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TETHER DESIGN CONSIDERATIONS FOR LARGE THRUST
DEBRIS DE-ORBIT BURNS

Lee Jasper∗ and Hanspeter Schaub†

The use of tethers in space has been considered for many years. Most re-
cently, there have been concepts that could involve tethers for towing objects in
space. Active debris removal, asteroid retrieval, and satellite servicing may re-
quire a towing vehicle with thrusting capability to maneuver the object to be towed.
Because a tether does not provide a rigid interface between the two objects, post-
burn collision avoidance is a critical concern. Earlier work demonstrated exciting
input-shaped towing strategies that resulted in the tug and debris aligning, post-
burn, with the gravity gradient stable nadir axis thus avoiding collisions. How-
ever, there is a large design space to be utilized concerning tether properties such
as length, damping, and elasticity. Intermediate distances of only a few hundred
meters to kilometers appear best. Elasticity is not a major factor in the system’s
performance. Damping however, significantly improves performance, especially
for non-input shaped thrust profiles.

INTRODUCTION

Towing objects in space has been discussed frequently in recent years. Towing may be useful
for active debris removal (ADR), satellite servicing, and asteroid retrieval∗. Many of the concepts
proposed to tackle these missions utilize tethers as the connection between the object of interest and
the tugging body in conjunction with harpoons,1 nets,2 or various devices3, 4, 5, 6, 7 such as grapples.
Much effort has gone into studying the grappling devices however, the method by which the towing
craft imparts energy to the object to be towed is often overlooked. Jasper et. al.5 and Jasper and
Schaub8 have explored the tether dynamics and an open-loop input shaped control for the analysis
of a tethered-tug system with the goal of avoiding collisions between the end bodies, due to the
tether connection. Both of these studies are applied to the space debris and ADR problem, even
though they are relevant to all towing missions.

This paper considers a maneuver that changes the orbit (eccentricity and altitude) of the tethered-
tug system while achieving a stable gravity gradient nadir alignment. This paper also considers
how a tether used for towing might be designed given a design space in length L0, damping C, and
elasticity E. The effect of changes to combinations of these tether properties will be analyzed based
upon the desired capability to avoid collisions between the large end-bodies.

Tethers in space have been involved in a considerable number of studies.9, 10, 11 They have also
been demonstrated on orbit with large tether lengths. The Small Expendable Deployer System
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(SEDS)12 experiments were launched by NASA on Delta-II rockets. These tethers spanned up
to 20 km kilometers. The Space Shuttle Tethered Space System (TSS) missions deployed tethers
and TSS-2 reached a tether length of nearly 20 km13†. Several other missions have shown shorter
deployments. It is therefore likely that the tether length for the tethered-tug system can span a range
of distances.

Damping in tethers has received much less attention than the modeling of the undamped dynam-
ics. However, there have been some theoretical, terrestrial and on orbit experimental analyses done
concerning damping.14, 15 Characterizing the damping present in a tether, especially long tethers on
orbit appears challenging. Still, damping ranges can be bounded15 and the value of damping can
also potentially be designed to reduce several of the modes of the tether.14 A potential range of
longitudinal damping coefficients is explored for the system.

Finally, Young’s modulus of elasticity affects the tether’s stiffness, therefore it is an important
property to consider. Tethers can be made from a variety of materials but the primary material
considered here is Kevlar. Kevlar does have a range of material properties, including the Young’s
modulus and some of that range is explored in this paper.

Figure 1 demonstrates the towing concept where a craft capable of actively thrusting (referred
to as the ‘tug’), is tethered to the passive object, that is, the debris to be removed or satellite to be
serviced. For the satellite servicing mission, a grappling device will be utilized to attach to the asset
of interest. (The method of attaching to the debris or satellite is not considered in this paper but has
been studied by many other organizations.1, 2, 3, 4, 6) The tow vehicle can then engage its thrusters
and apply the desired ∆v to the asset. Note that Jasper and Schaub8 found that the configuration
can settle into a formation that oscillates about nadir, after thrusting, as shown in Figure 1. This is
the desired orientation to be achieved by combining the control and a variety of tether properties.

FT

✓

L0, E, C

Figure 1. On orbit towing concept resulting in oscillatory motion about nadir, θ

For an ADR mission, the tug/tow vehicle is an upper stage rocket body that has delivered its
primary payload to orbit. It uses its remaining fuel and payload capacity to phase to, and rendezvous
with, the debris object. A secondary payload attached to the rocket then attaches a tether to the
†http://www.nasa.gov/mission pages/shuttle/shuttlemissions/archives/sts-75.html

2



debris. The final fuel reserves are used to lower the periapsis of both objects, effectively removing
two debris objects with a single launch. The increased drag experienced by both objects will help
them to de-orbit within the 25 year rule16, 17 As an example, Reference 8 found that a vehicle in
circular orbit at 800 km would deorbit in approximately 50 to 70 years. However lowering the
periapsis to achieve a 425 km by 800 km orbit, the system decays in about 3 years. Depending upon
initial starting altitude and amount of reserve fuel available to the active upper stage, the debris-tug
system could be de-orbited within half an orbit. This concept is advantageous because it utilizes a
rocket that is already going to fly and deliver a satellite to orbit. Therefore this launch is not solely
for the ADR mission. Further, it is likely that the rocket’s payload will require an orbit that many
debris objects are already orbiting in. Figure 2 shows high-priority targets for ADR, and many of
them are in heavily used orbits. These orbits are likely locations for the launch vehicle/tug to fly to.
It is therefore probable that the tug will be relatively close to debris that is most important to remove
from orbit.

Figure 2. Current LEO environment with top 500 objects for ADR18

The overall aim of this research it to determine how to tow in space. Once a piece of debris is
captured the fundamental questions include how should it be moved and what is the response of the
system? The most important consideration is how to avoid collisions between the two end-bodies.
Thrust from the tug vehicle strains the tether, giving it elastic potential energy. Once the thrust is
removed from the system, the potential energy stored in the tether is released such that it pulls the
two bodies together, increasing collision potential.

Using an input shaped control profile yields good results for collision avoidance.8 This is accom-
plished through an open-loop control that creates a thrust profile so that the first fundamental mode
of the tethered-tug system is not excited. This effectively reduces the remaining motion between the
end-bodies, which gives desirable behavior in both deep-space and on-orbit simulations. A similar
input shaping profile will be used in this paper.

When in orbit, the system can achieve a gravity gradient/nadir alignment, with the right condi-
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tions, as shown in Figure 1. A nadir alignment is desirable because the natural orbital dynamics
will not allow the two end bodies to collide. A gravity gradient alignment is also stable and should
therefore allow the two objects to remain separated indefinitely or until de-orbit occurs. This be-
havior is utilized for the tether properties study and is used as a metric for understanding how well
the tether properties achieve this desirable configuration.

This paper utilizes the promising results given by continuous input shaping to provide a thrust
and ∆v to the system. However this study expands the research to consider changes to the tether
properties. There are three parameters that are directly considered in this study and their affects on
avoiding collisions and gravity gradient behavior are discussed. Specifically, tether length, L0, is
considered to see if there is a length that is too short or too long. The tether damping coefficient,
C, and modulus of elasticity, E, are considered to see if these parameters can substitute for thrust
input shaping so that a step thrust profile can be used.

First, the system model is explained along with the control input shaping method used. It should
be noted that the throttle is assumed to be capable of achieving all thrust magnitudes that are com-
manded. Both input shaping and a step input thrust are explored. Then, each tether property is
varied individually and the behavior of the system is studied. Finally, simultaneous changes to two
system properties are explored.

TETHERED-TUG SYSTEM MODEL

The tethered-tug system consists of a tow vehicle that can thrust, the object to tow, and a tether
between the two (Figure 1). The tug and the towed object are modeled as rigid bodies that can rotate
and translate. The tether is discretized into multiple lumped point masses connected by visco-elastic
forces, as shown in Figure 3. The tether starts taut in this study because slack in the tether causes

m2m1

m4

FT
KS

KS KS

L0i

L0i L0i

~R1

~R2

~R3 ~R4

m3

C

C

C

Figure 3. Discretized tether model example with 2 tether masses

amplified responses, and whipping behavior. This is not explored in this paper. The tug has active
attitude control while thrusting and all the thrust is applied in the in-track/along-track direction. The
attitude control is turned off when the thruster is off.

Discretized mass models for tethers are commonly used.19, 20, 21, 22, 23 However, none of these
have considered the process of towing with a tether, in space, with similar end body sizes. The
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translational equations of motion, caused by the tether, for the system in Figure 3 can be expressed
as

R̈i = 1
mi

(
KS(|Ri+1 −Ri| − L0,i)êi + C(|Ṙi+1 − Ṙi|)êi

)
R̈i+1 = 1

mi+1

(
KS(|Ri+2 −Ri+1| − L0,i+1)êi+1 + C(|Ṙi+2 − Ṙi+1|)êi+1 −miR̈i

)
...

R̈N = 1
mN

(
−KS(|RN −RN−1| − L0,N )êN−1 − C(|ṘN − ṘN−1|)êN−1

) (1)

where N is the number of masses and ê defined as

êi =
Ri+1 −Ri

|Ri+1 −Ri|
(2)

These are only part of the equations of motion used for the numerical simulation used in this paper.
Gravity and the thrust control acceleration are also present as well as the rigid body dynamics for
the tug and debris.

The natural frequency ωn of the system can be found by taking the complicated three-dimensional
model in Figure 3 and simplifying it to a one-dimensional problem, as in Figure 4.

m2

KSFT

x̂

x2x1

KS
m1 m4

x4

L0i L0i

m3

L0i

x3

CCC

KS

Figure 4. Discretized tether model example with 2 tether masses

The separation between the bodies can now be expressed as

Li = |Ri+1 −Ri| − L0

Li = xi+1 − xi − L0

L̇i = ẋi+1 − ẋi
L̈i = ẍi+1 − ẍi

(3)

assuming all unstretched tether lengths, L0, are the same. Ri is the position of mass i. Using the
linearization in Eq. (3), the discrete mass model in a state space representation is given in Eq. (4).
Here n is the number of links between each mass. Therefore, if there are four masses (N = 4),
there are three tether links and n = 3.

Ẋ = [A]X + [B]u (4)
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The variables in Eq. 4 are given below.

X2n×1 =



L1
...
Ln

L̇1
...
...
L̇n


[B]2n×1 =



0
...

0n
1
02
...

0n


u = FT

m1

FT is the thrust force, applied only to m1. The matrix [A] can be broken up into four smaller
matrices:

[A]2n×2n =

[
[0]n×n [I]n×n

[A2,1]n×n [A2,2]n×n

]
The acceleration caused by the visco-elastic spring force is given in Eq. 5, which is entirely position
dependent.

[A2,1] = KS [M ] (5)

with

[M ] =



− (mi+mi+1)
mimi+1

1
mi+1

0n−1 · · · 0n

1
mi+1

− (mi+1+mi+2)
mi+1mi+2

1
mi+2

. . .
...

0n−1
. . . . . . . . . 0n−1

...
. . . 1

mn−1
− (mn−1+mn)

mn−1mn

1
mn

0n · · · 0n−1
1

mn
− (mn+mn+1)

mnmn+1


(6)

mi is each body’s mass and the spring constant KS is expressed in Eq. (7)

KS =
EA

L0
(7)

with units of N
m . Here L0 is the initial, unstretched (equidistant) length of the tether between each

mass,E is the Young’s modulus of elasticity for the tether, andA is the cross sectional area. Because
Eq. (4) models a tether as a spring, it is only accurate while the tether is in tension. When the
separation distance is less than L0, all spring forces go to zero.

Without damping [A2,2] = [0]n×n. Using a strain based damping model20

εi =
|Ri+1 −Ri| − L0

L0
=
Li

L0
(8)

then the strain rate is

ε̇i =
L̇i

L0
(9)

assuming L0 is a constant. The force due to damping is then expressed as

FDi = Cε̇iêi (10)
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Here, C (kgs ) in Eq. (10) is the damping coefficient. With this linear damping model, [A2,2] becomes

[A2,2] = C[M ] (11)

with [M ] from Eq. (6). This is also only correct while in tension. There is no damping present while
the separation between two masses is less than L0.

CONTINUOUS INPUT SHAPING CONTROL FORMULATION

There are two primary controls that have been considered for the tethered-tug system. The first,
is a step input that thrusts in the along-track direction for the duration required to achieve a desired
∆v. This is effective at changing the orbital parameters of the tug and debris but because it is a step
input, all frequencies of tether are excited. This is undesirable as the collision potential between the
objects is increased.

The other control method considered is open-loop input shaping on the thrust’s step profile. The
input shaping method used is a notch filter that attenuates the natural frequencies of the system.
Reference 8 found that the first mode of the tether system is the most important to attenuate, there-
fore only the first mode is attenuated here. Using a doubly notched thrust profile, where the notched
frequencies span a range around the fundamental mode, a robust control design is created that can
withstand errors in knowledge of the mass of the towed object. This is very advantageous because
the mass of a debris object or an asteroid is likely to only be an approximate value. This is referred
to as the ‘double notch’.

Performing an Eigen value analysis on the system, Eq. (4), the fundamental mode of the system
can be found. As an example, the Eigen-frequencies ωd of a three body (single tether mass) system
are found by solving for the roots of Eq. (12).

z0 + z1ωd + z2ω
2
d + z3ω

3
d + z4ω

4
d = 0 (12)

where

z0 = K2
Sm1 +K2

Sm2 +K2
Sm3

z1 = 2CKSm1 + 2CKSm2 + 2CKSm3

z2 = C2m1 + C2m2 + C2m3 +KSm1m2 + 2KSm1m3 + km2m3

z3 = Cm1m2 + 2Cm1m3 + Cm2m3

z4 = m1m2m3

The undamped natural frequencies (ωn) can be found by setting C = 0 kg
s . They are also given in

Reference 8.

The natural frequencies of the system are given in Tables 2, 3, and 4 for each tether property study.
A linear sensitivity study of the Eigen values is also performed, given each set of system properties
and variability in those properties. For this paper, the sensitivity in the first natural frequency of the
system, due to changes in debris mass of approximately 500 kg is considered. The Eigen values are
the natural frequencies which are a function of multiple of the system properties. For example a
four body system (two tether masses) produces:

λ = ωd = f(mtug,m2,m3,mdebris, E,A, L0, C)

7



Because of this, the sensitivity study is done by evaluating Eq. (13), which is just a first order
Taylor expansion about the debris mass of the damped natural frequency obtained from the roots of
Eq. (12).

δωd =
d

dmdebris
ωd

∣∣∣∣
mdebris Expected

(mdebris −mdebris Expected) (13)

Once the variability in the first natural frequency is found, the double notch transfer function can
be designed so that the cutoff frequencies, ωc, fall on either side of the natural frequency ωd e.g.
ωc = ωd ± δωd. Eq. (14) shows the double notch

g(s) =
(s2 + ω2

c1)(s
2 + ω2

c2)

(s2 + BW1s+ ω2
c1)(s

2 + BW2s+ ω2
c2)

(14)

where s is the frequency, ωc1 is the first cut-off or notch frequency, ωc2 is the second cut-off or notch
frequency, and BW1 and BW2 are the bandwidths for each notch. Eq. (14) can be converted into
the discrete domain and the time domain in many ways. This process can be done with a Tustin
(Trapezoidal) Approximation,24 or several other methods, but is not discussed here.

The frequency domain response of the double notch can be seen in Figure 5. Reference 8 shows
that an expected debris mass of 1500 kg can vary by as much as ±500 kg and still see minimal
relative motion between the two end bodies, when using a double notch.
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Figure 5. Double notch centered about first fundamental mode of system

TETHER PARAMETER TRADE SPACE

The basic properties for the system are given in Table 1. These values are the baseline values and
are varied depending upon the simulation. As each tether property is varied, the change of the
fundamental frequency for the system is given in the second column of Table 2 - 4. This frequency
is the notched frequency used in the input-shaping approach. The tug and debris are based upon the
Russian Soyuz upper stage and the Kosmos-3M upper stage rocket body. This has helped to define
the basic mass, inertia, thrust, and ∆v capabilities. The initial altitude was chosen due to its high
density, and high priority, debris (Figure 2). Tether mass changes as the unstretched length changes
and the volume of the tether is assumed to be a cylinder.

‡http://www.matweb.com/index.aspx
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Table 1. Baseline vehicle, tether and simulation parameters

Tug Mass 2500 kg

Tug Inertia diag[10208, 10208, 2813] kg m2

Debris Mass 1500 kg

Debris Inertia diag[1285, 6829, 6812] kg m2

Baseline Tether 1000 m
Length L0 Equal space between masses

Tether Material Kevlar

Baseline E 170 GPa

Tether Diameter 3.2 mm

Tether Density 1470 kg/m3‡

Baseline C 0 kg
s

Thrust 2009 N

∆v 100 m/s

Starting Altitude 800 km (circular)

The range of tether lengths considered was developed based upon safe distance considerations and
previous flight missions.12, 13 Based upon the relative motion often seen in previous studies,5, 8 the
minimum separation distance between the two end bodies should be at least 100 m. The maximum
distance of 10 km is within demonstrated tether lengths from previous flight missions. The natural
frequency, and its sensitivity to change in debris mass (Eq. (13)) is given in Table 2.

Table 2. Change in natural frequency, and natural frequency sensitivity with tether length, L0. E =
170 GPa, C = 0 kg

s

L0 (m) ωn (Hz) ±δωn (Hz)

100 0.617 0.116

500 0.273 0.051

1000 0.192 0.036

2000 0.136 0.025

5000 0.086 0.016

10000 0.061 0.011

Damping in tethers is hard to characterize and there is not much good data on the damping that
occurred with tethers that have flown.15, 25 Studies that have been done show that the damping can be
bounded based upon tether length and end mass size.15 The lower bound is based upon ‘structural’
properties which depend upon how the tether is built. The upper bound is based upon viscous forces
both internal to the tether and external (such as atmospheric drag). This gives a range on C between
1×10−3 and about 1.10, for the tethered-tug system. However, due to the fact that the tether can be
designed to achieve various material properties, a wider range will be explored. Specifically, larger
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values of C will be used. Longitudinal damping is considered in this paper and transverse tether
damping is set to zero because it is much smaller.

Table 3. Change in natural frequency, and natural frequency sensitivity with tether damping, C.
L0 = 1 km, E = 170 GPa.

C (kgs ) ωd (Hz) ±δωd (Hz)

0.1 0.19247 0.034360

1 0.19247 0.034360

2 0.19247 0.034360

4 0.19247 0.034360

8 0.19247 0.034360

10 0.19247 0.034360

Tether stiffness directly depends upon material properties, specifically the Young’s Modulus
(Eq. (7)). The material frequently considered for use in space tethers is Kevlar.9, 13, 15, 25, 26 As-
suming Kevlar is the primary load bearing material, it has a fairly wide range of possible moduli
to consider. This range has been explored through the use of www.matweb.com§. The natural fre-
quency, and its sensitivity to change in debris mass (Eq. (13)) is given in Table 4.

Table 4. Change in natural frequency, and natural frequency sensitivity with Young’s modulus, E.
L0 = 1 km, C = 0 kg

s

E (GPa) ωn (Hz) ±δωn (Hz)

27 0.0767 0.014

60.5 0.115 0.021

94 0.143 0.027

161 0.187 0.035

194.5 0.206 0.039

228 0.223 0.042

TETHER LENGTH

The different thrust profiles created by the double notch and changes in tether length are given in
Figure 6. As the length of the tether increases the natural frequency reduces causing a slower ramp-
up in thrust. These profiles are created such that they satisfy frequency notching while achieving
a ∆v = 100 m/s. The longer tether lengths require thrust durations that are significant relative to
the orbital period (which is 6054 s at 800 km). Again, the thrust direction is aligned with the orbit
frame along-track vector during the maneuver duration so that the desired orbit altitude change
occurs properly.

Figure 7 and Figure 8 show the relative separation of the tether-tug system end bodies, the angle
from nadir, and the tether tension for the L0 lengths in Table 2. A nadir/gravity gradient alignment
§http://www.matweb.com/index.aspx
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Figure 6. Thrust acceleration profiles to achieve a ∆v = 100 m/s. Tether length study.

is defined as the tethered-tug system oscillating about the nadir vector (0o) while maintaining a
separation distance between the end bodies of L0. Note that the tension in the tether is scaled in
each plot so that it properly fits the ‘angle from nadir’ axis. Therefore, if the tension is scaled by 0.5
and its value reads 100, the actual tension is 200 N. The tension is zero at an angle of 0o.
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s . The debris’ expected mass is 1500 kg
but it is actually 2000 kg in simulation. Tension scaled by 0.036. Tether length study.

Figure 7 demonstrates the general motion of the tethered-tug system using a step input compared
to Figure 8 that uses the notched thrust profile. While Figure 7 does see some oscillation of the
formation about the nadir vector, the separation distance between the end bodies is quite dynamic
and therefore this does not achieve the desirable nadir alignment. Conversely, Figure 8 shows that
some of the distances do achieve desirable motion and many do maintain large separations with
small tensions.

Figure 8(a) experiences a collision early on, thus, very little of the behavior is shown. Figure 8(b)
demonstrates the most desirable motion with a gravity gradient oscillation occurring right after
thrusting, with very little tension in the tether. It does see large oscillations about nadir, reaching
about 50o. By comparison, Figure 8(c) experiences a tumbling motion for the first four orbits, de-

11



0 1 2 3 4 5 6
0

20

40

60

80

100

D
is

ta
nc

e 
[m

]

Orbits

Sep. distance and tension for m1 and m4  L0  100 m T  2000N

0 1 2 3 4 5 6
ï90

ï45

0

45

90

A
ng

le
fr

om
N

ad
ir

[d
eg

]

20

4

90100

0
3210

-90

Orbits

Di
st

an
ce

 [m
]

Angle from
 Nadir [deg]

80

60

40
0

5 6

-45

45

Tension
Distance

Angle

(a) L0 = 100 m.

0 1 2 3 4 5 6
0

100

200

300

400

500

D
is

ta
nc

e 
[m

]

Orbits

Sep. distance and tension for m1 and m4  L0  500 m T  2000N

0 1 2 3 4 5 6
ï90

ï45

0

45

90

A
ng

le
fr

om
N

ad
ir

[d
eg

]

100

4

90500

0
3210

90

Orbits

Di
st

an
ce

 [m
]

Angle from
 Nadir [deg]

400

300

200
0

5 6

-45

45

Tension
Distance

Angle

(b) L0 = 500 m.
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(c) L0 = 1000 m.
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(f) L0 = 10000 m.

Figure 8. Relative motion and tether tension between tug and debris with a NOTCH
input. E = 170 GPa and C = 0 kg

s . The debris’ expected mass is 1500 kg but it is
actually 2000 kg in simulation. Tension scaled by 0.036. Tether length study.

noted by the sharp points in the ‘angle’ line at±90o. However, near 4.5 orbits the formation appears
to hold at near 90o (both masses are aligned along-track), allowing the two masses to begin drift-
ing closer together. As the two masses drift and re-tension the formation looks to settle into the
desirable nadir motion. Similar behavior is seen with Figure 8(d). Based upon other simulations
(Figure 10 and Figure 11) transitioning from tumbling to gravity gradient has a corresponding re-
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duction in separation distance and the overall motion stabilizes out ofter about 1.5 orbits. Therefore,
it is likely that the 1 km and 2 km distances will also settle to gravity gradient. However, Figure 8(e)
and Figure 8(f) do not tumble or appear to achieve gravity gradient motion. It is interesting to note
that the two furthest distances considered had the closest approaches showing that longer tethers do
not guarantee further separation.

When the angle becomes large, but the system does not tumble, the separation distance reduces.
This is because, at large angles, the two bodies are nearly aligned in the along-track direction. Any
velocity differences will cause drift between the two bodies, thus they begin to approach each other.
The end bodies generally have enough offset in the radial direction so that they pass by each other
and eventually the tether catches them, causing gravity gradient motion. This behavior is consistent
throughout all the results for each tether property. Generally, angles above about 70o seem to cause
this behavior.

Further, major dips in the separation distance only occur while the an end body is above, and
forward of, the center of mass of the system. Being in a higher orbit than the lower body, the forward
body will drift (relatively) backwards. The lower body moves faster and drifts (relatively) forwards.
In all simulations, after thrusting the tug always begins with a slightly higher relative velocity that
the debris (due to the thruster and being in a slightly lower orbit). The tug then increases in orbit
altitude and begins swinging over the top of the formation. This causes the initial dip in relative
separation distance and the transition to either tumbling or gravity gradient motion.

The overall results from the length study are given in Table 5. Again, achieving gravity gradient
means that the tethered-tug system oscillates about nadir while maintaining a separation of nearly
L0. A ‘close approach’ occurs when the end bodies approach each other. Generally, using a step
input, independent of tether length, causes poor performance. Several collisions occur and none of
the distances considered achieve gravity gradient motion. The input shaped thrust profile performs
better, with the only collision at L0 = 100 m. Still, most of the lengths do not achieve gravity
gradient. It also appears that as tether length gets longer, the performance reduces and more relative
motion occurs.

Table 5. Summary of tether length, L0, study. E = 170 GPa, C = 0 kg
s

L0 (m) Thrust Profile Gravity Gradient? Notes

100 Step No Collision at 2106 s
100 Notch No Collision at 325 s

500 Step No Collision at 4588 s
500 Notch Yes

1000 Step No
1000 Notch Likely Transition from tumble to gravity gradient around orbit 5

2000 Step No
2000 Notch Likely Motion in tether length around orbit 6

5000 Step No Close approach ≈31 m
5000 Notch No Does not tumble or nadir align

10000 Step No
10000 Notch No May achieve nadir after more time
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LONGITUDINAL DAMPING

Figure 9 shows the response of the system due to a step input. It is expected that, given longitu-
dinal damping, the tether should remain close to the full tether length and some oscillations about
nadir may decay. Figure 9(b) shows that this does occur but Figure 9(a) shows that the undesirable
chaotic motion can also occur with a step input. As is summarized in Table 6 only the C = 0.1
and C = 2 cases do not achieve gravity gradient. Otherwise, the damped step input performs very
well. This is very different from the step responses in the L0 and E studies which perform poorly.
Damping creates very encouraging results for step input thrust profiles, which is discussed further
below.
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(b) C = 8 kg
s

Figure 9. Relative motion and tether tension between tug and debris with a STEP
input. L0 = 1 km, E = 170 GPa and C = 8 kg

s . The debris’ expected mass is 1500 kg
but it is actually 2000 kg in simulation. Tension scaled by 0.036. Damping study.

Figure 10 shows results from the various damping coefficients given in Table 3 while using a
notch input shaped thrust profile. Figure 10 does not achieve the same amount of damping as most
of the step input results. The notched results do perform well achieving a tumbling or gravity
gradient motion in all cases. As expected, an input shaped thrust profile produces good results
however they do not appear appreciably different than those seen for the notched results from the
L0 and E studies (Figure 8 and Figure 11).

It turns out that input shaping works against damping. Because input shaping is designed to
reduce relative motion, and therefore stress in the tether, there is much less time spent in tension.
This means there is less time spent damping. Depending upon the case, there is 3 to 5 times as
much damping force applied during a step input compared to the notch control. This is enough to
damp out the undesirable modes excited by the step input, and generally produce profiles as seen in
Figure 9(b). Still, damping does occur for all of the notched profiles in Figure 9, and this helps to
produce less end body relative motion, lower tensions and gravity gradient oscillations.

The two step input cases that see chaotic motion (and a collision for C = 2) maybe caused by
several factors. First, the relative velocity between the tug and debris end bodies is slightly higher
than those experienced in the other trials. The relative velocities at the end of the thrust maneuver
are greater than 1 m/s for C = 0.1 and C = 2 while all other cases have a relative velocity below
1 m/s. Second, the time spent damping (time in tension) is nearly the same for these two C values,
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s

Figure 10. Relative motion and tether tension between tug and debris with a NOTCH
input. L0 = 1 km, E = 170 GPa. The debris’ expected mass is 1500 kg but it is
actually 2000 kg in simulation. Tension scaled by 0.036. Damping study.

about 280 s. The time for these two trials is less than half the next smallest value of 660 s, which
occurs for C = 1. These differences maybe responsible for the poor performance compared to the
trials for C = 1, 4, 8, 10.

The summary of the results from the damping study is given in Table 6. Generally, damping
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works best for the step input cases. All input shaped trials behave adequately and achieve gravity
gradient motion.

Table 6. Summary of tether damping, C, study. E = 170 GPa, L0 = 1 km

C (kgs ) Thrust Profile Gravity Gradient? Tumble? Notes

0.1 Step No No Close approach ≈41 m
0.1 Notch Yes No Tumbles 1 orbit

1 Step Possible No
1 Notch Yes No Tumbles 2 orbits

2 Step No No Collision at 5.37 orbits
2 Notch Possible Tumbles Beginning transition to grav. gradient?

4 Step Yes No
4 Notch Yes No No tumbling

8 Step Yes No
8 Notch Possible Tumbles Tumbles 4 orbits

10 Step Yes No
10 Notch No Yes

TETHER STIFFNESS

Figure 11 shows the relative motion, angle from nadir and tether tension of the tether-tug system
for changes in E. As before with the L0 cases, the step input produces undesirable and highly
dynamic, non-nadir aligned motion similar to those seen in Figure 7. A plot is not presented for
brevity. The input shaped motion in Figure 11 is much more benign and consistently achieves
gravity gradient motion. Because of this the tension in the tether is often fairly low, nearly always
lower than the tension created by the thrust profile, which is desirable.

There is occasionally some motion between the two end bodies over the duration considered
however the motion generally does stabilize to the full length of L0 = 1000 m. This is caused
by either the transition from tumbling to gravity gradient (Figure 11(e) and Figure 11(e)) or large
rotation angles where the two bodies are nearly aligned in the along-track direction. The general
behavior is similar to that seen in the L0 and C studies.

The results from the stiffness study are given in Table 7. Most of the step input simulations end
in a collision or very close approach. This again shows that input shaping of the thrust profile is
required. The notched inputs do achieve gravity gradient motion in all cases and no collisions or
close approaches occur. There is some noticeable relative motion between the end bodies but this
appears relatively small and does not cause the gravity gradient oscillation to stop.

STIFFNESS AND DAMPING STUDY

Due to the promising results of damping study with a step input, both Young’s modulus and
damping are swept to determine the behavior of the system over a wide range of values. Note, the
tether length was kept constant at L0 = 1 km. Table 8 summarizes the behavior of the tethered-tug
system asE and C vary. The table shows whether there is a collision, tumbling motion, chaotic mo-
tion (Figure 9(a)), or gravity gradient motion. If there is a close approach, the minimum separation
distance is given next to the behavior seen.
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Table 7. Summary of tether stiffness, E, study. L0 = 1000 m, C = 0 kg
s

E (GPa) Thrust Profile Gravity Gradient? Notes

27 Step No Collision
27 Notch Yes Some intermediate motion

60.5 Step No Collision
60.5 Notch Yes

94 Step No Collision
94 Notch Yes

161 Step Possible Significant relative motion exists
161 Notch Yes Some intermediate motion

194.5 Step No Close approach ≈6 m
194.5 Notch Yes Some intermediate motion

228 Step No Collision
228 Notch Yes Some intermediate motion

Table 8. Summary of tether stiffness E and damping study using a step input. L0 = 1 km

C kg
s E = 27 GPa E = 60.5 GPa E = 94 GPa E = 161 GPa E = 194.5 GPa E = 228 GPa

0.1 Collision Tumble Chaotic Chaotic (≈ 36 m) Chaotic Grav. Grad

1 Collision Chaotic Collision Grav. Grad Grav. Grad Chaotic

2 Collision Grav. Grad Collision Chaotic (≈ 5 m) Collision Grav. Grad

4 Collision Grav. Grad Grav. Grad Grav. Grad Grav. Grad Grav. Grad

8 Grav. Grad Grav. Grad Grav. Grad Grav. Grad Grav. Grad Grav. Grad

10 Grav. Grad Grav. Grad Grav. Grad Grav. Grad Grav. Grad Grav. Grad
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(a) E = 27 GPa.

0 2 4 6
0

200

400

600

800

1000

[
]

Orbits

tance and tension for m1 and m4  E  60.5 GPa T

0 2 4 6
ï90

ï45

0

45

90

200

4

901000

0
3210

-90

Orbits

Di
st

an
ce

 [m
]

Angle from
 Nadir [deg]

800

600

400
0

5 6

-45

45

Tension
Distance

Angle

(b) E = 60.5 GPa.
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(c) E = 94 GPa.
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(d) E = 161 GPa.
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(e) E = 194.5 GPa.
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(f) E = 228 GPa.

Figure 11. Relative motion and tether tension between tug and debris with a NOTCH
input. L0 = 1 km, C = 0 kg

s . The debris’ expected mass is 1500 kg but it is actually
2000 kg in simulation. Tension scaled by 0.036. Stiffness study.

This study demonstrates some very encouraging results. First, the step input thrust profile used
often causes collisions and does not achieve a tumbling or gravity gradient orientation. The results
in Table 8 show that with damping, this is not true. There is a wide range of damping coefficients
and elasticities that achieve desirable motion. It appears that the lower right half of the table pro-
vides good performance. One correlation that can be found is that the higher the elasticity, the less
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damping is needed. It also appears that with higher damping, elasticity is not a driving factor in the
performance of the system. In the end, if damping is at or above 4 kg

s and elasticity is at or above
60.5 GPa, the system achieves a taut, gravity gradient behavior.

CONCLUSION

Towing is space is a challenging prospect. There are many potential uses for such a mission but
avoiding collisions between end bodies will take significant design effort. The design space for
the tether is not directly intuitive and increases in length do not guarantee desirable performance.
Similarly, the value of elasticity alone does not appear to significantly change system performance.
However, it is very obvious that input shaping on the thrust profile is required to achieve any form
of desirable performance without damping. Often the system achieves gravity gradient behavior
when input shaping is used. Further, it appears that intermediate values for tether length (L0 =
500− 2000 m) achieve the best performance. Again, elasticity does not seem to drastically change
performance of the system and so any stiff (Kevlar-based) tether appears acceptable.

With damping, the performance of the system significantly changes. Damping helps to moder-
ately improve performance of an input shaped thrust profile. However, when damping is applied
to the step input thrust profile, the performance is drastically improved and gravity gradient motion
can be induced. It can also be concluded that higher damping with higher Young’s modulus provide
desirable performance for a step input. One of the most exciting results is that damping can be used
as a replacement to input shaping, reducing some complexity for the rocket engine.

To implement a towing system in reality, significantly more design work is required. Still, there
is a large design space for the tether many possible configuration could be utilized to realize a safe
system.
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