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Ambient plasma interacts with any object in space and as a result induces the emission
of x-rays. A new method of exploiting these interactions for passively detecting objects in
the vicinity of a spacecraft is proposed, consisting on a wide field of view x-ray detection
solution mounted on a rotating platform. Previous work considered a static target scenario, the
heading of which was determined using a batch least squared approach. This work investigates
prototypical dynamic scenarios, with the target object following a simple motion with respect to
the observer spacecraft. Acquisition/loss of signal events are used in conjunction with a dynamic
model of the target motion to obtain the target heading and relative motion by employing a
sequential filtering approach. While using the acquisition/loss events directly with a filter is
un-observable, a hybrid approach is investigated where the earlier batch solution (assumes
static target) is used to get a heading, and this heading observation is then processed through a
filter.

I. Introduction

Spacecraft in geosynchronous orbit provide a vital communications and surveillance role, but they operate in a
domain where defunct spacecraft and debris accumulation are a risk factor, and this region can be difficult to monitor

with ground-based systems [1]. Future trends for a sustainable exploitation of this region include in-orbit servicing
procedures [2]. Strategic interest in the Moon and cislunar space is growing for private companies and government
agencies, with in-orbit assembly and proximity operations being a crucial step in prospective missions[2, 3]. Continuous
ground-based monitoring of this region is however not viable. Passive object detection and tracking in the proximity of
a spacecraft is an asset for a wide range of applications, including On Orbit Servicing, Assembly and Manufacturing
(OSAM), Space Situational Awareness (SSA), and Space Traffic Management (STM). A new method of using ambient
plasma-induced x-rays to detect objects in the vicinity of a spacecraft is proposed for GEO orbits and the cislunar
region. Commonly, x-ray sensors in space are designed for astronomy applications, with typical fields of view (FOV) of
arc-minutes. The purpose of this research in to investigate the development of a wide FOV x-ray sensor of the form of a
cluster of off-the-shelf components with a FOV of tens of degrees, capable of detecting objects passively over distances
of meters to kilometers.

The x-ray spectrum generated from ambient space environment electrons impacting an object’s surface provides the
means for detecting the object over a range of distances depending on local plasma properties. Energetic electrons
(>1keV) interact with an atomic nucleus through different mechanisms. When an inner shell electron is removed by
interaction with the incident electron, the resultant configuration is energetically unstable. An outer shell electron then
relaxes to fill the vacancy, and the energy difference between the shells is emitted as characteristic x-rays, with energy
that is specific to the element of origin. Solar-induced secondary fluorescence can also excite the release of characteristic
x-rays [4]. This characteristic x-ray emission allows for a rapid assessment of an object by spectral signature [5]. A
different interaction mechanism occurs when an electron passes close to an atomic nucleus and is slowed down. The
energy lost in this interaction is also emitted as an x-ray. Because there are infinite paths for this interaction to take
place, the energy loss and therefore the x-ray emission form a continuum, known as the bremsstrahlung radiation. These
energetic electrons are present in ambient plasma in regions such as geostationary orbits (GEO) and cislunar space.
Bremsstrahlung radiation has been previously used to remotely estimate the electrical potential of an object, utilizing
x-ray detectors in combination with an electron gun to excite x-ray emissions of a known target [6, 7].
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Fig. 1 Three-sensor instrument concept, with two sensors detecting a nearby object

Fig. 2 Example of signals for a three-sensor instrument concept

This work investigates the use of a wide FOV x-ray detection solution that exploits the natural space environment
interactions to detect and track objects neighboring a spacecraft. The x-ray detection capabilities depend on local
plasma properties, but are not contingent on illumination conditions and would potentially present an advantage over
visible light detection methods as they will function in the Moon’s shadow and Earth’s eclipse regions. The proposed
sensor consists of a cluster of off-the-shelf x-ray detectors mounted on a rotating platform. A three-sensor instrument
concept is shown in Fig. 1. The signal at each detectors is modeled as an on/off step signal, with a value of 1 if the
target is visible by the sensor, and 0 otherwise (see Fig. 2). The events of signal acquisition and loss of signal are used
to estimate the heading of the incoming x-ray signal, providing the means to locate the target object passively.

Previous work considered the case of a target that is stationary with respect to the observer spacecraft [8]. Here
the acquisition/loss events are modeled as a step function. In this scenario, the acquisition/loss of signal events are
generated by the motion of the platform with respect to the spacecraft. The heading estimation in this case is obtained
using a deterministic approach, with sensor measurements available at a specific time. The baseline algorithm employed
is a batch least squares method. This elegant setup allowed for a discussion of preliminary design trade-offs, comparing
a range of configurations for the individual sensors, as well as other design parameters such as FOV of the individual
sensors, number of sensors and overlap. The performance of this methodology for obtaining the heading of the target
object was analyzed by adding uncertainty in the pointing of the individual sensors in the form of additive white
Gaussian noise (AWGN), and comparing the errors in the estimated state with the level of uncertainty. Nevertheless, if
only one of the detectors receives a signal from the target, its heading cannot be unequivocally determined, as there are
generally two valid solutions to the problem, and the ambiguity cannot be resolved.

However, in a realistic in-orbit scenario, encountering a target with perfectly zero relative motion with respect to
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the observer spacecraft is unlikely. But, the relative motion velocities are typically very small, meaning the relative
heading will vary slowly. Additionally, although the a posteriori batch data processing is useful to characterize the
performance of the proposed wide FOV detector and identify feasible design solutions, this approach would present
clear disadvantages when employed in a realistic in-orbit application. The present work focuses on expanding the
detection and estimation capabilities to a dynamic problem, in which the target object is not stationary, but it follows a
simple trajectory with respect to the observer. A sequential filter algorithm is implemented to estimate the heading and
relative motion of the target. In contrast with the batch method used in previous work, this approach combines sensor
measurements over a continuous range of time with a dynamic model of the target dynamics to estimate its direction and
relative motion. A similar approach was followed in Reference [9], using coarse sun sensor measurements to estimate
the sun-direction vector. However, the coarse sun sensor based heading estimation was based on having a cosine-like
sensor signal, while the presented x-ray based sensing assumes we only measure the acquisition or loss of the x-ray
signal at a known field of view angle.

II. Problem Statement

A. Sensor configuration and measurements
The sensor configuration used for this work is a single cluster of six x-ray sensors mounted on a rotating platform.

The spacecraft body frame is defined as B : {�̂�1, �̂�2, �̂�3}. The platform coordinate frame is defined as P : { �̂�1, �̂�2, �̂�3},
with �̂�3 = �̂�3 = 𝒏𝑃 the unit vector normal to the platform (and normal to the spacecraft surface in which is mounted).
The platform is assumed to be rotating with respect to the spacecraft body frame with constant angular velocity
𝝎𝑃/𝐵 = 𝜔𝒏𝑃 .

The FOV of each individual sensor is 15◦ (half-cone angle). The pointing of the sensors with respect to the platform
is defined in azimuth (\) and elevation (𝜙) angles, and given in Table 1. Azimuth is measured from the platform positive
𝒑1 axis around the +𝒏𝑃 axis, and elevation is measured positive toward the platform 𝒏𝑃 axis from the 𝑝1𝑝2 plane. An
illustration of this configuration is shown in Fig. 3.

Sensor \ [deg] 𝜙 [deg]

1 0 0
2 0 15
3 0 30
4 0 45
5 0 60
6 0 75

Table 1 Azimuth and elevation angles of x-ray sensors for the configuration used

This sensor configuration provides a coverage after a full rotation of 2.52𝜋 sr around 𝒏𝑃 , with a 1.93𝜋 sr ring being
covered by at least two sensors (see Fig. 4). For further details on different sensor configurations and visibility and error
studies see Reference [8].

In this work, the target is modeled as a point source with a simple trajectory relative to the observer spacecraft. For
each of the sensors, the signals are modeled as step functions (see Fig. 2), with a value of 0 when the target is out of the
field of view of a sensor, and 1 when the target is within sight of the sensor. The acquisition or loss of signal trigger
events are then recorded and can be used to solve for the heading of the target. At the time of a trigger event, the target is
at the edge of the field of view of a sensor:

𝒎𝑇𝒉 = cos 𝑓 (1)

where 𝒎 is the unit vector of the pointing of the pertinent sensor, 𝒉 is the unit heading of the target object, and 𝑓 is the
half angle of the field of view cone.

In previous work, for a target assumed stationary with respect to the observer spacecraft, a combination of multiple
trigger events with this simplified model of the signal behavior is enough to obtain an accurate heading for the target
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Fig. 3 Illustration of sensor configuration with respect to platform frame of reference

object: 
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𝒉 =


cos 𝑓

cos 𝑓

...

cos 𝑓


(2)

with 𝒎 𝑗 the 𝑗 th measurement obtained from any of the sensors and 𝑝 the total number of measurements considered.
The measurement equation is then in the classic matrix-vector form 𝑀𝒙 = 𝒚.

B. Observability study
For this work, the system is modeled in state-space representation as a time-invariant linear system with no control

inputs {
¤𝒙(𝑡) = 𝐴𝒙(𝑡)
𝒚(𝑡) = 𝐶𝒙(𝑡)

(3)

In this simple case, the observability of the system is tested by checking the rank of the observability matrix O

O =



𝐶

𝐶𝐴

𝐶𝐴2

...

𝐶𝐴𝑛−1


(4)

where 𝑛 is the number of variables in the state vector. If rank(O) = 𝑛, the system is observable.
Three different dynamic models are considered for this analysis: a double-integrator system, a Clohessy-Wiltshire

system, and a constant angular rate system.
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Fig. 4 Visibility map on a unit sphere for the given configuration

1. Double Integrator Dynamics
For this case, the target is moving at a constant velocity with respect to the observer spacecraft. The state vector is

𝒙(𝑡) =
[
𝒓 (𝑡)
¤𝒓 (𝑡)

]
(5)

where 𝒓 (𝑡) and ¤𝒓 (𝑡) are the observer-target position and velocity vectors respectively. The dynamics equation is then

¤𝒙(𝑡) = 𝐴𝒙(𝑡) =
[
0̄3×3 I3×3

0̄3×3 0̄3×3

]
𝒙(𝑡) (6)

When considering a single trigger event, the measurement equation at the time of the event becomes

𝒚(𝑡) = 𝐶𝒙(𝑡) =
[
𝒎(𝑡)𝑇 0̄1×3

]
𝒙(𝑡) = 𝑟 cos 𝑓 (7)

where 𝒎(𝑡) is the pointing of the sensor recording the event at time 𝑡, 𝑟 the magnitude of the position vector (assumed
known for the purpose of this analysis) and 𝑓 the half-cone angle of the FOV of the sensor.

The observability matrix obtained in this case has rank(O) = 2 < 𝑛 = 6, and the problem is not observable.

2. Clohessy-Wiltshire equations
Using the Clohessy-Wiltshire [10] equations to describe the motion of the target with respect to the observer, with

the same state vector as in the previous case, the dynamics equation is

¤𝒙(𝑡) = 𝐴𝒙(𝑡) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3𝑛2 0 0 0 2𝑛 0
0 0 0 −2𝑛 0 0
0 0 −𝑛2 0 0 0


𝒙(𝑡) (8)

with 𝑛 the mean motion of the observer, assumed to be in a circular orbit.
Using the same measurement equation as in the previous case, the resulting observability matrix is rank(O) = 4 <

𝑛 = 6, and the system is not observable.
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3. Constant angular rate dynamics
For this case, the state vector is defined as

𝒙(𝑡) =
[
𝒉(𝑡)
¤𝒉(𝑡)

]
(9)

where 𝒉(𝑡) and ¤𝒉(𝑡) are the heading and heading rate of the target with respect to the observer, respectively. Note that
𝒉 = 𝒓/𝑟 . The motion considered here is defined by a constant angular rate 𝝎 perpendicular to the heading vector, such
that ¤𝒉(𝑡) = 𝝎 × 𝒉(𝑡) and ¥𝒉(𝑡) = 𝝎 × (𝝎 × 𝒉(𝑡)).

The dynamics equation is then

¤𝒙(𝑡) = 𝐴𝒙(𝑡) =
[
[𝝎]× I3×3

[𝝎]2
× [𝝎]×

]
𝒙(𝑡) (10)

where [·]× represents the skew-symmetric cross product matrix given by

𝒂 =


𝑎1

𝑎2

𝑎3

 , [𝒂]× =


0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0

 .
Using a similar measurement equation as in the previous cases,

𝒚(𝑡) = 𝐶𝒙(𝑡) =
[
𝒎(𝑡)𝑇 0̄1×3

]
𝒙(𝑡) = cos 𝑓 (11)

The resulting observability matrix for this model has 𝑟𝑎𝑛𝑘 (O) = 4 < 𝑛 = 6, and the system is not observable.

Conclusion
The result from the analysis of these three cases motivated the utilization of intermediate heading measurements,

obtained by batch-processing a group of trigger events, instead of using a single trigger event as a measurement. By
doing this, the output matrix 𝐶 is of the form

𝒚(𝑡) = 𝐶𝒙(𝑡) =
[
I3×30̄3×3

]
𝒙(𝑡) (12)

and the observability matrices for all three cases become full rank (rank(O) = 6 = 𝑛).

C. Measurement pre-processing
The previous section justifies the use of full heading estimations for this tracking problem in lieu of single trigger

events obtained directly from the sensors. This requires an intermediate step of clustering enough trigger events together
such that an accurate heading estimation can be obtained.

With the configuration described in Section II.A, most of the field of view of the instrument is covered by overlapping
sensors. From Reference [8], at least three unique trigger events are needed to unequivocally estimate a heading. For a
target moving slowly with respect to the rotation of the instrument platform, most cases yield four trigger events from
the overlapping sensors: an "on" trigger and an "off" trigger from each of the two sensors.

An algorithm was developed such that the trigger events are grouped by proximity in time, and the groups with 3 or
more measurements are used to obtain heading estimates. This algorithm is based on the pairwise distance matrix 𝐷,
where each element of 𝐷, 𝑑𝑖 𝑗 , is the time euclidean distance between two trigger events 𝑖 and 𝑗 :

𝐷 = [𝑑𝑖 𝑗 ], 𝑑𝑖 𝑗 =

√︃
𝑡2
𝑖
− 𝑡2

𝑗
(13)

Two measurements belong to the same group if 𝑑𝑖 𝑗 < 𝑔, where 𝑔 is a gating threshold. This gate value was decided ad
hoc, based on the fact that typically no more than four trigger events will be grouped together. The gate used 𝑔 is the
average of all 𝑔𝑖 values obtained, where

𝑔𝑖 =

∑4
𝑘=0 𝑑𝑖+𝑘,𝑖

5
, 𝑖 = 1, ..., 𝑛 − 4 (14)
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Where 𝑛 is the total number of trigger events considered. Each resulting cluster contains either one, two, three or four
trigger events. The clusters with three and four trigger events are used to obtain heading measurements, from Eq. 2 with
𝑝 = 3 and 𝑝 = 4 respectively. The estimated heading is

𝒉 = 𝑀+


cos 𝑓

...

cos 𝑓

 (15)

where 𝑀+ is the Moore-Penrose inverse of matrix 𝑀 .
The time associated with the heading measurement is then the average time of the trigger events considered. Figure 5

illustrates the heading measurements obtained from a series of trigger events for an arbitrary constant-velocity trajectory
of the target. In this example, the sensor platform is rotating with 𝜔 = 10◦/s and the sampling frequency is 10 Hz.

Fig. 5 Example of trigger locations and heading estimations for an arbitrary target trajectory

III. Sequential Filtering

A. Linear Kalman Filter
Instead of solving the geometry of the sensor measurements at an instant in time, heading measurements are used to

correct a propagated target heading estimate. This section describes the application of a linear Kalman filter to the
problem of estimating the heading and heading rates of a target object. The reader is referred to References [11–14] for
more information on the Kalman filter and its equations.

The state vector considered in this problem is

𝒙(𝑡) =
[
𝒉(𝑡)
¤𝒉(𝑡)

]
(16)

where 𝒉(𝑡) and ¤𝒉(𝑡) are the heading and heading rate of the target object being tracked.
A simplified state transition model is used in this linear Kalman filter implementation, assuming a double integrator

model with

¤𝒙(𝑡) = 𝐴𝒙(𝑡) + 𝐵𝑤𝒘(𝑡) =
[
0̄3×3 I3×3

0̄3×3 0̄3×3

]
𝒙(𝑡) +

[
0̄3×3

I3×3

]
𝒘(𝑡) (17)

where 𝒘(𝑡) is the process noise that accounts for the uncertainty in the dynamics model, modeled as 𝒘(𝑡) ∼ N (0̄, 𝑄(𝑡)).
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The state vector can be expressed in discrete time 𝑡𝑘 as a function of the state at the previous time step 𝑡𝑘−1 and the
state transition matrix (STM) as

𝒙𝑘 = Φ(𝑡𝑘 , 𝑡𝑘−1)𝒙𝑘−1 + 𝒘𝑘 (18)
where 𝒘𝑘 is the process noise in discrete time, and 𝒘𝑘 ∼ N(0̄, 𝑄𝑡𝑘 ,𝑡𝑘−1 ).

For this linear time invariant (LTI) system, the state transition matrix takes the simple form

Φ(𝑡𝑘 , 𝑡𝑘−1) = exp{𝐴(𝑡𝑘 − 𝑡𝑘−1)} =
[
I3×3 I3×3 (𝑡𝑘 − 𝑡𝑘−1)
0̄3×3 I3×3

]
(19)

The discrete-time covariance of the process noise is

𝑄𝑡𝑘 ,𝑡𝑘−1 =

∫ 𝑡𝑘

𝑡𝑘−1

Φ(𝑡𝑘 , 𝜏)𝐵𝑤𝑄𝐵𝑇
𝑤Φ(𝑡𝑘 , 𝜏)𝑇𝑑𝜏 =

[
1
3𝑄I3×3 (𝑡𝑘 − 𝑡𝑘−1)3 1

2𝑄I3×3 (𝑡𝑘 − 𝑡𝑘−1)2

1
2𝑄I3×3 (𝑡𝑘 − 𝑡𝑘−1)2 𝑄I3×3 (𝑡𝑘 − 𝑡𝑘−1)

]
(20)

The measurement equation used, in discrete time, is

𝒚𝑘 = 𝐻𝒙𝑘 + 𝒗𝑘 =

[
I3×3 0̄3×3

]
𝒙𝑘 + 𝒗𝑘 (21)

where 𝒗𝑘 is the measurement noise modeled as 𝒗𝑘 ∼ N(0̄, 𝑅𝑘). The measurement covariance is 𝑅𝑘 = 𝜎2
𝑘
I3×3, where

𝜎2
𝑘

is the variance of the measurement noise. The measurements 𝒚𝑘 are the heading estimates obtained with the batch
pre-processing described in Section II.C.

Because the state vector consists of heading and heading rates, there are geometric constraints that these vectors
need to satisfy. These constraints, enforced at every time step, are |𝒉 | = ℎ = 1 and 𝒉𝑇 ¤𝒉 = 0. Therefore,

�̂�𝑘 =
�̂�𝑘

|�̂�𝑘 |

¤̂𝒉𝑘 =
¤̂𝒉𝑘 − �̂�𝑇

𝑘

¤̂𝒉𝑘

(22)

where �̂�𝑘 and ¤̂𝒉𝑘 are the best estimates of the heading and heading rate at time 𝑡𝑘 .

B. Results
A simple arbitrary constant-velocity target trajectory was simulated, and the described implementation was used to

detect and track the target object. The results of that process are shown in this section.
The initial conditions of the target are B𝒓𝑇0 = [−100 − 100 100] and B ¤𝒓𝑇0 = [0.25 0.5 0], given in m and m/s

respectively. These position and velocity vectors are expressed in the observer body frame B : {�̂�1, �̂�2, �̂�3}. This
trajectory is propagated for 10 minutes and the corresponding trigger events are obtained, with the platform rotating at
𝜔 = 10◦/s and a sampling frequency of 10 Hz.

The filter is initiated at the time of the first heading batch estimation (in this example, 𝑡1 = 22.4 s, 𝒉𝑇1 ≈
[−0.5741 − 0.5491 0.6073]). The a priori state vector given to the filter is

𝒙0 =

[
𝒉1

0̄3×1

]
(23)

The a priori state covariance used is 𝑃0 = diag( [1 1 1 0.01 0.01 0.01]). The filter is initiated with process noise
𝑄 = 1 · 10−6 and measurement standard deviation 𝜎𝑘 = 1. The results from the linear Kalman filter are shown in Figs.
6-8.

The error in heading estimation, defined as Δ𝒉 = 𝒉truth − �̂�, and heading rate, defined as Δ ¤𝒉 = ¤𝒉truth − ¤̂𝒉, are shown
in Figs. 6 and 7, respectively. The effect of the added process noise, the increased uncertainty in the propagated states
between measurements, is visible there. Figure 8 shows the evolution of the magnitude of the heading error and heading
rate error vectors. In order to facilitate the interpretation of these results, the angular error (i.e., the angle 𝜖 between the
true heading and the estimated heading) is shown in Fig. 9.

Note that, for heading and heading rate, the filter dynamics model is not an accurate representation of the motion of
the target, and therefore a deviation from the true state was as expected in between measurements. However, the goal
of this work is not to correctly model the relative dynamics between two objects in orbit, but to demonstrate a novel
approach for utilizing very simple trigger events from x-ray sensors to track a target object.
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Fig. 6 Errors in heading estimation components with 3𝜎 bounds

IV. Conclusions
This work investigates the utilization of simple x-ray sensors to passively detect an object in the vicinity of an

observer spacecraft, exploiting the natural plasma interactions in the space environment that cause the emission of
x-rays. The scope of this paper is to expand previous work (Reference [8]) for cases in which the target object is moving
with respect to the observer spacecraft.

A brief discussion of the problem observability confirmed that single trigger events from the sensors cannot be used
individually as measurements. An algorithm was then developed to pre-process trigger events by grouping them in
clusters (typically with four triggers per cluster), allowing to obtain heading estimates that are then used as measurements
in the following steps. The type of sensor configuration used, in which most of the field of view is covered by two
overlapping sensors, proved beneficial in obtaining and grouping trigger events for this pre-processing step.

A linear Kalman filter was then implemented to obtain and propagate the heading and heading rate estimates of the
target object. An example of results obtained for an arbitrary target trajectory is shown as a proof of concept of the
developed approach.
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