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This paper discusses the development of an adaptive discrete-time robust filtering technique.
The technique is based on a recursive form of Huber’s mixed minimum !1/!2 norm approach to
estimation, which is robust with respect to deviations from the assumed Gaussian error probability
distributions inherent to the Kalman filter. An adaptive scheme is proposed whereby the filter can
estimate the process noise and measurement noise covariance matrices along with the state estimate
and state estimate error covariance matrix. The adaptation technique also adopts a robust approach
to estimating these covariances that can resist the effects of outliers. The adaptive/robust filter is
applied to the spacecraft attitude quaternion estimation problem, using a standard multiplicative
approach for handling the quaternion norm constraint. Simulation cases involving both Gaussian
and non-Gaussian error distributions are provided.

I. Introduction

The Kalman filter is a recursive weighted least–squares or minimum !2 norm estimation procedure, and is a
maximum likelihood technique assuming that the error statistics follow Gaussian probability distributions. It is

known that the performance of least–squares and the Kalman filter can rapidly degrade when the true underlying
measurement error probability distributions deviate from the assumed Gaussian case. For this reason, it is important
to develop filtering methods that are robust with respect to deviations from the assumed Gaussian distribution. One
technique is the Huber filter,1–4 which is a blended minimum !1 and !2 norm estimator. This estimator exhibits
reduced sensitivity to deviations in the assumed measurement error probability distributions.

In addition to the form of the error probability density function, the standard Kalman filter also assumes that
the statistics of the distribution, namely its mean and covariance, are known quantities. If these assumed parameters
of the distribution differ greatly from the true parameters, then the filter can exhibit large errors and possibly
divergence.5 This behavior is possible even if the true error distributions are Gaussian. To remedy these problems,
adaptive filtering techniques have been introduced in order to automatically tune the Kalman filter by estimating
the measurement and process noise covariances.6

The Huber–based formulations of the filtering problem also make some assumptions regarding the distribution,
namely the Huber approach considers a class of contaminated densities in the neighborhood of the Gaussian density.
Essentially the method assumes that the statistics of the main Gaussian density are known, as well as the ratio or
percentage of the contamination (although the filter makes no assumption of the nature of the contaminating density
other than it be symmetric with finite variance). The technique can be improved upon by the introduction of a
method to adaptively estimate the noise statistics along with the state and state error covariance matrix.

One technique in common use for adaptively estimating the noise statistics in real–time filtering applications is
known as covariance matching. The covariance matching technique is an intuitively appealing approach in which
the measurement noise and process noise covariances are determined in such a way that the true residual covariance
matches the theoretically predicted covariance. The true residual covariance is approximated in real time using the
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sample covariance, over some finite buffer of stored residuals. An explicit solution to the covariance matching problem
is proposed by Myers and Tapley in Ref. 7, which uses the sample mean and sample covariance of the stored residuals
in order to estimate the measurement and process noise covariance matrices. The drawback to this approach is that
the presence of outliers and non-Gaussianity can create problems of robustness with the use of sample covariance.
Therefore some additional steps must be taken to identify the outliers before forming the covariance estimates.

The purpose of this paper is to merge the covariance matching technique with the robust Huber–based Kalman
filter, including a means by which to identify and properly weight any outliers in the stored residual sequence that are
used to compute the measurement and process noise covariance estimates. Two techniques for handling such outliers
are introduced. The first method is a classical technique based on the weighted Euclidean distance between individual
data points and the sample mean, where the weights are determined by the inverse of the sample covariance matrix.
These quantities, known as Mahalanobis distances,8 are non–robust in nature since they involve the sample mean
and covariance.9–11 In particular they are extremely sensitive to clusters of outliers.12 Therefore, a second method
is introduced that replaces the sample mean and covariance with the sample median and median absolute deviation.
This approach yields a Mahalanobis-like quantity, known as the Projection Statistics,9 that can deal effectively with
clustered outliers. The Mahalanobis distance or Projection Statistics can then be used to calculate weights that are
used to remove the effect of outliers on the measurement and process noise covariance estimates computed in the
adaptive filter. This hybrid adaptive/robust filter is then applied to the spacecraft attitude estimation problem, with
numerical examples involving Gaussian and non–Gaussian errors.

It is anticipated that the hybrid adaptive/robust covariance matching technique proposed in this paper can
be modified in order to be incorporated into several other state estimation approaches beyond the Kalman filter.
For instance, the divided difference filter can be generalized as in Ref. 4 to include a Huber–style measurement
update, and can be augmented as in Ref. 13 to use the Myers–Tapley7 covariance matching technique. It would be
relatively straightforward to blend these techniques together into an adaptive, Huber–based divided difference filter.
In addition, it may be possible to modify certain classes of particle filtering techniques such as the ensemble Kalman
filter14 to use the robust approach considered in this paper.

II. Huber–Based Filtering Techniques

This section discusses the proposed filtering technique that is robust with respect to deviations in the assumed
measurement error probability distributions. The technique is a recursive form of the generalized maximum–likelihood
regression theory introduced by Huber.1 The method is described in detail in Ref. 2, but a short review is provided
as follows. The review is concerned with the discrete-time linear system

xk+1 = F kxk + Gkvk (1)
yk = Hkxk + wk (2)

where xk is the state at time k, yk is the measurement, vk is an unbiased random input with covariance Qk, and
wk is an unbiased random measurement error with covariance Rk.

A. State Prediction

Given an initial estimate of the state at time k denoted by x̂k and the associated state estimate error covariance
matrix P̂ k, then the state estimate and covariance matrix can be propagated forward in time by means of

x̄k+1 = F kx̂k (3)
P̄ k+1 = F kP̂ kF T

k + Qk (4)

where x̄k+1 and P̄ k+1 are the predicted state estimate and state estimate error covariance at time k + 1. The
predicted measurement follows from the state prediction as ȳk = Hkx̄k.

B. Measurement Update

Given a measurement yk, the filter update step takes the form of a linear regression problem between the measured
quantity and the predicted quantity. This form can be found by first defining the state prediction error at time k
as δk = xk − x̄k, where xk is the true state at time k. It then follows that the state prediction can be written as
x̄k = xk − δk. The measurement update can then be written as the linear regression problem

{
yk

x̄k

}
=

[
Hk

I

]
xk +

{
wk

−δk

}
(5)
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The regression problem can be further simplified by defining the quantities

Sk =

[
Rk 0
0 P̄ k

]
(6)

zk = S−1/2
k

{
yk

x̄k

}
(7)

Mk = S−1/2
k

[
Hk

I

]
(8)

ξk = S−1/2
k

{
wk

−δk

}
(9)

leading to the result
zk = Mkxk + ξk (10)

The Huber filter measurement update is found by minimizing the cost function

J (x̂k) =
n∑

i=1

ρ (ζi) (11)

where ζi refers to the ith component of the residual vector, ζ = Gkx̂k − zk, and ρ (ζi) is known as the “score
function.” The solution of the minimization problem can be found from the derivative of the cost function, leading
to the implicit equation

n∑

i=1

φ (ζi)
∂ζi

∂xk
= 0 (12)

where φ (ζi) = ρ′ (ζi). By defining ψ (ζi) = φ (ζi) /ζi, and the matrix Ψ = diag [ψ (ζi)], then the implicit equation
can be written in matrix form as

MT
k Ψ (Mkxk − zk) = 0 (13)

The solution of Eq. (13) can be determined by the iteratively reweighted algorithm,16 given by4

x(j+1)
k =

(
MT

k Ψ(j)Mk

)−1
MT

k Ψ(j)yk (14)

where the superscript (j) refers to the iteration index. The method can be initialized by using the least–squares
solution, corresponding to Ψ = I. The converged value from the iterative procedure is taken as the state estimate,
x̂k. The iteratively reweighted technique converges for non–increasing ψ functions.8

In generalized maximum likelihood estimation, the function ρ can be chosen to yield an estimator x̂ with certain
desirable properties. One desirable property of the solution of the generalized maximum likelihood technique is that
of robustness with respect to deviations from the assumed underlying probability distribution. Huber1 introduces a
ρ function of the form

ρ (ζi) =






1
2ζ2

i for |ζi| < γ

γ|ζi| − 1
2γ2 for |ζi| ≥ γ

(15)

where γ is a tuning parameter. This ρ function is a blend of the minimum !1 and !2 norm functions. Note that as
γ → 0, Eq. (15) approaches the !1 norm, which is equivalent to the median in the scalar case, and that as γ → ∞,
Eq. (15) approaches the !2 norm, which is equivalent to the mean in the scalar case.

Huber1 shows that the ρ function given in Eq. (15) is asymptotically optimally robust in the ε neighborhood of
the Gaussian distribution. Explicitly, if the measurement errors follow a perturbed Gaussian density function of the
form

f(w) =
1− ε√

2π
exp

(
−w2

2

)
+ εg(w) (16)

where ε is a perturbing parameter and g(w) is an unknown perturbing density function, then the estimation technique
with ρ function given by Eq. (15) minimizes the maximum asymptotic estimation variance in the ε neighborhood
of the Gaussian distribution. In addition, it can be shown that estimators of this form are asymptotically normal
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(a) Huber Asymptotic Relative Efficiency for ε = 0
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(b) Optimal Tuning Parameter γ

Figure 1. Huber Gaussian Asymptotic Relative Efficiency and Optimal Tuning Parameter

and unbiased.17 It should also be noted that the ψ function associated with the ρ function in Eq. (15) satisfies
the properties discussed previously regarding the convergence of the iteratively reweighted least squares solution
methodology.

Due to the particular structure of the matrix Mk, the discrete time dynamic state estimation technique can be
simplified considerably from the static state estimation technique by application of the matrix inversion lemma.18 By
first decomposing the Ψ matrix into two portions Ψx and Ψy corresponding to the state prediction and measurement
prediction residuals so that

Ψ =

[
Ψy 0
0 Ψx

]
(17)

and by defining the gain matrix

Kk = P̄
1/2
k Ψ−1

x P̄
1/2
k HT

k

(
HkP̄

1/2
k Ψ−1

x P̄
1/2
k HT

k + R1/2
k Ψ−1

y R1/2
k

)−1
(18)

then the state estimate and covariance corrections can be written as

x̂(j+1)
k = x̄k + K(j)

k (yk −Hkx̄k) (19)

P̂ k = (I −KkHk) P̄
1/2
k Ψ−1

x P̄
1/2
k (20)

Note that as the tuning parameter γ → ∞, the matrix Ψ → I and the Huber recursive estimation technique
reduces to the familiar Kalman filter solution.

C. Choice of the Tuning Parameter

Figure 1(a) shows the influence of the choice of the tuning parameter γ on the asymptotic relative efficiency of the
Huber technique for the Gaussian case (ε = 0) for a scalar estimation problem.2 The efficiency can vary between
one for γ = ∞ (the !2 case) and 2/π for γ = 0 (the !1 case). If the value of the parameter ε is known (even though
the density function g(w) of the perturbing distribution is unknown), then the best choice of γ has been determined
by Huber.1, 15 If ε = ε0 is the known perturbing parameter, then the optimal choice of γ, denoted by γ!, is given by
the implicit equation1, 15

1
1− ε0

=
1
γ!

√
2
π

exp

[
− (γ!)2

2

]
+ erf

(
γ!

√
2

)
(21)

For a given value of ε, estimates computed using γ = γ! maximize the asymptotic relative efficiency across the range
of all possible values of γ.1, 15 The optimal value of the tuning parameter γ! is shown as a function of ε0 in Fig. 1(b).

4 of 20

American Institute of Aeronautics and Astronautics



If the perturbing parameter ε is unknown, then the choice of γ is typically motivated by a desired variance at
the model distribution. One common choice is γ = 1.345; for this value the Huber filter exhibits estimation error
variances that are 5% larger than that of the least squares method when the measurement error distributions are
truly Gaussian.19 Generally any value of γ between 1.0 and 2.0 is suggested.1

III. Adaptive Tuning for Unknown Noise Statistics

Although the Huber technique has been shown to be beneficial in the presence of contaminated Gaussian proba-
bility distributions, the approach can still be improved upon by including a method by which the covariance of the
main Gaussian distribution can be estimated along with the state and state error covariance matrix. A technique
such as this allows the filter to adaptively tune the gain matrix to suite either slow changes in the error statistics, or
statistics that are not well known.

A. Myers–Tapley Method

An intuitive approach to adaptive state estimation is proposed by Myers and Tapley.7 In this approach, the mea-
surement residual sequence is mined to produce estimates of the measurement noise statistics, and state prediction
residuals are mined to compute estimates of the process noise statistics. The estimators make use of a sliding buffer
of N stored measurement noise and process noise residuals to compute the noise statistics, assuming the noise is
stationary over the the duration of the stored noise samples. In batch form, the estimator for the measurement noise
covariance can be derived by first defining the empirical covariance matrix

Cζ =
1

N − 1

N∑

j=1

(
ζj − ζ̄

) (
ζj − ζ̄

)T (22)

where ζj is the jth stored measurement residual, and ζ̄ is the sample mean of the residuals, ζ̄ =
∑N

j=1 ζj/N .
The expected value of Cζ is7

E [Cζ ] = R +
1
N

N∑

j=1

HjP̄ jH
T
j (23)

By substituting Eq. (22) into Eq. (23), an estimate for the measurement noise covariance matrix is

R̂ =
1

N − 1

N∑

j=1

[(
ζj − ζ̄

) (
ζj − ζ̄

)T −
(

N − 1
N

)
HjP̄ jH

T
j

]
(24)

In order to form estimates for the process noise statistics, the process noise sample is defined as λj = x̂j − x̄j .
Then, the empirical covariance matrix for λ is

Cλ =
1

N − 1

N∑

j=1

(
λj − λ̄

) (
λj − λ̄

)T (25)

where λ̄ =
∑N

j=1 λj/N .
The expected value of Cλ is20 E [Cλ] = KkHkP̄ k = F kP̂ k−1F

T
k − P̂ k. Therefore, an estimator for the process

noise covariance matrix is

Q̂ =
1

N − 1

N∑

j=1

[(
λj − λ̄

) (
λj − λ̄

)T −
(

N − 1
N

) (
F jP̂ j−1F

T
j − P̂ j

)]
(26)

An adaptive filter can function by using some initial guess of the measurement noise and process noise matrices,
storing the residuals for the first N frames, and then updating the covariance estimates based on Eqs.(24) and (26)
at each subsequent frame.

It is important to note that the Myers–Tapley method for adaptively estimating the measurement noise and
process noise covariance matrices make use of the sample mean and covariance of the stored residuals, which are
non–robust estimators. This lack of robustness implies that the performance Myers–Tapley adaptive method can
degrade in the presence of non–Gaussianity. Therefore it is of interest to develop a modification of the Myers–Tapley
approach that is robust with respect to non–Gaussian distributions, which is the subject of the following section.
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B. Modified Myers–Tapley Method

This section discusses a robust modification of the Myers–Tapley adaptive filter in order to protect against the possible
presence of non–Gaussian distributions in the measurement and/or process noise. The main issue with the Myers–
Tapley method is the use of the sample covariance and the sample mean in forming the noise covariance estimates
from the stored residuals. Fortunately, the technique can be modified to use a robust form of the covariance estimate
in computing the measurement and process noise statistics. The proposed technique for computing the robust
estimates of the mean and covariance from the batch of stored residuals is based on a weighted form of the mean
and covariance, where the weights depend on statistics formed in the course of an outlier identification scheme.

In this section, two outlier identification methods are introduced. The first method is a classical technique that
is based on the weighted Euclidean norm of the separation between a possible outlier and the sample mean, known
as Mahalanobis Distances.8 The weighting in this method is based on the sample covariance matrix. The second
method, known as Projection Statistics, is a robust approach in which the sample mean and covariance are replaced
by the sample median and the median absolute deviation, respectively.

1. The Mahalanobis Distances

Given a cloud of m points in n dimensions represented by the vectors hi for i = 1, · · · , m, the Mahalanobis distances
are defined as

Mi =
√(

hi − h̄
)T

C−1 (
hi − h̄

)
(27)

where h̄ is the sample mean and C is the sample covariance matrix, given by the equations

h̄ =
1
m

m∑

i=1

hi (28)

C =
1

m− 1

m∑

i=1

(
hi − h̄

) (
hi − h̄

)T (29)

respectively.
The Mahalanobis distances can also be expressed as the solution to a maximization problem of the form9

Mi = max
‖v‖=1





∥∥∥hT
i v − 1

m

∑m
j=1 hT

j v
∥∥∥

√
1

m−1

∑m
k=1

(
hT

k v − 1
m

∑m
j=1 hT

j v
)2



 (30)

The Mahalanobis Distances represent the surface of an n-dimensional ellipsoid centered at the sample mean. The
square of the Mahalanobis distances follow a χ2 distribution with n degrees of freedom, assuming that the input
data are Gaussian. Therefore, an outlier identification method is to consider all points satisfying

Mi >
√

χ2
n,α (31)

to be outliers, where α is the probability that a value falls inside the ellipse (for example, α = 0.95).
While the Mahalanobis distances are simple to conceptualize and easy to compute, the method suffers from

sensitivity to clusters of outliers. This sensitivity is due to the so–called masking effect, in which it is possible to
find groups of points with nonzero errors that can sum to produce very small residuals. The masking effect in
the Mahalanobis distances is related to the sensitivity of the sample mean and covariance, which are not robust
estimators. In the case of clustered outliers the sample mean can be pulled toward their direction and away from the
main cluster of data, leading to an increase in the size of the sample covariance. In effect, these sensitivities serve
to hide or mask the cluster of outliers since their associated Mahalanobis distances are no larger than those related
to the main group of data. See Refs. 10 and 11 for further information on the masking effect and sensitivity of the
Mahalanobis distances.

2. Projection Statistics

A robust approach to the problem of outlier identification is to simply replace the sample mean and covariance in
the equation for the Mahalanobis distances, Eq. 30, with the sample median and the median absolute deviation from
the median.9 These estimators of location and scale are known to be robust with respect to outliers and therefore
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one can expect that the computation of a Mahalanobis–like quantity based on these parameters is also robust with
respect to outliers. These new quantities are known as Projection Statistics, and are defined as the solution to the
maximization problem

Pi = max
‖v‖=1





∥∥∥hT
i v −median

(
hT

j v
)∥∥∥

c ·median
(∥∥∥hT

k v −median
(
hT

j v
)∥∥∥

)



 (32)

where c = 1.4826 in the denominator is a correction factor to ensure unbiasedness.22 The maximization problem can
be approximated by considering only the directions that correspond to the unit vectors of the individual data points
relative to the median of the point cloud. An algorithm for computing the approximate projection statistics is given
in Ref. 21.

3. Robust Covariance Matrix Estimation

A robust form of the covariance matrix of the point cloud by using a weighting scheme that depends on the statistics
Mi or Pi. Specifically, the proposed mean and covariance formulation is

h̄r =

[
m∑

i=1

wi

]−1

·
[

m∑

i=1

wihi

]
(33)

Cr =

[
m∑

i=1

wi − 1

]−1

·
[

m∑

i=1

(
wihi − h̄r

) (
wihi − h̄r

)T

]
(34)

where wi are weights computed from the statistics by means of

wi = min
[

1,
(
χ2

n,α/M2
i

) ]
(35)

or
wi = min

[
1,

(
χ2

n,α/P2
i

) ]
(36)

for some specified probability α.

4. Modified Myers–Tapley Method Using Projection Statistics

The Myers–Tapley adaptive tuning method can be modified in order to account for non–Gaussianity by means of
using the robust covariance estimates based on the projection statistics of the stored residuals. In particular, the
measurement and process noise covariance estimates can be written as

R̂
1/2

Ψ̄−1
y R̂

1/2
=

[
N∑

i=1

wζi − 1

]−1

·
[

N∑

i=1

(
wζiζi − ζ̄r

) (
wζiζi − ζ̄r

)T

]
−medianj∈N

(
HjP̄

1/2
j Ψ̄−1

x P̄
1/2
j HT

j

)
(37)

Q̂ =

[
N∑

i=1

wλi − 1

]−1

·
[

N∑

i=1

(
wλiλi − λ̄r

) (
wλiλi − λ̄r

)T

]
−medianj∈N

(
F jP̂ j−1F

T
j − P̂ j

)
(38)

(39)

where wζi and wλi are the weights based on the Mahalanobis distances or projection statistics of the measurement
and process noise residuals, respectively, and

ζ̄r =

[
N∑

i=1

wζi

]−1

·
[

N∑

i=1

wζiζi

]
(40)

λ̄r =

[
N∑

i=1

wλi

]−1

·
[

N∑

i=1

wλiλi

]
(41)

In summary, the proposed modified Myers–Tapley method makes use of a technique for outlier identification and
weighting for the purpose of forming the estimates of the measurement and process noise covariance matrices.
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5. Estimation of the Contamination Parameter

The modified Myers–Tapley approach discussed in the previous section can also offer a crude scheme for estimating
the contamination parameter ε by using the weighting parameters relating to the stored residual data. In particular,
a crude estimate of the contamination parameter is

ε̂k = 1− 1
N

N∑

i=1

wζi (42)

At each frame where the measurement and process noise covariances are computed, the contamination parameter
can be estimated directly from the weighting parameters. Then, the optimal tuning parameter γ! can be calculated
from Eq. (21), which is then used within the Huber filter at each measurement update. It is expected that the
estimated contamination parameter is biased, since in cases of large contamination there may be some portion of
errors drawn from the contaminating distribution that appear to be drawn from the nominal distribution, in other
words false–negatives or the so-called Type II errors in detection theory. Likewise in cases of small contamination
there may be some nonzero quantity of data that appear as outliers when they are in fact perfectly valid, in other
words the Type I error in detection theory.

The bias of the contamination parameter is not necessarily problematic, so long as upper and lower bounds are
set on the value of the tuning parameter γ used in the Huber measurement update. Clearly, the Huber technique is
by nature a sub-optimal filter, since the purpose is to find a filter that is consistent across a range of distributions but
may not necessarily be optimal at any one in particular. The performance of the technique can improve by having
good estimates of the contamination parameter, but so long as the tuning parameter is bounded by some reasonable
value then the robustness properties of the estimator are not be compromised the bias.

6. Fading Memory Filter

In the course of computing the estimates of the measurement and process noise covariance matrices, as well as the
contamination parameter estimates, it is useful to introduction a “forgetting” factor, kf , in order to smooth the
estimate histories. The filter can be implemented as

R̃k = kfR̃k−1 + (1− kf ) R̂k (43)

Q̃k = kfQ̃k−1 + (1− kf ) Q̂k (44)
ε̃k = kf ε̃k−1 + (1− kf ) ε̂k (45)

In this approach, the estimates based on the current set of stored residuals is averaged with the previous estimate,
with kf as a weighting parameter.

IV. Application to Spacecraft Attitude Estimation

Spacecraft must make use of various navigation sensors in order to estimate the attitude of the vehicle at any
instant in time. One such sensor is the gyroscope, which senses the inertial angular velocity of the spacecraft. The
modelling of such a system can be quite complicated, and in many cases approximations are used for in–flight software
development and ground–based simulations. One such approximation in common use for gyroscope systems is known
as Farrenkopf’s model,23 which considers the measured angular velocity to be the true angular velocity, corrupted
by an additive bias and a Gaussian white noise term. The bias dynamics are in turn considered to be driven by a
Gaussian white noise process. This model is commonly used with the assumption that the bias term can account
for the net effect of many other systematic error sources such as scale factor errors, non-orthogonality, misalignment,
and others.

It is well known that the numerical integration of gyroscope measurements to determine the vehicle orientation
time history leads to a drift of the estimates away from the truth. This drift is due to both the effect of systematic
error and numerical error during the integration. Therefore, it is required to consider data from additional sensors,
such as a star tracker, that is incorporated into the attitude estimation procedure in some optimal or nearly optimal
fashion. This section describes the application of the adaptive Huber–based filters to the problem of estimating
the attitude of a spacecraft by processing gyroscope and star tracker data. The attitude estimation problem is an
interesting and relevant example of the application of robust and adaptive filtering techniques, since the typical
sensor systems can exhibit non–Gaussian characteristics24, 25 as well as uncertain noise statistics.26

The point should be made that the sensor referred to as the star tracker throughout the rest of this paper is in
fact more general, and could just as well refer to any system of sensors that can provide an attitude measurement (or
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pseudo–measurement) in the form of a quaternion. Therefore the methodology described in the following sections
is relatively general in nature. A short review of attitude kinematics, gyroscope and star tracker sensor models
and observation equations is provided in the following sections. For additional details on attitude dynamics and
estimation, see Refs. 18 and 27.

A. Attitude Kinematics

The attitude dynamics of spacecraft is well understood and can be represented in many forms. Perhaps the most
attractive form for attitude estimation is the quaternion representation, which is the smallest globally non-singular
attitude parameterization. The quaternion can be expressed in terms of the Euler axis, e = [e1 e2 e3]T , and the
Euler angle, θ, of the transformation between a reference frame fixed in the body and the inertial frame. The
quaternion elements are defined as q1 = e1 sin (θ/2) , q2 = e2 sin (θ/2) , q3 = e3 sin (θ/2) , q4 = cos (θ/2). By defining
q = [ q1 q2 q3 q4 ]T it can be seen that the quaternion representation must satisfy the constraint equation
qT q = 1. Quaternions obey the multiplication rules

q′ ⊗ q = Υ (q′) q = Ξ (q) q′ (46)

where

Υ (q′) =





q′4 q′3 −q′2 q′1
−q′3 q′4 q′1 q′2

q′2 −q′1 q′4 q′3
−q′1 −q′2 −q′3 q′4




, Ξ (q) =





q4 −q3 q2 q1

q3 q4 −q3 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4




(47)

and the inversion rule q−1 =
[
−q1 −q2 −q3 q4

]T
.

The quaternion kinematic equations can be written as27

q̇ =
1
2
Ω (ω) q (48)

where

Ω (ω) =





0 −ω1 −ω2 −ω3

ω1 0 −ω3 ω2

ω2 ω3 0 −ω1

ω3 −ω2 ω1 0




(49)

and ω is the angular velocity of the body frame with respect to the inertial frame.

B. Gyroscope Model

The gyroscope system can be represented mathematically by using Farrenkopf’s model. In this model, the sensed
angular velocity if expressed as the true angular velocity with an additive bias and white noise. The bias term is
itself a slowly varying parameter driven by white noise. The model can be expressed as

ω̃ = ω + β + ηω (50)
β̇ = ηβ (51)

where ω̃ is the sensed inertial angular velocity, ω is the true inertial angular velocity, β is the measurement bias,
and ηω and ηβ are unbiased and uncorrelated random vectors with variances given by σ2

ω and σ2
β , respectively.

Discrete–time simulated gyroscope measurements can be generated according to this model by use of the equations18

ω̃k+1 = ωk +
1
2

(
βk+1 + βk

)
+

(
σ2

ω

∆t
+

1
12

σ2
β∆t

)1/2

nω (52)

βk+1 = βk + σβ (∆t)1/2 nβ (53)

where k refers to the time increment, ∆t = tk+1 − tk is the sampling interval, and nω and nβ are unbiased,
uncorrelated, unit–variance random vectors.
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C. Star Tracker Model

It is assumed that a star tracker or some other generic attitude sensor is available to provide corrections to the
attitude estimates formed by direct numerical integration of the angular velocity measurements, which are subject
to error buildup due to integrating errors in the estimated bias and the random noise. The star tracker is assumed
to output an estimated quaternion that relates the orientation of the body to the inertial frame. The quaternion
estimates are assumed to be unbiased but with a superimposed random measurement noise. The output from such
a sensor can be expressed as qm = δq (δα)⊗q where q is the quaternion representing the true orientation, qm is the
measured quaternion, and δq (δα) is an error quaternion parameterized by a random angular error δα.

D. Attitude Filter Implementation

The filtering of the attitude quaternion is complicated by the unit norm constraint. One standard approach for
handling the constraint is to use a multiplicative method for the measurement update. In this approach, the attitude
quaternion is replaced by an error quaternion, δq, which allows for the processing of the error quaternion as a
three component vector of small angles, denoted by δα. In this approach, the quaternion estimate is propagated to
the star tracker measurement at time k by means of Eq. (57). Then an error quaternion relating the star tracker
measurement quaternion to the predicted quaternion based on propagation from the previous measurement is defined
as δq̄k (δᾱk) = qmk

⊗ q̄−1
k . The first three components of this error quaternion are processed as independent small

angles with measurement sensitivity matrix H = [ I 0 ].
The small angle error and gyroscope bias estimate error dynamics are given by

δα̇ = −ω̂×δα− δβ + ηω (54)
δβ̇ = ηβ (55)

where

ω̂× =




0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0



 (56)

By setting x = [ δα δβ ]T , then these differential equations are in an appropriate form for filter implementation
corresponding to Eq. (1). The quaternion and gyroscope bias estimates following the measurement update are given
by q̂k = δq (δα̂k)⊗ q̄k and β̂k = β̄k + δβ̂k.

State propagation in between star tracker updates are based on assuming the angular velocity is constant over
each gyroscope sample. First, the estimated true angular velocity of the spacecraft at time increment k, denoted
by ω̂, can be written as ω̂k = ω̃k − β̂k. where β̂k is the estimated gyroscope measurement bias at time increment
k. If the gyroscope sampling rate is high, then the angular velocity can reasonably be assumed to be constant
over the sampling interval. In this case, the quaternion kinematic equations become constant coefficient ordinary
differential equations and so the solution can be determined from the matrix exponential. Explicitly, the solution for
the predicted quaternion at time k + 1 can be written as28

q̄k+1 =
[
I cos (ω̂k∆t) +

sin (ω̂k∆t/2)
ω̂k

Ω (ω̂k)
]

q̂k (57)

where q̂k is the estimated quaternion at time k, q̄k+1 is the predicted quaternion at time k + 1, and ω̂k = ‖ω̂k‖ is
the assumed constant angular velocity between time k and k + 1.

V. Example Problem

This section describes the results of the application of the filtering techniques discussed in previous sections to
the spacecraft attitude estimation problem using gyroscopes and star trackers. The standard Kalman filter, Myers–
Tapley adaptive Kalman filter, Huber filter, and the proposed modified Myers–Tapley adaptive Huber filter are
applied to the attitude estimation problem. The example includes both Gaussian and non–Gaussian noise densities
with unknown statistics.

In this example, the true spacecraft angular velocity is ω = [ ω0 ω0 ω0 ]T , for ω0 = 10−3 rad/s. The angular
velocity is sampled at a rate of 10 Hz, with star tracker updates at a rate of 1 Hz. Noise samples for the gyroscope
and star tracker measurements are drawn from a mixture model with a probability density function of the form

f(w) =
1− ε√

2π
exp

(
−w2

2

)
+

ε

2b
exp

(
−|w|

b

)
(58)
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Figure 2. Comparison of Probability Density and Distribution Functions for ε = 0 and ε = 0.1

where b = 5/
√

2.
Note that this density is a mixture of a nominal Gaussian with a Laplacian contaminating density. A comparison

of the probability density and distribution functions for the cases ε = 0 (no contamination) and ε = 0.1 (with 10 %
contamination) is shown in Fig. 2. A comparison of pure Gaussian with the contaminated Gaussian densities is shown
in Fig. 2(a), the distribution functions are shown in Fig. 2(b), and a quantile–quantile plot (or QQ plot) in Fig. 2(c).
From the density function and distribution function plots it is not entirely obvious that the contaminating density is
in fact non-Gaussian; it appears to have Gaussian characteristics but with a larger variance. The differences between
the two distributions is much more apparent in the QQ plot in Fig. 2(c). A QQ plot is a plot of the scaled ordered
data against the quantiles of a comparison distribution. Since the data are scaled prior to creating the plot, the result
is independent of the variance, rendering only the shape of the distribution to be important. A linear result with unit
slope indicates that the data follows the same distribution as the comparison distribution (the Gaussian, in this case).
The QQ plot of the contaminated Gaussian indicates that the data follows a roughly Gaussian distribution in the
middle ranges but with a greater thickness in the extremes. This result indicates that the contaminated distribution
has a higher probability of generating extreme points.

The sensor uncertainty specifications are σ2
ω = 2.25 · 10−13 rad2/s, σ2

β = 2.25 · 10−19 rad2/s3, and σ2
s = 3.81 ·

10−8 rad2. It is assumed that the known sensor uncertainties differ from the true sensor uncertainties by a factor
of 50% of the standard deviation. In addition, the star tracker measurement errors are initially assumed to be
uncorrelated in each axis whereas the true errors are correlated with a correlation coefficient of 0.5 in each axis.

The Huber filter and adaptive Huber filter use an initial value for the tuning parameter of γ = 1.5. The tuning
parameter is specified to be bounded such that 1 ≤ γ ≤ 2 within the adaptive Huber filter. The adaptive filtering
techniques are implemented in such a way that they begin estimating the noise statistics after 25 samples and store
up to a specified maximum threshold of observations. This maximum threshold is varied in later sections to show
the improvements that can be achieved through larger samples.

Finally, the adaptive filtering techniques use a value kf = 0.9 to smooth the covariance and contamination
parameters estimates.

A. Gaussian Simulation

This section describes the results of a 2000 case Monte-Carlo simulation involving pure Gaussian random errors
(ε = 0) with the specified noise variances discussed in the previous section. The adaptive filtering techniques make
use of a maximum buffer size of 100 observations in forming the estimates of the process and measurement noise
covariance matrices.

The results in the form of root mean square (RMS) errors are shown in Fig. 3. The total attitude angle RMS
error is shown in Fig. 3(a), the vector norm of the gyroscope bias RMS error is shown in Fig. 3(b). The error in
the RMS error prediction of the total attitude angle is shown in Fig. 3(c), and that of the gyroscope bias is shown
in Fig. 3(d). The (1,1) component of the star tracker variance estimate RMS error is shown in Fig. 3(e), and the
RMS error of the contamination parameter estimate is shown in Fig. 3(f). In each case, the Kalman filter results are
shown with the blue curve, the adaptive Kalman filter results are shown with the cyan curve, and the Huber filter
results are shown with the red curve. For the adaptive Huber filter cases, the filter based on the projection statistics
is shown with the magenta curve while that based on the Mahalanobis distances is shown with the green curve.

In this case, the attitude angle errors are not significantly different between the various techniques even though
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Figure 3. Gaussian Simulation RMS Errors
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the measurement statistics assumed by the filters are erroneous. The Kalman and adaptive Kalman filter provide
similar performance, slightly superior to the Huber approaches, which is to be expected since the errors are perfectly
Gaussian. The adaptive Huber filters show slightly better performance than the non–adaptive case. The adaptive
Huber filter based on the Mahalanobis distances performs better than that based on the projection statistics, which
is to be expected since the sample mean and covariance used in computing the Mahalanobis distances are maximum
likelihood estimates for perfectly Gaussian problems. The same trends and relative performance between filters is
shown in the gyroscope bias RMS error.

The comparison of the error predictions in Figs. 3(c) and (d) show that the adaptive Kalman filter outperforms
the other filters for both the attitude error prediction and rate bias error prediction. The predicted error estimates
of the Huber–based adaptive filters are similar, and superior to the non–adaptive Huber and Kalman filters. The
improved estimates of the attitude and bias errors for the adaptive filters is to be expected since these filters attain
an improved knowledge of the measurement and process noise covariances. Naturally, the adaptive Kalman filter is
superior since this problem is Gaussian.

The R̃k(1, 1) RMS error results in Fig. 3(e) show that the adaptive filters are able to reduce the error in the
assumed measurement statistics. The adaptive Kalman filter shows superior performance than the adaptive Huber
filter for this case, which is expected since the errors are purely Gaussian in nature. For the same reason, the adaptive
Huber filter based on the Mahalanobis distances is superior to that based on the projection statistics. In passing it
should be mentioned that the other components of the measurement and process noise covariance estimates exhibit
the same behavior as the R̃k(1, 1) estimate, and therefore only this one particular quantity is shown as an example.

Finally, the contamination parameter RMS error shows that the adaptive Huber filter is able to reduce the error in
the assumed contamination parameter by means of the formula based on the robust weighting parameters in Eq. 42.
Note that the adaptive Huber filter is the only filter investigated in this paper that can estimate the contamination
parameter, which is evident from the fact that the other filter results show a constant RMS error. In this case,
both the Kalman and adaptive Kalman filter show no error in the contamination parameter estimate, as these filters
implicitly assume the errors are Gaussian and this simulation was conducted with only Gaussian errors. The Huber
filter shows a constant RMS error at the value of the contamination parameter corresponding to the tuning parameter
γ = 1.5. Due to Gaussianity, the adaptive Huber filter based on the Mahalanobis distances is superior to the filter
based on the projection statistics.

B. Non–Gaussian Simulation

This section describes the results of a 2000 case Monte-Carlo simulation involving non–Gaussian errors, specifically
for the mixture model in Eq. (58) with ε = 0.1. The RMS error results corresponding to this simulation are shown in
Fig. 4. The adaptive filters again use a buffer size of N = 100 stored residuals in order to compute the measurement
and process noise covariance matrices.

For this case, the total attitude RMS errors clearly show the superiority of the Huber–based filtering methods.
The adaptive Huber method exhibits the smallest RMS error, followed by the non–adaptive Huber method. The
projection statistics-based adaptive Huber filter is superior to the filter based on the Mahalanobis distances, due to
the non–Gaussianity in this example. Interestingly, the standard, non–adaptive Kalman filter exhibits smaller errors
than that of the adaptive Kalman filter. This behavior is explored in more detail below. As with the previous case,
the same trends seen in the attitude angle error appear in the gyroscope bias estimate RMS error, as expected.

The predicted attitude and bias estimate errors show that the adaptive Huber–based filters are better predictors of
the estimation errors than the other filters for the non–Gaussian case. As expected, the filter based on the projection
statistics performs the best for both the attitude and bias error prediction. Of the non–adaptive filters, the Huber
filter exhibits a better error prediction than the Kalman filter.

The RMS error in the R̃k(1, 1) estimate is quite interesting. Here, the adaptive Huber technique based on the
projection statistics is able to reduce the error associated with the assumed measurement noise covariance, whereas
the adaptive Huber filter using the Mahalanobis distances and the adaptive Kalman technique exhibit an increased
error. This increase in the measurement noise error is the cause of the increased error in the attitude angle estimate
as previously noted. Essentially, the adaptive Kalman technique associates the contaminated measurements with an
increase in the measurement covariance, therefore causing the assumed covariance to inflate in order to account for
the contamination. This covariance inflation is known to cause an increase in the estimation error due to the fact
that all measurements are processed as if they were outliers, receiving less weight, than a technique that is able to
distinguish outlying measurements and weight them accordingly.29 Likewise, the adaptive Huber technique using
the Mahalanobis distances suffers from the inherent limitations of the sample mean and covariance when applied to
non-Gaussian problems.

As discussed in the previous section, the only technique described in this paper to adaptively estimate the con-
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Figure 4. Contaminated Gaussian Simulation RMS Errors
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Figure 5. Example of Clustered Outliers in Adaptive Filter

tamination parameter associated with the noise densities are the adaptive Huber-based filters. In the non–Gaussian
case, the adaptive Huber filter is successfully able to the reduce the error in the assumed contamination parameter.
However, the results of the filter based on the projection statistics is far superior to that of the Mahalanobis dis-
tances. Essentially, the filter based on the Mahalanobis distances attempts to find a compromise between the crude
covariance inflation of the adaptive Kalman filter and the Huber filter. The result is that the contamination param-
eter estimate error does not improve substantially over that of the non–adaptive Huber filter, and the covariance
estimate inflates slightly but not to the extent of the adaptive Kalman filter. All other filters assume (explicitly or
implicitly) a constant contamination parameter. In the case of the adaptive and non–adaptive Kalman filters, the
contamination is assumed to be zero, thus the error is constant at 0.1 for this case. The Huber filter error again
corresponds to the assumption leading to the tuning parameter γ = 1.5.

Table 1. Comparison of Identification Techniques for Clustered Outliers

Point Mi Pi

A 24.07 166.53
B 22.15 166.96
C 18.22 126.07

Figure 5 shows a scatter plot of the stored measurement residuals from the adaptive Huber technique, from an
arbitrary stopping point in a non-Gaussian simulation, projected into the (2,3) plane. This sample includes 100
measurement residuals, with several apparent outliers. In particular, a group of 3 outliers appears in a cluster
as indicated in the plot. The Mahalanobis Distances and Projection Statistics have been computed for this set of
residuals, and the values corresponding to the clustered outliers is shown in Table 1. Compared with the χ2

3,0.95 = 7.81
threshold, both methods are able to detect the clustered outliers in this example. However, the Projection Statistics
is not influenced by the clustering and assigns these point much smaller weights than the Mahalanobis Distances.
The Projection Statistics provide a better estimate of the contamination parameter, giving a value of 0.104, opposed
to the estimate based on the Mahalanobis Distances of 0.051, for this set of residuals.

C. Sensitivity to the Adaptive Filter Buffer Size

The previous two sections have discussed the application of the various filtering techniques to both Gaussian and
non–Gaussian cases, using a maximum buffer size of 100 stored residuals for the adaptive filters. This section explores
the trade off in performance found by using a smaller buffer size, with the expectation that processing a smaller
number of stored residuals reduces the computational costs of the filter. Additional 2000 case Monte–Carlo studies
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were conducted for N = 50 and N = 25 for the cases ε = 0 and ε = 0.1.
Figure 6 shows the results of the attitude angle RMS error for each adaptive filter investigated in this paper. Each

subplot shows the result of a particular filter for a range of N for the given value of ε. For instance, Fig. 6(a) shows
results for the adaptive Kalman filter for a range of N and for ε = 0. These results show that, for this particular
problem, the buffer size can be made as low as N = 25 without severe degradation in the filter performance for the
attitude error estimates. It is also interesting to note that the scales are all the same in each subplot in Fig. 6, and
the sensitivity of the adaptive Kalman filter can clearly been detected for the ε = 0.1 case compared with the ε = 0.0
results. Likewise, the insensitivity of the Huber–based approaches is readily apparent.

Figure 7 shows the R̃k(1, 1) RMS errors for the adaptive filters for a range of N for both Gaussian and non–
Gaussian cases. Differences are apparent in the filter performance depending on the type of filter and the parameter
N , which controls the amount of data used in the adaptive filters for estimating the covariance matrices. In all cases,
the R11 RMS error decreases as the parameter N is increased.

Figure 8 shows the contamination parameter estimates for the Huber filters based on the Mahalanobis Distances
and the Projection Statistics. These results show interesting behavior in estimates based on the Mahalanobis distances
in that they are actually more accurate for smaller sample sizes in the case of no contamination. This effect implies
that the Mahalanobis distances tend to be optimistic regarding the contamination in small samples. This phenomenon
is another well known limitation of the Mahalanobis distances: the small sample Mahalanobis distances tend to regard
the entire sample as Gaussian, thus setting a lower contamination ratio, which in the Gaussian case leads to a lower
error level.10 In the non–Gaussian case, the opposite trend occurs and the error increases since the true distribution
has nonzero contamination. The estimates based on the projection statistics are not as accurate for Gaussian cases
but they do follow the expected trends of increasing accuracy with an increasing buffer size. In the small sample
case (N=25) without contamination, the projection statistics tend to over predict the ratio of contamination.

D. Computational Costs

Based on the results shown in the previous section, the Huber–based filtering methods show a clear advantage
over traditional Kalman filter methods when applied to contaminated Gaussian measurement distributions. In
the Gaussian case, the Huber–based methods do not suffer appreciably from any kind of mistuning associated
with incorrect assumptions regarding the true underlying statistics of the problem. This section compares the
computational costs associated with the Huber–based approaches compared with the Kalman filtering techniques.
Table 2 shows the computational costs for each filter discussed in this paper. Here, the computational time is divided
by that corresponding to the standard Kalman filter in order to provide a relative comparison of the computational
burden associated with the particular filter.

Table 2. Relative Computation Ratios

Filter Nonadaptive N=25 N = 50 N = 100
Kalman Filter 1.00 – – –
Adaptive Kalman Filter – 1.13 1.16 1.24
Huber Filter 1.33 – – –
Adaptive Huber Filter (Mahalanobis Distances) – 1.75 1.89 2.15
Adaptive Huber Filter (Projection Statistics) – 2.86 4.29 7.18

For this problem, the adaptive Kalman filter and the Huber filter are comparable in computational cost relative
to the standard Kalman filter. The adaptive Huber filters proposed in this paper require more computation, well
beyond that of the adaptive Kalman filter or the non-adaptive Huber filter as can be seen from Table 2. As
expected, the computation associated with the adaptive filters is reduced as the buffer size reduced. Note that the
computational cost of the filter based on the projection statistics is reduced at a higher rate than the filter based on
the Mahalanobis distances. The adaptive Huber filter based on the projection statistics has good properties when
applied to contaminated Gaussian distributions, however, one must trade off the computational costs to determine
the feasibility of implementing the technique for any particular application.
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(a) Attitude Angle RMS Error: AKF (ε = 0)
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(b) Attitude Angle RMS Error: AKF (ε = 0.1)
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(c) Attitude Angle RMS Error: AHF–MD (ε = 0)
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(d) Attitude Angle RMS Error: AHF–MD (ε = 0.1)
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(e) Attitude Angle RMS Error: AHF–PS (ε = 0)
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Figure 6. Attitude Angle RMS Errors for Varying Buffer Size
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(b) R̃k(1, 1) RMS Error: AKF (ε = 0.1)
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(c) R̃k(1, 1) RMS Error: AHF–MD (ε = 0)
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(d) R̃k(1, 1) RMS Error: AHF–MD (ε = 0.1)
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(e) R̃k(1, 1) RMS Error: AHF–PS (ε = 0)
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(f) R̃k(1, 1) RMS Error: AHF–PS (ε = 0.1)

Figure 7. R11 RMS Errors for Varying Buffer Size
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(a) Contamination Parameter RMS Error (ε = 0)
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Figure 8. Contamination Parameter RMS Errors for Varying Buffer Size

VI. Conclusions

This paper discusses the development of an adaptive discrete-time robust filtering technique. The technique
is based on a recursive form of Huber’s mixed minimum !1/!2 norm approach, which is robust with respect to
deviations from the assumed Gaussian error probability distributions inherent to the Kalman filter. An adaptive
scheme based on covariance matching is proposed whereby the filter can estimate the process noise and measurement
noise covariance matrices along with the state estimate and state estimate error covariance matrix using a buffer of
stored residuals. The adaptation technique also adopts a robust approach to estimating these covariances that can
resist the effects of outliers, based on the use of projection statistics. The projection statistics also afford a means
for producing an estimate of the contamination parameter of the distribution in order to adaptively tune the filter.

The adaptive/robust filter was applied to the spacecraft attitude quaternion estimation problem, using the stan-
dard multiplicative approach for handling the quaternion norm constraint. Monte-Carlo results were shown for both
Gaussian and non-Gaussian cases. Computational costs associated with the filtering techniques were provided. The
results show that the proposed adaptive Huber filer can achieve greater accuracies than the Kalman filter in situations
where unexpected non–Gaussian contaminating noise is present. The amount of improvement depends on the ratio
of contamination but for the case of the 10% contamination, the adaptive Huber technique can improve accuracies
of the Kalman filter by 50% or better. Furthermore, this adaptive Huber filter can successfully estimate the noise
covariances in the non-Gaussian case as well as the contamination ratio whereas the adaptive Kalman filter is not
capable of doing so. Therefore, the adaptive Huber filter has better consistency and is self–tuning. The drawbacks
to the proposed adaptive Huber filter are that it is slightly less accurate (several percent) than the Kalman filter in
instances of pure Gaussian noise, and that the computation involved can reach up to 7 times that of the Kalman
filter depending on the buffer size.
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