
To find a fast solution, a truncated Taylor series expansion in the ratio of spacecraft effective radius
to separation is used. This scenario is similar to how constant-mass gravity fields of non-symmetric
bodies such as asteroids can be approximated through a first order expansion. The results obtained
using these truncated Taylor series for force and torque are compared against the FEA truth model
in the special case of a cylinder and sphere. Finally, the dynamics of this alternate model are used
to predict how the charge distribution and therefore the force and torque will change over time.

MSM OVERVIEW

Commercial electrostatic field solvers such as ANSYS’s Maxwell 3D allow for very high fidelity
computation of charge distribution, force, and torque. However, this process is much slower than
realtime. Propagating three GEO orbits (72 hours of real time) for a simple charged shape using a 10
second timestep with an 4th order Runge-Kutta integration method would take 72 days to complete.
The factor of 24 slowdown makes commercial FEA an infeasible option for predicting electrostatic
forces and torques.

Ri

ri,j

Figure 2. The Multi Sphere Method (MSM) approximates the spacecraft body as a
collection of charged spheres21

MSM emerged as a way to predict the force and torque with high-enough fidelity to be useful,
while also evaluating fast enough to be practical. MSM approximates the satellite as a collection
of spheres with variable position and radii. The voltage of any sphere is a function of both it’s
own charge and the charge on neighboring spheres. If these spheres are far enough away to be
approximated as point charges, the Voltage on the ith sphere is given by:21–23

Vi =
1

4πε0

qi
Ri

+
N∑

j=1, j 6=i

1

4πε0

qj
ri,j

(1)

Where qi and Ri are the charge and radius of the ith sphere, respectively, and ri, j is the distance
between spheres i and j. If the Voltages of each sphere are given by V = [V1, V2, ...VN ]T and the
charges are given by q = [q1, q2, ...qN ]T , the relationship between the two is V = [C]−1q. Where
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[C] is the position dependent capacitance (PDC) matrix whose inverse is defined below:

[C]−1 =
1

4πε0


1/R1 1/r1,2 · · · 1/r1,N
1/r2,1 1/R2 · · · r2,N

...
...

. . .
...

1/rN,1 1/rN,2 · · · 1/RN

 (2)

Since the Voltage is assumed known, and to be uniform across the spacecraft and the charges are
needed to compute forces and torques, this matrix can be inverted and solved for the charge on each
sphere. Once the charges are known the forces and torques can be computed as shown in Eqns. (3)
and (4). We assume an origin at the center of mass of the body for ri and allow E and B to vary
within the body and indicate the velocity of each sphere with respect to the magnetic field as vi.

F =
N∑
i=1

(
E(ri) + vi ×B(ri)

)
qi (3)

L =

N∑
i=1

ri ×
(
E(ri) + vi ×B(ri)

)
qi (4)

MSM is an accurate and fast way to solve for the forces and torque on a spacecraft. However,
it relies on knowledge of the position and size of all spheres in the model, often laboriously hand
tuned. Furthermore, little analytical insight is gained by solving for the forces by inverting the [C]−1

matrix in Eq.(2). This paper seeks to find a more elegant way to describe the charge distribution
tailored for specific field configurations. Furthermore, the dynamics of this charge distribution sub-
ject to an external field are found. This provides analytical insight to the problem of controllability
while de-spinning.

ELECTROSTATIC FORCE AND TORQUE DERIVATIONS

The differential force on a differential charge moving at v subject to E and B fields is given
by:23

dF = dq(E + v ×B) (5)

Where v is the velocity of the differential charge with respect to the magnetic field. The torque
about the center of mass on a body is defined as

∫
B r× dF , where r points from the center of mass

to the volume element. Using the differential force to find the force and torque on a body gives:

F =

∫
B

(E + v ×B)ρdV (6)

L =

∫
B
r × (E + v ×B)ρdV (7)

Where ρ is the charge density (Coulombs/m3) and
∫
B dV indicates a volume integral over the space-

craft body. The velocity in the above equations must be taken with respect to the magnetic field.
Expressing the velocity in an ECEF frame would be very close to the spacecraft velocity with re-
spect to the magnetic field.

Flat Fields Approximation

If the fields do not change over the spacecraft body as shown in Figure 3, the terms E and B can
be taken outside the integrals in Eqns. (6) and (7).

4



E

B

qsep
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vo

Figure 3. Flat E and B Field Configuration

Force Derivation: To calculate the force experienced by a spacecraft in a flat field, the velocity
variation over the body must be accounted for. The velocity is the orbital velocity vo plus the
transport velocity: ωB/E ×r,24 where ωB/E is the angular velocity between the satellite body frame
B and the magnetic field frame E . Letting v = vo + ωB/E × r in Eq. (6):

F = E

∫
B
ρdV +

∫
B

(vo + ωB/E × r)×BρdV (8)

= E

∫
B
ρdV − (B × vo)

∫
B
ρdV −B ×

(
ωB/E ×

∫
B
rρ

)
dV (9)

= EQ− (B × vo)Q−B × (ωB/E × qsep) (10)

Where the we have identified the total charge Q and defined the charge separation vector qsep as a
generalization of the dipole moment.23

Q =

∫
ρdV and qsep =

∫
rρdV (11)

In many scenarios the orbital velocity vo, even taken in the ECEF frame, will dwarf the transport
velocity ωB/E × r. For a spacecraft with r = 1 m, ωB/E = 1 deg/sec, and an ECEF orbital velocity
of 1 km/sec, the ratio of the transport velocity to the orbital velocity will be less than 10−5. In many
scenarios the transport term can be dropped leaving:

F = (E + vo ×B)Q (12)

If the Voltage V is known, Q can easily be obtained through Q = C V where C is the self capaci-
tance. In flat fields, knowing the capacitance and orbital velocity is equivalent to knowing the force
on the spacecraft. In vacuum, self capacitance will not change, so this parameter can be calculated
at high accuracy before integration rather than inverting a N × N matrix at every integration time
step to find the charges and summing over them as would need to be done with MSM.
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Torque Derivation: Substituting the transport velocity expression into Eq. (7) and carrying through
a triple product expansion and one cancellation the torque is found to be:

L = −(E + vo ×B)× qsep + ωB/E ×
∫
B

(B · r)rρdV (13)

= −(E + vo ×B)× qsep +B ωB/E ×
∫
B

(r2 cos(θ))r̂ρdV (14)

Where θ is defined as the angle between r and B. Much like a pendulum experiences a torque that
aligns an offset mass with a gravity field, the first term describes a torque that aligns the dipole
moment qsep with E + vo × B. The second term provides a torque perpendicular to both the
rotation and the magnetic field, and quadratically proportional to the charge separation. This term
will only be significant when vo is comparable to rωB/E , which will only happen in certain GEO
orbits. If we neglect this term, the torque is given by:

L = −(E + vo ×B)× qsep (15)

For the purposes of calculating torque, the full charge distribution in all nearly all orbits is captured
by the electric dipole moment qsep. This also shows that there are limits on the torque that can
be exerted on a passive space object. For instance in the absence of a significant magnetic field a
torque cannot be produced parallel to either the E field or the electric dipole moment qsep. For a
spherical object, the dipole moment will be either parallel or anti-parallel to the electric field and no
torque can be exerted. The relationship between the external electric field and the dipole is key to
predicting de-spin effort.

E

qsep
++
+

+

Figure 4. Radial E Field Configuration

Radial Electric Field Approximation

In some situations, one spacecraft can be approximated by a point and the other as a body as
shown in Figure 4. The field at the body points radially away from the point charge and decreases
as 1/r2.
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Force Derivation: In a radial field, we can insert the point charge formula23 for E into Eq. (6):

E =
Q1

4πε0R3
R (16)

F =
Q1

4πε0

∫
B

ρ

R3
R dV (17)

HereQ1 is the point charge magnitude, R points from the point charge to the volume element of the
body, and r points from the center of mass of the body to the volume element so R = Rc+r where
Rc points from the point charge to the center of mass of of the body. If Rc > r, the denominator is
expanded as:

R−3 =
1

R3
c

(
1− 3Rc · r

R2
c

− 3r · r
2R2

c

+
15

2

(Rc · r
R2

c

)2
+ · · ·

)
(18)

If this expression is inserted into Eq. (17), and terms 2nd order or higher in (r/Rc) are kept, the
following force equation is obtained:

F =
Q1

4πε0R3
c

(
Rc

∫
B
ρdV +

∫
B
rρdV − 3

R2
c

∫
B

(r ·Rc)rρdV − 3

R2
c

∫
B

(r ·Rc)RcρdV

− 3

2R2
c

∫
B

(r · r)RcρdV +
15

2R4
c

∫
B

(r ·Rc)
2RcρdV

) (19)

The first integral is the charge on the body Q2, which recovers the familiar expression

F =
Q1Q2

4πε0R3
R (20)

The second integral is qsep. The vector property (a · b)a = ([ã][ã] + a2[I])b is used to expand this
equation. Where [r̃] is the matrix operation equivalent of the vector cross product [r̃] = r× and [I]
is the identity matrix of appropriate size.

F =
Q1

4πε0R3
c

[
Q2Rc + qsep −

3

R2
c

(∫
B

([r̃][r̃] + r2[I])ρdV
)
Rc −

3

R2
c

([R̃c][R̃c] +R2
c [I])

∫
B
rρdV

− 3Rc

2R2
c

∫
B
r2ρdV +

15

2R4
c

∫
B

(r ·Rc)
2RcρdV

]
(21)

The second integral is qsep, and the last integral can be expanded as (RT
c rR

T
c r)Rc = (Rc ·([r̃][r̃]+

r2[I])Rc)Rc and the earlier identity can be used in reverse order to yield:

F =
Q1

4πε0R3
c

[
Q2Rc + qsep −

3

R2
c

(qsep ·Rc)Rc −
3

R2
c

(∫
B

([r̃][r̃] +
3

2
r2[I])ρdV

)
Rc

+
15

2R4
c

(Rc ·
∫
B

([r̃][r̃] + r2[I])RcρdV )Rc

] (22)

The inertia tensor is defined as
∫
B −[r̃][r̃]dm,24 where [r̃] = r× is the matrix operation equivalent

of the vector cross product. If we make a similar definition for the charge tensor our analysis greatly
simplifies.

[Q] =

∫
B
−[r̃][r̃]ρdV (23)
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We also note that
∫
B r

2ρdV is half the trace of the charge tensor.

F =
Q1

4πε0R3
c

[
Q2Rc + qsep −

3

R2
c

(qsep ·Rc)Rc +
3

R2
c

(
[Q]− 3

4
trace([Q])

)
Rc

+
15

2R4
c

(Rc · [Q]Rc +
R2

c

2
trace([Q])Rc

] (24)

Which can be simplified to give our final result

F =
Q1

4πε0R3
c

[
Q2Rc + qsep −

3(qsep ·Rc)

R2
c

Rc +
3[Q]Rc

R2
c

− 3Rc

2
trace([Q])

+
15

2R2
c

(êr · [Q]êr)Rc

]
(25)

Where êr is a unit vector in the direction of Rc. There are many striking things about this
equation; there are three terms in the radial (Rc) direction, and three in non-radial directions, a very
unintuitive but interesting result.

If we define rs as the craft radius, the upper bound for the magnitude of qsep is rsQ, and the upper
bound the elements of [Q] is Qr2s . Since in all but docking cases Rc > rs, the relative magnitudes
of the terms in the upper expression can be compared. The only zeroth-order term in rs/Rc is the
first one: Q2. The fourth and sixth terms are first order, and the rest are second order. The zeroth
order term depends on Q, the first order terms depend on qsep, and the second order terms depend
on [Q]. This force expression is very similar to the way forces in an inverse-square gravity field
are expressed, only allowing for an origin not-aligned with the center of mass and using the charge
tensor rather than the inertia tensor. If the center of mass was aligned with the center of charge, qsep
would always be zero. If the second order terms are dropped the force expression becomes:

F =
Q1Q2

4πε0R3
c

(
Rc −

3(Rc · qsep)

R2
cQ2

Rc +
qsep

Q2

)
(26)

We are left with two non-standard terms, the magnitude of each depends on qsep/Q2, but only one
depends on qsep for direction. The third term gives a force dependent on the dipole moment solely
for direction. For a many objects, the dipole moment will be greatest along the direction of E, so
these terms would not change the direction of the force. Once again the connection between the
dipole moment and the external field (which has direction Rc in this case) is key to understanding
this non-intuitive behavior.

Torque Derivation: Inserting the point charge expression for E into the torque equation in Eq. (7)
gives:

L =

∫
B

r× Q

4πε0R3
RρdV (27)

We can use the same expansion for R−3 as before to get:

L = − Q1

4πε0
Rc ×

∫
B
r

1

R3
c

(
1− 3Rc · r

R2
c

− 3r · r
2R2

c

+
15

2

(Rc · r
R2

c

)2)
ρdV (28)
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This can be expanded using vector identities to give:

L = − Q1

4πε0R3
c

Rc ×
[ ∫

B
rρdV − 3

R2
c

∫
B

((r × r)×Rc − (r · r)Rc)ρdV

− 3

2R2
c

∫
B
r2rρdV +

15

2R2
c

∫
B
Rc · [r × (r ×Rc) + r2Rc]ρdV Rc

] (29)

= − Q1

4πε0R3
c

Rc ×
[
qsep +

3

R2
c

[Q]Rc −
3

2R2
c

∫
B
r2rρdV

]
(30)

There are no zeroth-order terms in this expression. If we use the same magnitude bounds as were
used in the Radial Force section and keep only the 1st and 2nd order terms in r/Rc we are left with:

L =
Q1

4πε0R3
c

[
qsep +

3

R2
c

[Q]Rc

]
×Rc (31)

If the charge tensor [Q] is small, or even if it is large but diagonal with similarly sized entries the
second term will not contribute. If we further simplify and only keep the first order term we are left
with

L =
Q1

4πε0R3
c

qsep ×Rc (32)

This describes a torque which acts to align the qsep with the direction of E at the center of the body.
Once again, the dipole moment drives the system. In a perfectly symmetric object such as a sphere,
the dipole will be either parallel or antiparallel to the field, (which is in the Rc direction in this case).
This means that no torque can be produced. More generally, the geometry of the passive body must
allow qsep to grow in a direction perpendicular to the source of the point field. To apply this to our
cylinder example, the torque must be zero in the 0◦ and 90◦ cases and the torque would be larger at
non-zero angles if the cylinder was longer.

Rcc

R
r2r1

Figure 5. Coordinate set for general body formulation.
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General Bodies:

For two general bodies we can assume nothing about the form of the field between them. The
force and torque on body 2 subject to an arbitrary charge distribution on body 1 is given by:

F2 =
1

4πε0

∫
B2

(∫
B1

Rcc + r2 − r1
(Rcc + r2 − r1)3

ρ1dV1

)
ρ2dV2 (33)

L2 =
1

4πε0

∫
B2

r2 ×
(∫

B1

Rcc − r1
(Rcc + r2 − r1)3

ρ1dV1

)
ρ2dV2 (34)

Where Rcc points from center of mass of body 1 to the center of mass of body 2, and r1 and r2
point to the volume elements of body 1 and 2, respectively, as shown in Figure 5. These integrals
are intractable, and must be approximated. The force between two charges q1 and q2 is given by

Fc =
q1q2

4πε0r3
r (35)

Where r points from one charge to another. This formula can be used in place of the differential
force given by Eq. (5) and applied to the MSM force and torque Eq. (3) and (4) to yield:

F2 =
m∑
i=1

n∑
j=1

qiqj
R3

i,j

Ri,j (36)

L2 =
m∑
i=1

n∑
j=1

r2 ×
(
qiqj
R3

i,j

Ri,j

)
(37)

Where the charge distribution on body 1 and 2 are approximated into m and n spheres in an MSM
model. This recovers the standard MSM formulation.21, 22

AFM VALIDATION

While AFMs are an elegant and first-principles approach to predicting the force and torque on
a spacecraft subjected to and external field, numerous expansions were truncated to arrive at the
results. To test them we use the results produced using the commercial FEA software package
ANSYS Maxwell as a truth model and compare the force and torque predicted using AFMs against
it. Maxwell was used in many runs, and for each the total charge, dipole moment, force, and torque
were recorded as well as the external fields.

Flat Fields

To create a locally flat electric field, two large (60m x 60m x 0.6m) plates are separated by 18
meters along the y axis and a cylinder (diameter = 1m, length = 3m) is placed in between them.
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Figure 6. Maxwell setup for flat fields case. The plates are charged oppositely to
create a strong electric field in the y direction.

Force Validation: The plates are subjected to a charge density varying from 0 to ±40 nC/m3,
creating an electric field ranging from 0 to 2.71 kV/m. The cylinder was also independently charged
to 0, 10, 20 and 30 kV. The charged cylinder feels a force in this strong electric field which is
recorded and compared to the force predicted using Eq. (12)
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Figure 7. AFM force and torque prediction in a flat field.

The force predicted by AFMs is close to the truth model, and this agreement is best at low cylinder
voltages. If we define the percent error as

Percent Error = 100

∑
|FAFM − FMax|∑
|FMax|

(38)

the percent error is 11.6%.

Torque Validation: The same two plates are used again, but rather than sweeping across cylinder
voltage and charge density on the plates, the plates are held at±80 nC/m3 and the cylinder is held at
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30 kV and 3-2-1 Euler angles are used to rotate the cylinder through pitch and yaw since a roll would
only rotate the cylinder about its long axis and wouldn’t give new results. The dipole is recorded in
Maxwell and is used along with the known E field to predict an AFM torque using Eq. (15).

The torque errors are much larger in this formulation. Each component of the torque is compared
in the figure above with red, green, and blue asterisks showing the x,y, and z components respec-
tively. Both plates are perpendicular to the y-axis, which means that the E field ought to be parallel
to the y-axis. If the E field is parallel to the y-axis then their should be no torque about that axis
following Eq. (15). The AFM torque predicts this, but the y component of the measured Maxwell
torque is non-zero. This indicates that using two charged plates does not create a perfectly flat field.
To quantify this, the percent error can be computed for each axis, and yields values of 80.9%, 100%
and 56.6% for the x,y, and z components. Eq. (38) was used once again to compute the error.

Radial Fields

To make a radial field in Maxwell, a small sphere containing a large charge ( 30 µCoulomb) was
placed at each point in the Figure 8(a) while the cylinder was held at 30 kV. The sample grid is the
set of points from 5 to 10 meters away from the center of the cylinder, and every 15 ◦ from 0◦ to
90◦. The force and torque were predicted using Eqns. (26) and (32).

-2 0 2 4 6 8 10

X [m]

-10

-8

-6

-4

-2

0

Y
[m

]

(a) Cartoon of sampling points for radial field
case

(b) Maxwell screenshot of test with the
point charge at a distance of 5 m and an
angle of 0◦

Figure 8. Schematic showing the test setup for radial fields. The cylinder is charged
to 30 kV and the point is charged with 30 µCoulombs.

Force Validation: For a radial field, we can use either a zeroth, first, or second order force ex-
pression. The zeroth order expression recovers the standard Coulomb expression, the first order
expression has some information about the alignment of the dipole and the central direction, and
the second order expression depends on the charge tensor. A plot of the force predicted by AFMs
in both a zeroth and a first order expansion is given below. The dashed lines and asterisks indicate
the first order expansion while the straight lines and circles indicate the zeroth order expansion.
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Figure 9. Zeroth and first order force percent errors predicted using AFMs are plot-
ted against measured forces in ANSYS Maxwell. Dashed lines indicate first order
solutions while straight lines indicate zeroth order solutions

The forces predicted using AFMs are consistently lower than the Maxwell truth model, especially
in the near field. The error percent of the norm of the vector difference is also plotted in Figure 9(b).
The first order correction always lowers the error, but never much below 5◦. The correction is more
dramatic when the zeroth order error is large. The error is also nearly always larger at high angles,
corresponding to the sphere being close to the long axis of the cylinder. This is somewhat intuitive,
as induced effects will be most significant in this situation.

Torque Validation: There is no zeroth order term for torque. The first order term is given by
Eq. (32). This equation is evaluated at all data points except for the 0◦ and 90◦ cases which should
produce no torque. The results are plotted in Figure 10. AFMs consistently under predict the torque
by a factor of roughly 5. The reason for this discrepancy is still being investigated.

PREDICTION OF CHARGE DISTRIBUTION DYNAMICS

The force and torque depend on the external fields as well as the charge distribution within the
body as shown in Eqns. (6) and (7). This charge distribution can be approximated by using the
dipole moment qsep and the charge tensor [Q]. While this formulation is elegant and simple, it relies
on knowledge of the charge distribution, which isn’t known a priori. Additionally, how the charge
distribution changes due to external fields is of vital importance for high fidelity orbit propagation.
The state qsep is the dominant term in the torque equation, and the first-order correction for force. If
a locally flat field is assumed, qsep can be predicted without resorting to commercial FEA software
allowing for fast computation.

Because qsep was defined relative to the center of mass, it will have some intrinsic value due to the
geometry of the conducting body. Consider a satellite with a long slender boom–while the center
of mass will be near the bus, the center of charge could easily be in the center of the boom, many
meters from the center of mass. This will cause a non-zero value for qsep even in the absence of
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Figure 10. Comparison of AFM predicted torque with Maxwell generated torque, the
black line has slope equal to one.

external fields. This geometric qsepg will increase with Voltage and can be calculated either in a
commercial FEA software package by finding the slope of a plot of qsep. If an external electric field
is present, the electrons in the spacecraft will move opposite the direction of the field which will
create an induced dipole moment parallel to the field. The susceptibility of the dipole moment to a
constant external field will be derived in an MSM formulation.

The Voltage difference between two points separated by r in a flat E field is given by:

∆V = −
∫ 2

1
E · dr = −E · r1,2 (39)

Voltage is a linear field, so the total Voltage of each sphere is that due to the charge on nearby
spheres, and that due to the external field:

V = [C]−1q − [R]E (40)

Where [R] is a matrix of the positions of each sphere in the MSM model measured from the center
of mass.

[R] =

[
rx ry rz

...

]
(41)

Inverting the equation for the charge on each sphere yields

q = [C](V + [R]E) (42)

qsep can now be easily formed.

qsep = [R]Tq (43)

= [R]T [C](V + [R]E) (44)

= ([R]T [C])V + ([R]T [C][R])E (45)
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Since we are considering a conducting body, every element of V is the common surface potential
V , so we can pull out the scalar Voltage V and the external field E and define the coefficients as the
geometric dipole moment and the susceptibility matrix.

qsep = qgV + [χ]E (46)

Where these new parameters are defined in a MSM formulation as

qg = [R]T [C]ones(N,1) and [χ] = [R]T [C][R] (47)

The geometric dipole moment describes the intrinsic dipole moment that is produced by the center
of mass and center of charge not necessarily being aligned, and the susceptibility matrix describes
the first-order sensitivity of the dipole moment to an external electric field. This equation can be
used to predict the electric dipole moment of a spacecraft in a changing locally-flat electric field,
which allows us to compute the changing electrostatic force and torque on a spacecraft.

Linear Least-Squares Determination of Susceptibility Matrix

Because the new parameters are defined in terms of body-fixed quantities ([R] and [C]) the pa-
rameters qg and [χ] are constant and fixed in the body frame. To find them, we apply an electric
field in different body-directions while the cylinder is charged to different levels using Maxwell.
The method that was described in the flat torque section is used, holding two plates at opposite
charges and the cylinder at a high voltage while rotating it through pitch and yaw in steps of 30◦

from 0◦ to 180◦.

The vector qg describes the offset of the center of mass from the center of charge, which for
our test cylinder should be zero because we have defined the center of mass to be at the geometric
center of the cylinder. The matrix [χ] describes the ability of an electric field to create a dipole
moment. The diagonal elements of [χ] describe the ability of a parallel field to move charge along
one of the cylinder’s principal axis. The diagonal element that corresponds to the long axis of the
cylinder ((1,1) for in this coordinate system) should be much larger than the other two, which should
be roughly equal. The off-diagonal terms should be zero since we have picked what ought to be a
principal frame, and any non-zero values probably correspond to noise in the FEA solution.

To create the susceptibility matrix, we let the geometric dipole be zero and use only the first 3
values for pitch and yaw. We then re-form Eqn (46) as:qsepx . . .

qsepy . . .

qsepz . . .

 = [χ]

Ex . . .
Ey . . .
Ez . . .

 (48)

The linear least squares solution to this overdetermined system is found using Matlab’s backslash
operator, and gives a numerical value for [χ] of:

[χ] = 10−9

 0.1285 −0.0028 −0.0066
−0.0004 0.0299 0.0023
0.0004 −0.0013 0.0299

 F m2 (49)

As predicted, the (1,1) element is the largest, the (2,2) and (3,3) elements are smaller and identical
up to the fourth significant figure, and the rest of the elements are smaller still and correspond to
noise.
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Validation of Charge Distribution Dynamics

The susceptibility matrix was found using only the first 3 of the 7 sampled points for pitch and
yaw. This matrix will now be used to predict the dipole moment for the entire set of data using
Eq. (46) with the geometric dipole set to zero and the [χ] shown above. The prediction is accurate
and has a percent error of only 4.21% if we re-purpose Eq. (38).

CONTROLLABILITY

If the geometric dipole is zero, the susceptibility matrix is the main driver in how the dipole
moment responds to an external electric field. In a flat field the torque will be given by:

L = qsep ×E (50)

= (qgV + [χ]E)×E (51)

= −[Ẽ]qgV − [Ẽ][χ]E (52)

The torque is amplified by a strong E field as well as a high voltage, which matched intuition.
Objects with either large geometric dipoles, corresponding to cases where the center of mass and
center of charge are far apart, or large susceptibilities will also feel stronger torques. If the geometric
dipole is zero, as it is for our cylinder example, the torque equation reduces to a rather elegant result.

L = −[Ẽ][χ]E (53)

If the diagonal elements of [χ] are all identical, the dipole moment will be parallel to the external
field and no torque can be exerted. If two are identical, as with the cylinder, there is one body axis
about which torques cannot be exerted. If no two diagonal elements are the same, then general 3D
torques can be exerted. The effort needed to produce these torques is a function of how close to
perpendicular the dipole is to the external field. A rough proxy of this effort is the ratio of each
diagonal element of [χ] to the smallest diagonal element of [χ].
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Euler’s equation in the case of no geometric dipole can be written in the following elegant form:

[I]ω̇ = [ω̃][I]ω − [Ẽ][χ]E (54)

The susceptibility matrix is of comparable importance to the inertia matrix for the purpose of chang-
ing the body rates (ω) using electrostatic torques. If the geometric dipole is non-zero, more detailed
analysis must be taken.

CONCLUSION

Appropriate Fidelity Measures (AFMs) are derived from first-principles to predict the force and
torque on a spacecraft in flat and radial fields. The predicted force deviated from the truth model
by 11.6% for force and 56-100% for torque in the flat fields case. For the radial fields case the
force error was 16.9% for the first order solution, and 13.4% for the second order solution. The
predicted torque is less than the truth model by roughly a factor of 5. Some of this discrepancy
may be due to implementation issues in Maxwell. All of these results are outperformed by pre-
existing MSM models for force and torque prediction which consistently achieve less than 1%
error. The dynamics of the charge distribution as described with these AFMs are derived in an
MSM formulation and show good agreement (4.2% error) with the measured data. Added insight
to the problem of controllability while de-spinning is gained through the analytical structure of the
analytical expansions.
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