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AAS 07-269

STABILITY AND CONTROL OF RELATIVE EQUILIBRIA FOR
THE THREE-SPACECRAFT COULOMB TETHER PROBLEM

I. I. Hussein∗ and H. Schaub†

This paper studies the stability and control of relative equilibria for the spinning
three-craft Coulomb tether problem. General conditions are derived whose solutions
are all relative equilibria for the spinning charged three-craft cluster. In particular,
the collinear three-craft spinning family of solutions are derived. Routhian reduction
is used to employ the conservation of angular momentum to simplify the equations
of motion of the system and, hence, restricting the analysis to its internal shape
dynamics. This paper mainly focuses on symmetric Coulomb-tether systems, where
all three craft have the same mass and nominal charge values. Based on a linearized
analysis, the uncontrolled symmetric three-craft Coulomb tether system is shown to
be unstable. Linear feedback control based on the linearized equations are derived
to control the nonlinear dynamics of the system. The closed-loop system converges
to a neighborhood of the desired equilibrium in general. If the initial condition is
chosen such that the system angular momentum is equivalent to that of the desired
equilibrium, asymptotic convergence is achieved.

1 INTRODUCTION

Recent research has begun to investigate exploiting the naturally occurring electrostatic forces of
spacecraft operating High Earth Orbits (HEO) or deep space. The NIAC study performed by King
and Parker1 illustrates that the absolute spacecraft charges can reach kilo-volt levels at GEO. This
results in micro- to milli-Newton levels of disturbance forces if the craft are flying dozens of meters
apart. Over an orbit, this disturbance can cause hundreds of meters of error motion. The Coulomb
thrusting concept proposes to use active charge control to servo the absolute spacecraft charge levels
to desired values and exploit this disturbance force to perform direct relative motion control.2, 3 The
electrostatic charge of a craft is partially masked from another nearby craft due to the interaction
with the space plasma ions and electrons. The strength of this shielding is measured through the
Debye length.4, 5 The cold and dense plasma environment at Low Earth Orbits (LEO) causes the
Debye lengths to be of the order of centimeters, making Coulomb thrusting over dozens of meters
separation distances infeasible. At Geostationary Earth Orbits (GEO) the Debye length can range
between 100-1000 meters, making it feasible to exploit Coulomb thrusting.1, 6 At 1 AU distance
from the sun the deep space Debye lengths range between 30-50 meters.1

Close proximity flying on the order of dozens of meters is very challenging due to the large
number of small orbit corrections that must be performed to avoid collisions and maintain a desired
relative orbit geometry. Further, exhaust plume impingement issues must be addressed to avoid
having one spacecraft fire in the direction of a neighboring spacecraft. The Coulomb thrusting
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Figure 1 Illustration of a 3-craft Coulomb spacecraft formation spinning in deep
space about their cluster center of mass.

typically only requires Watt levels of electrical power, while consuming essentially no fuel. Isp fuel
efficiencies range between 109 – 1012 seconds.1, 7 Spacecraft charge control has been demonstrated
on the earlier SCATHA8 and ATS9 missions, as well as more recently by the European CLUSTERS
mission.10, 11 With CLUSTERS the absolute spacecraft potential is controlled to near zero relative
to the plasma ground to avoid biasing the particle sensors.

The Coulomb thrusting research has led to a multitude of novel relative motion missions. The
concept of virtual Coulomb structures has open-loop electrostatic forces perfectly cancel out the dif-
ferential gravitational acceleration, resulting in a spacecraft cluster whose satellite positions appear
frozen as seen by the rotating chief local-vertical-local-horizontal (LVLH) frame.1, 12–14 However,
all charged static relative equilibria solutions in orbit or in deep space have been unstable and will
required active charge feedback to stabilize.

The first feedback stabilized charged virtual structures is the 2-craft Coulomb tether concept dis-
cussed by Natarajan in References 15, 16 and 17. While a physical tether must always be in tension,
the Coulomb tether can exert both attractive and repulsive forces between the 2 craft. However, the
Coulomb tether concept is only viable for relatively short separation distances up to 100 meters,
while the typical space tether concepts consider kilometer size tether lengths.

Both of these Coulomb mission concepts consider static scenarios where are craft are at nom-
inally fixed locations relative to a reference frame (orbit frame). More recently the feasibility of
spinning charged spacecraft formations has been considered. Reference 18 investigates the simi-
larity between the gravitational and electrostatic spinning 3-body problem to determine invariant
shape solutions. Lagrange’s treatment of the gravitational 3-body problem is applied to the electro-
static 3-body problem to develop collinear and equilateral triangle solutions, as well as discuss the
boundedness of these motions. However, the stability of these solutions is not addressed in this
paper.

The first passively stable virtual Coulomb structure is the spinning 2-craft system discussed in
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Reference 19. Without the plasma charge shielding effect, the attractive force between two oppo-
sitely charged bodies is mathematically equivalent to the gravitational 2-body force. The resulting
trajectories of the 2 craft are also conic solutions which are orbitally stable. With the finite Debye
lengths and charge shielding included, the relative trajectories are no longer closed conic solutions.
Rather, the charge shielding causes an additional weakening of the attractive force. Reference 19
shows that if the nominal circular relative motion has a radius less than the Debye length, then the
resulting nonlinear motion is still stable.

While Reference 18 investigates invariant shape solutions to the spinning charged 3-craft problem
illustrated in Figure 1, this paper studies the general relative equilibriums of such a system, as well
as discuss the open-loop stability. Energy-momentum methods are employed to study the complex
dynamical system where charge shielding is included through a finite Debye length value. Close
flying spinning multi-craft systems can be used for interested distributed interferometry missions
such as the terrestrial planet finder concepts. The charged spacecraft are assumed to be flying
on circular heliocentric orbits, far removed from the gravitational potential fields of planets or other
celestial bodies. Thus this study can neglect the relative gravitational forces and focus on the motion
of free-flying bodies due to the electrostatic forces.

2 THE THREE-CRAFT CONSTELLATION

2.1 Invariance of the Hamiltonian

Consider a spacecraft cluster composed of three charged craft operating in deep space. Thus the
orbital dynamics are ignored in this development. However, the plasma shielding effect is included
with a finite Debye length. At 1 AU the Debye length can range between 30–50 meters due to the
solar flux.1 The craft have masses m1, m2 and m3 and charges c1, c2 and c3, respectively. The
inertial positions of the three craft are denoted by r1, r2, and r3. The total system kinetic energy is
given by

K(r1, r2, r3, ṙ1, ṙ2, ṙ3) =
1
2

(
m1 ‖ṙ1‖2 +m2 ‖ṙ2‖2 +m3 ‖ṙ3‖2

)
, (1)

where ‖·‖ denotes the Euclidean norm in R3.

Let q1 = r1 − r2, q2 = r3 − r2 and qc = m1r1+m2r2+m3r3
m1+m2+m3

be the relative position vector
between the first and second spacecraft, the relative position vector between the second and third
spacecraft, and the system center of mass vector. We will fix the center of mass with qc = 0. This
is equivalent to restricting the system motion to the zero linear momentum surface.

In terms of q1 and q2, the kinetic energy is then given by

K(q1,q2, q̇1, q̇2) =
1
2

(
m1(m2 +m3)

M
‖q̇1‖2 +

m3(m2 +m1)
M

‖q̇2‖2 −
2m1m3

M
q̇1 · q̇2

)
, (2)

where M = m1 + m2 + m3 is the total cluster mass. The potential energy V is purely due to the
electrostatic charges c1, c2 and c3, and is a function of q1 = ‖q1‖, q2 = ‖q2‖, and q12 = ‖q1 − q2‖.
The total cluster electrostatic potential function is given by

V (r) =
µ12

‖q1‖
e−
‖q1‖
λd − µ12

λd

∫ ∞
‖q1‖
λd

e−s

s
ds+

µ23

‖q2‖
e−
‖q2‖
λd − µ23

λd

∫ ∞
‖q2‖
λd

e−s

s
ds

+
µ13

‖q1 − q2‖
e−
‖q1−q2‖

λd − µ13

λd

∫ ∞
‖q1−q2‖

λd

e−s

s
ds, (3)
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Figure 2 The three-craft Coulomb tether system.

where λd is the Debye length which determines the strength of the electrostatic shielding of the

surrounding space plasma, and

µ12 = kcc1c2,

µ13 = kcc1c3,

µ23 = kcc2c3. (4)

The Lagrangian is given by L = K − V .

We now express the kinetic energy in terms of the momentum variables

p1 =
∂L

∂q̇1
=

m1(m2 + m3)

M
q̇1 −

m1m3

M
q̇2

p2 =
∂L

∂q̇2
=

m3(m2 + m1)

M
q̇2 −

m1m3

M
q̇1. (5)

The kinetic energy is given by

K(q1,q2,p1,p2) =
1

2

(

(m1 + m2)

m1m2
‖p1‖

2 +
(m2 + m3)

m2m3
‖p2‖

2 +
2

m2
p1 · p2

)

, (6)

with Hamiltonian given by

H(q1,q2,p1,p2) = K(q1,q2,p1,p2) + V (q1,q2). (7)

We now consider the action of the rotation group SO(3), which corresponds to a rigid body

rotation of the two-craft formation:21

ΨR (q1,q2) = Ψ (R,q1,q2) = (Rq1,Rq2), (8)
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for all R ∈ SO(3), with the corresponding lifted action

TΨR (q1,q2, q̇1, q̇2) = (Rq1,Rq2,Rq̇1,Rq̇2) . (9)

This lifted action is on the tangent space (i.e., space of configurations and velocities). This lifted
action says that under a rigid body rotation of the entire system, the rate of change of q has to be
rotated exactly by the rotation matrix R in order to preserve the shape of the formation. The action
on the space of momenta is denoted by T ∗ΨR and is given by:

T ∗ΨR (q1,q2,p1,p2) = (Rq1,Rq2,Rp1,Rp2) . (10)

The Hamiltonian is invariant with respect to the action of the rotational group SO(3) action (i.e.,
H (T ∗ΨR (q1,q2,p1,p2)) = H(Rq1,Rq2,Rp1,Rp2) = H(q1,q2,p1,p2)). This is easy to
verify because ‖Rpi‖2 = ‖pi‖2 and ‖Rqi‖2 = ‖qi‖2 (noting that V is a function of the magnitude
of its argument), and R ∈ SO(3) is an orthonormal matrix. This invariance implies that there is a
conserved quantity JSO(3), called the momentum map, associated with action of SO(3). It can be
shown that this conserved quantity is given by (see20)

JSO(3) = q1 × p1 + q2 × p2, (11)

which is the angular momentum of the system. This momentum is conserved if the system is not
actuated by any external forces.

2.2 Relative Equilibria

To obtain expressions for relative equilibria of the system, we first need to compute the locked
inertia tensor, which is a map I(q) : so(3) → so∗(3), where so(3) is the SO(3) Lie algebra (the
algebra of spatial “twists”). This tensor is the inertia of the system if its shape coordinates are locked
as if the system is a rigid body. The locked inertia tensor is given by

〈I(q)η, ξ〉 =� ηSO(3), ξSO(3) �,

for all η, ξ ∈ so(3), and where � ·, · � denotes the kinetic energy metric. ξSO(3) denotes the
infinitesimal generator associated with the action of SO(3). The infinitesimal generator of an action
is the infinitesimal description of an action. It is is a velocity vector (in this case an angular velocity
vector) that completely describes how the action transforms a configuration while the shape of the
system is maintained. The infinitesimal generator for the SO(3) group action is simply given by the
cross product: ξSO(3)(q1,q2) = (q1,q2, ξ × q1, ξ × q2), which acts at the configuration (q1,q2)
and to induce a velocity vector (ξ × q1, ξ × q2). The infinitesimal generator in this case is simply
given by taking the cross product of the angular velocity variable ξ ∈ so(3) with the configuration
variables q1,q2. Under such an operation the system is transformed to a new configuration that has
exactly the same shape as that before application of the action ΨR. In this case it represents a pure
net change in orientation while the shape is preserved.

Using the above definition for the locked inertia, one can find that the locked inertia tensor is
given by:

I(q1,q2) =
m1(m2 +m3)

M

(
‖q1‖2 Id− q1 ⊗ q1

)
+
m3(m2 +m1)

M

(
‖q2‖2 Id− q2 ⊗ q2

)
−m1m3

M
(2(q1 · q2)Id− q1 ⊗ q2 − q2 ⊗ q1) , (12)
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where Id : so∗(3)→ so∗(3) is the identity operator and qi⊗qj is often denoted as the dyadic qiqj .

The augmented augmented potential function Vξ is defined by

Vξ = V (q1,q2)− 1
2
〈ξ, I(q1,q2)ξ〉

= V (q1,q2)− 1
2M

{[
m1(m2+m3) ‖q1‖2 +m3(m1+m2) ‖q2‖2 − 2m1m3q1 · q2

]
‖ξ‖2

−m1(m2 +m3) (q1 · ξ)2 −m3(m1 +m2) (q2 · ξ)2 + 2m1m3(q1 · ξ)(q2 · ξ)
}

(13)

can be used to determine the relative equilibria.21

A point in the cotangent space (q1e,q2e,p1e,p2e) is a relative equilibrium of the system if
and only if there is a ξ such that (p1e,p2e) = FL(ξSO(3)) and (q1e,q2e) is a critical point of
Vξ(q1,q2).21 In the present case, this means that a point in phase space is a relative equilibrium if
there is a velocity ξ such that satisfy:

0 = −µ12e−‖q1‖/λd

‖q1‖3
q1 −

µ13e−‖q1−q2‖/λd

‖q1 − q2‖3
(q1 − q2)

− 1
M

[m1(m2 +m3)ξ × (q1 × ξ)−m1m3ξ × (q2 × ξ)]

0 = −µ23e−‖q2‖/λd

‖q2‖3
q2 +

µ13e−‖q1−q2‖/λd

‖q1 − q2‖3
(q1 − q2)

− 1
M

[m3(m1 +m2)ξ × (q2 × ξ)−m1m3ξ × (q1 × ξ)]

p1e =
m1(m2 +m3)

M
ξ × q1e −

m1m3

M
ξ × q2e

p2e =
m3(m1 +m2)

M
ξ × q2e −

m1m3

M
ξ × q1e.

The above conditions represent sufficient conditions for the existence of relative equilibria, which
in the present case are spinning three-craft configurations. These conditions are nonlinear and very
difficult to solve. However, one can check for example that collinear solutions do exist. In previous
work,22 the authors solved for shape preserving three-craft constellations, which include circularly
spinning three-craft relative equilibria. In that work, one had to solve a quintic nonlinear equation
and then for the spin rate ξ. Using the method described in this paper, that relies on the geometric
approaches described in Reference 21, the conditions given above cater solutions to the quintic
equation directly.

For example, consider a three-spacecraft collinear spinning constellation. Say that we are given
a desired charge on spacecraft 1 and 2, and given desired separation distances qe1 and qe2. The
above conditions when evaluated at these equilibrium values become linear algebraic equations in
the charge c3 of the third spacecraft and in the square of the magnitude of the spin rate ξ. Solving
for c3 and ξ2 = ‖ξ‖2, one obtains

c3 =
c1c2e(qe2/λd)m3q

2
e2(qe1 + qe2)2(m2qe2 +m1(qe1 + qe2))

q2
e1(c1m2q2

e2(m1qe1 −m3qe2) + c2e(qe1/λd)m1(qe1 + qe2)2(m2qe1 +m3(qe1 + qe2)))
(14)
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and

ξ=

√
−c1c2e(−qe1/λd)kcM

(
c1q2

e2 + c2e(qe1/λd)(qe1 + qe2)2
)

(q2
e1(c1m2q2

e2(m1qe1−m3qe2)+c2e(qe1/λd)m1(qe1+qe2)2(m2qe1+m3(qe1+qe2))))
. (15)

Hence, we see that for an equilibrium c1 and c3 have to be of the same sign (from equation (14)) and
that c2 has to be opposite to both c1 and c3 (from equation (15)). One can check that the above value
for c3 solves the quintic equation derived in Reference 22. The advantage of the above approach is
that the quintic equations is readily solved, along with the desired spin rate ξ.

One can see that there is a large family of collinear spinning three spacecraft solutions. The above
solution (equations (43) and (44)) completely describe the entire family of collinear solutions. One
can then use the energy omentum method to determine the stability conditions needed for a stable
spinning three craft problem.

3 FORMATION SHAPE INSTABILITY WITH EQUILIBRIUM CHARGES

Unlike the charged spinning two-craft problem discussed in Reference 19, under no condition
is the circular trajectory relative equilibrium of the three-craft problem stable without a charge
feedback control law. By means of linearization of the second order dynamics of the formation, we
will show that the system is unstable. For the perfectly symmetric case (i.e., three craft with identical
masses and equally space craft), this will be proven analytically. For the general nonsymmetric
formation, instability will be shown numerically since the resulting equations are far too complex.

3.1 The Reduced Equations of Motion

So far we have not written down the equations of motion. We do so in this section using Routhian
reduction. The Lagrangian for this system is given by L = K − V , where K and V are expressed
in Eqs. (2) and (3). We have so far not used any specific coordinate definition for q1 and q2.
To simplify the analysis we will assume a planar formation. In this case, we use the following
coordinates: q1 = |q1| = |r1 − r2| is the relative distance between vehicles 1 and 2, q2 = |q2| =
|r3− r2| is the relative distance between vehicles 2 and 3, θ1 is the angle between the vector q1 and
an inertial x-axis, and θ2 is the angle between q2 and q1.

With this definition for a coordinate system, one can easily verify that ∂L
∂θ1

= 0 and, hence, the
(angular) momentum associated with θ1, pθ1 , is conserved: ṗθ1 = 0 (this is easily checked from
the Euler-Lagrange equation for θ1). Routh reduction21 is a procedure that uses conservation of
momenta variables to reduce the size of the resulting equations. In the present case, the value of pθ1
is set to a constant value H determined by the initial conditions. Obtaining an expression for pθ1
from the fact that

H = pθ1 =
∂L
∂q̇1

=
1
M

(
(m1 +m2)m3

(
θ̇1 + θ̇2

)
q2

2 +m1m3

(
sin θ2q̇1 − cos θ2q1

(
2θ̇1 + θ̇2

))
q2

+m1q1

(
(m2 +m3)q1θ̇1 −m3 sin θ2q̇2

))
.
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Using this expression to solve for θ̇1, one obtains

θ̇1 =
HM +m1m3 sin θ2 (q1q̇2 − q2q̇1)−m3q2((m1 +m2)q2 −m1 cos θ2q1)θ̇2

m1(m2 +m3)q2
1 − 2m1m3 cos θ2q2q1 + (m1 +m2)m3q2

2

. (16)

Eq. (16) is then used to remove θ̇1 in

L(q1, q2, θ1, θ2, q̇1, q̇2, θ̇1, θ̇2)−Hθ̇1

to obtain the RouthianR(q1, q2, θ1, θ2, q̇1, q̇2, θ̇2).

The equations of motion of the three-craft system are obtained from the Euler-Lagrange equa-
tions, but with the Lagrangian replaced with the Routhian. One can reconstruct the solution for
θ1 using equation (16). The equations of motion for q1, q2, θ2 are given by (we omit the detailed
expressions due to their length):

d
dt
∂R
∂q1
− ∂R
∂q1

= 0

d
dt
∂R
∂q2
− ∂R
∂q2

= 0 (17)

d
dt
∂R
∂θ2
− ∂R
∂θ2

= 0.

3.2 Linearized Equations of Motion

In this section we linearize the equations of motion about a nominal equilibrium solution de-
scribed by q1 = qe1, q2 = qe2, θ2 = π with all their derivatives equal to zero. Note that this
equilibrium in the reduced space corresponds to a spinning formation with angular rate given by

ξ =
(m1 +m2 +m3)H

m2m3q2
e2 +m1

(
m2q2

e1 +m3(qe1 + qe2)2
)

and with θ1 = ξt. The spacecraft charges are assumed constant in the linearization. Later, when we
use the spacecraft charges as control inputs, the three charges c1, c2, c3 will be treated as variable
and the equations have to be linearized with respect to them as well.

Linearizing the equations of motion about the circular equilibrium solution described above one
gets

Aδẍ + Bδẋ + Cδx = DδH, (18)

where the matrices A, B, C and D are defined in the appendix. Note that perturbations may
also cause the value of the conserved angular momentum be different from the nominal angular
momentumH . For this system δH is viewed as a constant (persistent) input force. In these equation
we have substituted c3 from equation (14), H from equation (18), and where x = [q1 q2 θ2]T. Next
we will study the stability of these linearized equations for a special case.
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3.3 System Stability: Symmetric Case

In this section we will check the eigenvalues of the linearized system for the circular equilibrium
of interest with q1e = q2e = qe (this equilibrium also implies that the nominal equilibrium charges
are c1 = c3 = −c2 = c). We will also assume that m1 = m2 = m3 = m. To study the stability of
the unactuated system, one need only study the unforced system (i.e., with δH = 0). The reasoning
is as follows. If under zero error in the angular momentumH (i.e., the initial conditions are such that
δH = 0) the system is stable, then due to a (constant) nonzero momentum error δH , the linearized
system converges to a neighborhood of the desired relative equilibrium. The neighborhood is given
by the steady state error:

δxss = C−1DδH.

If the relative equilibrium is unstable, then it is unstable for all initial conditions, whether they
result in a zero or nonzero δH . Hence, if the relative equilibrium is unstable with δH = 0 for the
linearized system, then it must be unstable in general (i.e., for all other initial conditions that result
in a nonzero angular momentum error δH), and so must be the original nonlinear system.

The characteristic equation is given by

f(s) = det
[
As2 + Bs+ C

]
, (19)

which is a sixth order equation with 6 roots. These roots are the system eigenvalues. In the sym-
metric case, the matrices A, B, and C are given by

A =


2m
3

m
3 0

m
3

2m
3 0

0 0 mq2e
6

 ,

B =

 0 0 mqeξ
3

0 0 −mqeξ
3

−mqeξ
3

mqeξ
3 0



C =


− c20kce

−2β

4q3e
− m(2+3β)ξ2

3
c20kce

−2β(1+β)
4q3e

+ 5mξ2

3 0
c20kce

−2β(1+β)
4q3e

+ 5mξ2

3 − c20kce
−2β

4q3e
− m(2+3β)ξ2

3 0

0 0 c20kce
−2β

8qe
+ 1

3mq
2
eξ

2

 .
One can check that the eigenvalues are given by

s1,2 = ±
√
α
√

(β − 1)H̄ − e−2ββ

2mq2
e

s3,4 = ±

√
e−4βα

“
3e2β(β+1)+e4β(3β+1)H̄−

√
3
q

e4β(e2βH̄+1)(3(β+3)2+e2β(β(3β+10)+19)H̄)
”

m2q4e

2
√

2
(20)

s5,6 = ±

√
e−4βα

“
3e2β(β+1)+e4β(3β+1)H̄+

√
3
q

e4β(e2βH̄+1)(3(β+3)2+e2β(β(3β+10)+19)H̄)
”

m2q4e

2
√

2
,

9



where

α = c2kcmqe β = qe
λd

H̄ = H2

α .

Showing that at least one of these eigenvalues is a positive real number is not easy. Instead we will
show instability by studying the coefficients of the characteristic polynomial.

Letting x = s2, the characteristic function can be rewritten in the cubic form

f(x) = a3x
3 + a2x

2 + a1x+ a0. (21)

In the above, a3, a2, a1, a0 are functions of qe, c,m:

a3 =
m3q2

e

18

a2 =
e−

2qe
λd m

(
−16e

qe
λd kcmqe(2λd + qe)c2 + kcmqe(5λd + 2qe)c2 + 8e

2qe
λd H2λd

)
72λdq2

e

a1 =
1

288λ2
dmq

6
e

×(
e−

4qe
λd

(
6k2

cλdm
2q2
e(λd + qe)c4 − 24e

qe
λd k2

cm
2q2
e(2λd + qe)(3λd + qe)c4

−80e
3qe
λd H2kcλdmqe(2λd + qe)c2 + 2e

2qe
λd kcmqe

(
λd(8λd + 5qe)H2

+24c2kcmqe(2λd + qe)2
)
c2 + 13e

4qe
λd H4q2

e

))

a0 =
1

3456q10
e

(
3e−

2qe
λd kcqec

2 +
2H2

m

)

×

[3e−
2qe
λd kcqe

(
λd + qe − 4e

qe
λd (2λd + qe)

)
c2

λd
+

4H2

m


2

−

3e−
2qe
λd kcqe(λd + qe)c2

λd
+

5H2

m

2 ]
.

The roots of the characteristic equation (which correspond to the eigenvalues of the linearized sys-
tem) turn out to be quite complex to be easily analyzed. Instead of attempting to solve for the roots
directly, we will use Descartes’ rule of signs.

Fact 3.1 (Descartes’ Rule of Signs). Let f(x) = anx
n +an−1x

n−1 + · · ·+a1x+a0 be a polyno-
mial where an, an−1, . . . , a0 are real coefficients. The number of positive real roots of f is either
equal to the number of sign changes of successive terms of f(x) or is less than that number by an
even number (until 1 or 0 is reached). The number of negative real zeros of f(x) is either equal to
the number of sign changes of successive terms of f(−x) or is less than that number by an even
integer (until 1 or 0 is reached).
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Our strategy is to show that not all roots of f(x) are negative real. If one of the roots of f(x), χ,
is not a negative real number, then f(s2) will have at least one eigenvalue with a positive real part,
which is the square root of χ. If one eigenvalue of the linearized system has a positive real part, the
unactuated nonlinear equations are then unstable. By way of contradiction, we will show that not
all roots of f(x) are negative.

Assume that all roots of f(x) are negative. Then, by the Descartes rule of signs, we must have
exactly three sign changes in the successive terms of f(−x), which is given by

f(−x) = −a3x
3 + a2x

2 − a1x+ a0.

Clearly we have a3 > 0. So the first term in f(−x) is negative. To ensure existence of 3 negative
real roots, we need to have a2 > 0, a1 > 0 and a0 > 0. In what follows, we will show that a2 and
a0 can not both be positive.

First, lets rewrite a2 in the form:

a2 =
e−2βmα

72q2
e

(
8e2βH − 16eβ(β + 2) + 2β + 5

)
,

where

α = c2kcmqe β = qe
λd

H̄ = H2

α .

For a2 to be positive, we must have

H̄ >
1

8e2β

(
16eβ(β + 2)− 2β − 5

)
= κ(β). (22)

Note that κ(β) > 0 for all values of β > 0.

Next, we consider the expression for a0, which can be rewritten as:

a0 =
α3
(
2H̄ + 3e−2β

)
3456m2q10

e

[(
4H̄ + 3e−2β

(
β − 4eβ(β + 2) + 1

))2
−
(

5H̄ + 3e−2β(β + 1)
)2
]
.

For a0 to be positive, the expression in square brackets has to be positive. This expression is
quadratic in H̄ , has two roots one negative and one positive. Let η denote the positive root. The
negative root is of no concern to us because H̄ is positive. The positive root η is given by

η(β) =
2
3

e−2β
(

2eββ − β + 4eβ − 1
)
.

Moreover, the quadratic term in square brackets has a negative hessian at the critical point. Hence,
for a0 is to be positive, we must have

H̄ < η. (23)

One can verify that κ > η for all β ≥ 0 and, hence, inequalities (22) and (23) can not both be true.
Hence a2 and a0 can not both be positive, which violates the necessary condition for having three
negative real roots of f(x). Thus, finally, there must exist a root χ that is either (1) positive real, or
(2) complex with nonzero imaginary part. In both these cases, the square root of χ, which is a root
of f(s2) and an eigenvalue of the linearized equations of motion, will have a positive real part. This

11
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Figure 3 Instability Illustration of Collinear Spinning Equilibrium with and without
Plasma Charge Shielding

concludes the proof that the linearized equations of motion are unstable and, hence, so are the full
nonlinear equations of motion.

This instability is illustrated in the numerical simulation results shown in Fig. 3. The simulation
time is 3 periods of the unperturbed solution. The numerical collinear invariant shape solution
example of Reference 18 is used, but with the initial position vectors scaled by 0.1%. Without
charge shielding the craft start to depart significantly from the equilibrium after one period. With
the charge shielding present, the craft depart even quicker within 1 period.

A Remark on the General Nonsymmetric Case. Studying the stability of the general nonsym-
metric three-craft Coulomb-tether problem is not very tractable in symbolic form. In this case, one
can numerically study the stability of the open loop system. This will be investigated separately by
the authors in the future. •

4 STABILIZATION

In this section we will use the linearized equations to design linear feedback control laws to
locally stabilize the nonlinear system. We will follow a procedure similar to that found in Refer-
ence 23 for physical tethers. We will first carry out a controllability test to determine whether all or
some of the three charges need to be controlled to guarantee controllability of the linearized system
The control inputs are the charges c1, c2 and c3. We will restrict the discussion to the symmetric for-
mation case (equal masses and equal nominal charge magnitudes with equal separation distances).
In linearizing the equations of motion we also have to linearize with respect to c1, c2 and c3. With
c1, c2 and c3 treated as control inputs in the fully-actuated case, the linearized equations motion are

Aδẍ + Bδẋ + Cδx = DδH + Eδc. (24)

12



where the matrices A, B, and C are given in equations (20)-(20) and with

D =


ξ
qe
ξ
qe

0



E =


mqeξ2

c0
−kcc0e−β

q2e
−kcc0e−2β

4q2e

−kcc0e−2β

4q2e
−kcc0e−β

q2e

mqeξ2

c0

0 0 0


c0 being the nominal spacecraft charging of craft 1 and 3, with craft 2 having a nominal charge of
−c0. In the above c = [c1 c2 c3]T is the control input. The parameter c0 is free to be chosen, with
the spin rate ξ found through Eq. (15):

ξ =

√
c2

0kce
−2β (−1 + 4eβ)

4mq3
e

. (25)

The system is controllable using the controls c1, c2, and c3 if and only if

rank
([
s2A + sB + C E

])
= 3

holds for all eigenvalues s that satisfy det
(
s2A + sB + C

)
= 0.23, 24 These eigenvalues are given

in equation (20). Checking the controllability rank condition assuming all three charges are actu-
ated, one finds that the rank is in fact 3 for all eigenvalues, which implies that the reduced equations
of motion (i.e., shape dynamics) are controllable.

Note that any shape-stabilizing control law based on linear feedback control will guarantee sta-
bility of the motion even under perturbations in the spin rate ξ.

5 NUMERICAL SIMULATIONS

The motion of three charged spacecraft in deep space is simulated numerically to illustrate the per-
formance of the shape feedback control algorithm. These simulations assume a symmetric collinear
setup where all craft have a mass of 50 kg, and a nominal separation distance of qe1 = qe2 = 20 me-
ters. The equilibrium spacecraft charges are ce1 = ce3 = 10µC and ce2 = −10µC. Two scenarios
are tested with two different initial condition cases. The initial conditions for case 1 are described in
Table 1. Here the initial separation distances are too large and the formation is not collinear. How-
ever, in case 1 the velocity magnitudes are chosen such that the actual angular momentum matches
that of the equilibrium momentum.

The stabilizing charge control is a simple linear control of the form

δc = −
[
K1 K2

]
δx (26)

where K1 and K2 are the 3×3 proportional and derivative feedback gain matrices. For the presented
simulations the feedback gain matrices are determined by solving the standard LQR gain selection
problem with Q being a 6× 6 identity matrix, and R being a 3× 3 identity matrix scaled by 1011.
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State Value Units

r1(t0) (22, -2) meters
r2(t0) (0, -4) meters
r3(t0) (-22, -2) meters
ṙ1(t0) (0, 0.019553) meters/second
ṙ2(t0) (0, 0) meters/second
ṙ3(t0) (0, -0.019553) meters/second

Table 1 Initial Conditions for Simulation Case 1.

Case 2 has identical simulation parameters as in case 1, but the initial velocity magnitudes are
increased by 20% over those of case 1. This results in the actual angular momentum magnitude
being different from the equilibrium momentum magnitude and δH = 8.6032 kg m2/s. The linear
stability analysis for this simulation case shows that the resulting motion will converge to the steady
state tracking errors:

δxss = (C + EK1)−1DδH = (0.6535 m, 0.6535 m, 0 rad)T (27)

The heading errors δθ2 are expected to converge to zero, with the separation distance errors δqi
reaching finite values.

While the closed loop stability is obtained using linearization results, all of the following numer-
ical simulations integrate the full nonlinear equations of motion given by

mir̈i =
3∑

j=1, 6=i
kcci(t)cj(t)

rji
r3
ji

e−
rji
λd (28)

where ri are the inertial position vectors and rji = ri − rj are the relative position vectors.

The numerical results of case 1 are illustrated in Figure 4. The craft 2-D trajectories are illustrated
in Figure 4(a) over a time span of 4 un-perturbed orbit periods. The shape tracking errors are shown
in Figure 4(b) where initially both the separation distances q1 and q2, as well as the inter-craft
angle θ2 contain errors. With the charge feedback control active the 3-craft cluster shape assumes
the desired collinear formation after less than 2 revolutions. The simulation is setup such that the
cluster center of mass is located at the inertial frame origin. This is why the center craft 2 is driven
to the origin as the desired shape is obtained. Furthermore, because δH is zero in this simulation
setup, all shape tracking errors converge to zero over time. The spacecraft charges are illustrated in
Figure 4(c). As the cluster converges to the desired spinning shape, the spacecraft charges converge
to the equilibrium charges.

The numerical results of simulation case 2 are illustrated in Figure 5. Here the initial angular
velocity magnitudes are increased by 20% such that δH 6= 0. The spacecraft cluster still stabilizes
its spinning motion about the desired collinear shape. However, the shape tracking errors δq1 and
δq2 in Figure 5(b) do not converge to zero. The offsets of the nonlinear simulation match up very
well with the analytically predicted offsets of the linear stability analysis. Note that even in this case
the orientation error δθ2 converges to zero. Similarly the spacecraft charges shown in Figure 5(c)
converge to a value different from the equilibrium charge. This difference is due to the persis-
tent disturbance caused by the non-zero δH . This steady-state offsets to due momenta differences

14
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Figure 4 Numerical Simulation Results of Case 1 where δH = 0.

between actual and the desired equilibrium configuration could be compensated for with integral
feedback.

6 CONCLUSION

This paper studies the stability and control of relative equilibria for the three-craft Coulomb
tether problem. General conditions are derived whose solutions are all relative equilibria for the
spinning three-craft Coulomb tether constellation. Using linear feedback control theory, we stabilize
the nonlinear system, guaranteeing that the system converges to a neighborhood of the desired
relative equilibrium. Future research will focus on asymptotically stabilizing the desired relative
equilibrium, regardless of the value of the angular momentum H . This will require the nominal
equilibrium charge value to be changed to reflect the actual angular momentum of the system. We
will also consider general nonlinear stabilization techniques, that may have larger regions of stability
than linearization-based techniques considered in this paper.
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Figure 5 Numerical Simulation Results of Case 2 where δH 6= 0.
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APPENDIX: LINEARIZED COLLINEAR RELATIVE EQUATIONS OF MOTION

In Eq. (18) the linearized equations of motion for the collinear equilibrium condition are given
as:

Aδẍ + Bδẋ + Cδx = 0

The matrices A, B, C and D are as follows:

A =


m1(m2+m3)

M
m1m3
M 0

m1m3
M

(m1+m2)m3

M 0

0 0 m1m2m3q2e1q
2
e2

m2m3q2e2+m1(m2q2e1+m3(qe1+qe2)2)


B =

1
m2m3q2

e2 +m1

(
m2q2

e1 +m3(qe1 + qe2)2
) × 0 0 2m1m2m3qe1q

2
e2ξ

0 0 −(2m1m2m3q
2
e1qe2ξ)

−(2m1m2m3qe1q
2
e2ξ) 2m1m2m3q

2
e1qe2ξ 0


C =

 C11 C12 C13

C21 C22 C23

C31 C32 C33


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D =


2m1(m2qe1+m3(qe1+qe2))ξ

m2m3q2e2+m1(m2q2e1+m3(qe1+qe2)2)
2m3(m2qe2+m1(qe1+qe2))ξ

m2m3q2e2+m1(m2q2e1+m3(qe1+qe2)2)
0



The matrix coefficients of C are given by:

C11 =
1

λdq
3
e1(qe1 + qe2)

×

1(
c1m2(m1qe1 −m3qe2)q2

e2 + c2e
qe1
λd m1(qe1 + qe2)2(m2qe1 +m3(qe1 + qe2))

) ×
1(

m2m3q2
e2 +m1

(
m2q2

e1 +m3(qe1 + qe2)2
)) ×

c1c2e−
qe1
λd kc

(
c2e

qe1
λd m1

(
λd

(
−m1(m2+m3)2q3

e1+3(m1+m2)m3(m2+m3)q2
e2qe1

+2(m1 +m2)m2
3q

3
e2

)
+qe1(m2qe1+m3(qe1+qe2))

(
m2m3q

2
e2+m1

(
m2q

2
e1+m3(qe1+qe2)2

)))
(qe1+qe2)3

+c1q
2
e2

(
m1qe1(qe1+qe2)(m2qe1+m3(qe1+qe2))

(
m2m3q

2
e2+m1

(
m2q

2
e1+m3(qe1+qe2)2

))
+λd

(
− 2m2

2m
2
3q

4
e2 +m1m2m3(m3(qe1 − 2qe2)(qe1 + qe2) +m2qe1(qe1 + 3qe2))q2

e2

−m2
1qe1(qe1 + qe2)

(
(m2+m3)2q2

e1 + 2m3(m2 +m3)qe2qe1+m3(m3 − 3m2)q2
e2

))))

C22 =
1

q2
e1

(
c1m2(m1qe1−m3qe2)q2

e2+c2e
qe1
λd m1(qe1+qe2)2(m2qe1+m3(qe1+qe2))

) ×
c1c2kcm3

(
c1e−

qe1
λd (m2qe2 +m1(qe1 + qe2))q2

e2

λd

+
2c1e−

qe1
λd (m2qe2 +m1(qe1 + qe2))q2

e2

qe1 + qe2
+
c2(qe1 + qe2)2(m2qe2 +m1(qe1 + qe2))

λd

+(m1 +m2)
(
c1e−

qe1
λd q2

e2 + c2(qe1 + qe2)2
)

−
4e−

qe1
λd m3(m2qe2 +m1(qe1 + qe2))2

(
c1q

2
e2 + c2e

qe1
λd (qe1 + qe2)2

)
m2m3q2

e2 +m1

(
m2q2

e1 +m3(qe1 + qe2)2
)

+
2c2(qe1 + qe2)2(m2qe2 +m1(qe1 + qe2))

qe2

)
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C33 =
1

qe1(qe1 + qe2)
×

1(
c1m2(m1qe1 −m3qe2)q2

e2 + c2e
qe1
λd m1(qe1 + qe2)2(m2qe1 +m3(qe1 + qe2))

) ×
c1c2e−

qe1
λd kcm3qe2

(
c1m2q

3
e2 − c2e

qe1
λd m1(qe1 + qe2)3

)

C12 =
1

q2
e1

(
c1m2(m1qe1 −m3qe2)q2

e2 + c2e
qe1
λd m1(qe1 + qe2)2(m2qe1 +m3(qe1 + qe2))

) ×
c1c2e−

qe1
λd kcm3

(
c1(m2qe2 +m1(qe1 + qe2))q2

e2

λd
+

2c1(m2qe2 +m1(qe1 + qe2))q2
e2

qe1 + qe2

+m1

(
c1q

2
e2 + c2e

qe1
λd (qe1 + qe2)2

)
−

4m1(m2qe2+m1(qe1+qe2))(m2qe1+m3(qe1+qe2))
(
c1q

2
e2+c2e

qe1
λd (qe1+qe2)2

)
m2m3q2

e2 +m1

(
m2q2

e1 +m3(qe1 + qe2)2
) )

C12 = C21

C13 = C31 = 0
C23 = C32 = 0
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