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USING ARTIFICIAL NEURAL NETWORKS FOR OFFLINE
GRAVIMETRY

J. R. Martin∗, and H. Schaub†

Resolving a reliable, high-fidelity mapping between position and gravitational ac-
celeration is paramount for accurate trajectory design and mission planning. These
mappings are typically constructed through complex formulations that include
large spherical harmonic expansions or polyhedral models that require thousands
of facets. Such models are expensive to compute, difficult to extract, and demand
particular assumptions of the gravitational environment or operational conditions
of the effected spacecraft. Recent literature suggests that artificial neural networks
may be capable of circumventing such limitations – however it is unclear if such
networks can model the dominant, surface level perturbations. This paper attempts
to fill that hole, looking specifically at how well these networks can model pertur-
bations beyond J2.

INTRODUCTION

The need for high-fidelity models of the gravity field for a given celestial body is critical for astro-
dynamicists, as these estimates are responsible for generating precise trajectories on the ground and
ensuring spacecraft remain on those trajectories during flight. The means to computing these fields
hinge on the availability of an accurate representation of the potential which is typically provided
as a series expansion of spherical harmonics. Pending that dynamicists have access to sufficiently
many spherical harmonic coefficients, Cl,m and Sl,m, the potential is expressed to some finite de-
gree l and order m from which the gradient is taken to produce the corresponding gravitational
acceleration.1, 2

The utility of the spherical harmonic model lies in the fact that major gravitational perturba-
tions like those caused by a planet’s oblateness can be captured with only a few terms. Moreover,
the convergence and accuracy of the model can be well-parameterized by the highest harmonic
in the series and distance from the body.3, 4 As such, significant energy and resources have been
spent resolving spherical harmonic coefficients for bodies like Earth and the Moon. Missions like
GRACE, GRACE-FO, GRAIL, and CHAMP each sought to resolve increasingly high-order spheri-
cal harmonic models for these masses.5–9 The highest-resolution model generated by such missions
(in conjunction with supplemental measurements from the ground) is the time-invariant EGM2008
model which maps Earth’s potential to degree and order 2190.10 These potential models are valu-
able data products not just for astrodynamicsts but also planetary scientists – providing insights into

∗NSF Graduate Research Fellow, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of
Colorado, Boulder, 431 UCB, Colorado Center for Astrodynamics Research, Boulder, CO, 80309.
†Glenn L. Murphy Chair of Engineering, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University
of Colorado, Boulder, 431 UCB, Colorado Center for Astrodynamics Research, Boulder, CO, 80309. AAS Fellow, AIAA
Fellow.

1



0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦ 360◦

Longitude

-90◦

-60◦

-30◦

0◦

30◦

60◦

90◦

L
a
ti

tu
d

e

−600

−400

−200

0

200

400

600

P
ot

en
ti

a
l,

m
2

s−
2

(a) Potential, U
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(b) Acceleration Norm, ||∇U ||

Figure 1: The EGM2008 spherical harmonic model expressed to degree and order 1000 at the
reference sphereR0 = 6378136.3m having removed contributions below C2,2 and S2,2 of the series
expansion.

other planetary mechanics like mantle flow, atmospheric circulation, and total landmass distributu-
tion.11–13

Despite the benefits of the spherical harmonic basis, this representation of the potential does come
with unique challenges. Foremost, spherical harmonics are costly to evaluate on-the-fly. Popular
algorithms that compute the gradient of these models scale as O(l2) making them increasingly
complex and burdensome to calculate as models grow more accurate.14 In addition, these models are
challenging to regress, requiring large volumes of precise data for high-order models. Moreover, one
of the primary conveniences of the model – the assumption that the body’s dominant perturbations
have smooth, spherical symmetry – is often only true at the coarsest of scales. As modern missions
aim to explore more irregularly-shaped bodies like asteroids and comets, where perturbations from
surface obstacles or discontinuous features can skew dynamics, the convenience of such a model
becomes less clear.

To characterize the performance of the spherical harmonic model in these regimes, one must first
identify the unique and dominant surface-level perturbations of a given celestial body – henceforth
referred to as gravitational features. For large bodies like planets and moons, this demands exclud-
ing the point mass and oblateness terms within the expansion – corresponding to all coefficients up
to and including C2,2 and S2,2 – as they are features that are unanimous for nearly all large-scale
celestial bodies, and are not representative of unique perturbations on a given surface. Removing
these low-order terms from the EGM2008 model and projecting the potential and corresponding
acceleration magnitude onto Earth’s Brillouin sphere, the bounding sphere enclosing all mass el-
ements, produces Figure 1.15 Figure 1 shows that unique gravitational features are those of finer,
discontinuous regions on the surface. For Earth these regions include the Andes, Himalayas, and
edges of the Pacific, Caribbean, and Indian tectonic plates. Such observations are consistent with
the physics, as dominant perturbations come from steep gradients in the potential – generated by
sudden changes in mass density or mass displacement.

For the astrodynamicist, it is important to model these features accurately as failure to account for
such perturbations can lead to erroneous dynamics over time. Using a spherical harmonic model,
however, this becomes difficult. Just as a Fourier transform struggles to converge near discontinu-
ities like the edges of a square-wave, spherical harmonics also struggle to converge in regions of
discontinuity. To accurately capture these features in a spherical harmonics representation, many
weakly signaled, interfering terms in the series expansion are needed to suppress the three dimen-
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(a) ||∇U || at Brillouin Sphere, R0
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(b) ||∇U || at LEO Sphere, RISS

Figure 2: Gravitational features as seen at the Brillouin sphere and at LEO.
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(a) R0 Feature Mask
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(b) RISS Feature Mask

Figure 3: Gravitational features masks at the Brillouin sphere and at LEO.

sional analog of Gibbs phenomenon.16, 17 As such, despite the the analytic convenience of the spher-
ical harmonic representation, it can fail the astrodynamicist when they need it most – in regions of
dominant gravitational perturbations.

The natural question becomes, is there a better way to model these gravitational features? If one
could instead design a basis around dominant features rather than common geometries, then the
need to resolve high-order models could be avoided in the first place. More boldly, with such a
basis there may not even be a need to extract an explicit representation of potential, and researchers
could map directly from position to acceleration without an intermediate model.

The solution may exist through the use of artificial neural networks (ANN). ANNs have grown
increasingly popular among the regression community as a means to resolve a non-linear mapping
from an input space to a desired output space through a collection of hidden layers.18 The conve-
nience of such a method is that the basis is not prescribed by the user, but is instead learned from
training data. Provided enough flexibility in the network (sufficiently many layers and nodes per
layer) the user can pass position data as input and acceleration measurements as outputs and the
ANN can regress an optimal basis that spans the directions of maximal variance.19 For gravimetry,
this means rather than requiring large spherical harmonic expansions to produce an accurate grav-
itational model of a tectonic shelf or a mountain range and then computing the acceleration they
impart on a spacecraft orbiting overhead – ANNs may ofter a more compact representation of those
features, bypassing the representative and computational inefficiencies of the spherical harmonic
basis entirely.

Modeling gravity fields using machine learning techniques for astrodynamics purposes is a rel-
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atively new technique and the literature thus far has placed a heavy emphasis on its computational
efficiency over analytic methods. Gao and Liao show that Gaussian processes can model the irreg-
ular gravity field of an asteroid in only 10−1 seconds compared to the 104 seconds needed to model
the equivalent polyhedral model.20 Furfaro et. al. uses extreme learning machines to model the
gravity field of an asteroid both globally, but also in localized regions for use in proximity opera-
tions.21 Cheng et. al. uses ANN to represent gravity field of an asteroid and uses that to facilitate
the design of optimal control landing algorithms.22 Each effort also discusses the accuracy of their
machine learning models – some citing errors as low as 1.27% – however the accuracy was always
measured relative to the global gravity scale. That is, the errors were defined relative to the total
gravitational acceleration which included the contributions from µ/r2 and celestial scale features
like J2. In most cases, including just the point mass contribution in the relative error calculation
biases the errors to be quite low. For example, excluding J2 in Earth’s field causes� 1% error in
total gravitational magnitude, so for an ANN or Gaussian process to resolve the gravitational field
to < 1% accuracy is not necessarily proving a more compact or powerful representation than that
of traditional spherical harmonics.

This study attempts to investigate and clarify such claims by looking specifically at how well
ANN model gravitational features. By looking beyond the the point mass and oblateness terms, it
becomes easier to quantify how well ANN learn the sub-1% features and if such machine learning
models should be given credence for this application.

SPHERICAL HARMONIC GRAVITY FIELD

To determine how well spherical harmonics and ANNs can express gravitational features, the
features must first be quantitatively defined. Using a uniformly distributed grid of 175x350 points,
a map of the gravitational accelerations produced by the EGM2008 model at the Brillouin sphere
(R0 = 6378136.3m) is produced in Figure 1b. From the data, the gravitational features are selected
by forming a mask around all accelerations in that map which exceed 3σ above the average. The
mask of the selected features at the Brillouin sphere is shown in Figure 3a and best highlights the
sources of these features as there is no attenuation from the the R0

r

l
term in the potential. It is worth

noting that some features within this mask reach as high as 70 mGal, but are capped at 10 mGal in
the image to show greater structure in the features. Because there is attenuation at higher altitudes, a
second acceleration map and corresponding feature mask is generated at radiusRISS = 6708136.1m
as shown in Figures 2b and Figure 3b respectively to show how the features smooth and decay at
higher altitudes.

To demonstrate the efficiency with which the spherical harmonic representation captures these
gravitational features, three spherical harmonic model fidelities are tested – degree and order 10, 31,
and 100. These fidelities are chosen to show how an order-of-magnitude increase in total coefficients
(110, 992, and 10100 coefficients respectively) improves the modeling of the gravitational features
at each altitude. The accuracy of these models are gauged by computing the root square error (RSE)
at each point in the original map (see Figure 4), then averaging the total error across the map and
also separately within just the feature mask as plotted. The results of these averages are presented
in Figure 5.

Figures 4, 5 show that the gravitational features consistently struggle to be expressed in a spher-
ical harmonic basis despite order-of-magnitude increases in coefficients. Features like the Andes,
Himalayas, and shelves off the Pacific coast remain visibly erroneous even at LEO altitudes – where
their signal is smoothed, a condition which is otherwise advantageous for spherical harmonics. Near
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(a) 10x10 Gravity model at R0
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(b) 10x10 Gravity Model at RISS
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(c) 31x31 Gravity model at R0
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(d) 31x31 Gravity Model at RISS
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(e) 100x100 Gravity model at R0
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(f) 100x100 Gravity Model at RISS

Figure 4: Root squared error of gravitational features produced by lower fidelity spherical harmonic models
with respect to the EGM2008 1000x1000 field.

the Brillouin sphere, the error is even more exaggerated despite the increased coefficient counts.

These findings suggest that spherical harmonics are not a natural basis to represent surface level
features. After the first few terms in the expansion, the error gradient grows increasingly flat and
the case for using higher order models is not especially compelling. This highlights the need to ex-
plore alternative bases in efforts to more efficiently represent these perturbations for astrodynamics
applications.

ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN) provide a unique alternative to the spherical harmonic basis
for representing these features. Rather than prescribing coefficients based on the total correlation
of the potential against some geometries like spherical harmonics, ANNs do not assume similarity
or correlation with any particular geometry. Instead, ANNs learn a basis that naturally minimizes
a chosen cost function. In this experiment, the cost function is the mean squared error (MSE),
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(a) RSE R0Gravity Model
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Figure 5: Average root squared error of the gravitational feature within the feature mask and across
the entire map as a function of number of coefficients within the spherical harmonic (SH) model.

and such a choice forces a sensitivity to outliers.23 Using the MSE cost function, the ANN must
update its weights to accommodate the large gravitational features first to minimize its total cost.
As such the ANN generates a basis that prioritize features based on their magnitude rather than their
geometry.

To test this hypothesis in a way that can be compared to spherical harmonics, the ANNs inves-
tigated are designed to have approximately the same number of regression parameters (weights) as
there are total coefficients in the spherical harmonic models of Figure 5. If the ANN representa-
tion can prioritize the features well, the RSE produced by the ANN should be of similar or lesser
magnitude than that of the spherical harmonic models, particularly within the feature mask.

Given that ANN can be designed in multiple different configurations, this study limits its investi-
gation to six specific ANNs which were individually optimized and tested. The first three ANN are
shallow, single-layer, feedforward networks (SLFNs) and the second three are three-layer deep neu-
ral networks (DNNs). These classes of ANN architectures are chosen both for their popularity for
regression tasks as well as their contrasting advantages. SLFNs are popular for their simple design,
fast execution and learning speeds, whereas deep neural networks have demonstrated impressive
accuracy in variety of applications at the cost of interpretability and long training times.24–27

Each of these ANN begin with a three-node input layer which corresponds to the position vector
and end with a three-node output layer corresponding to the acceleration vector. The number of
nodes per hidden layer, N , in both architectures are calculated assuming one bias parameter per
node beyond the input layer, plus the additional weights connecting the current node with nodes
from the prior and subsequent layer. As such, the width of the SLFN can be computed by equating

3N + 3N +N + 3 =M (1)

whereM is the number of coefficients of an equivalent spherical harmonic model (100, 1000, 10000
coefficients). Likewise, the number of nodes per hidden layer in the three-layer deep neural network
can be found using

3N + (3− 1)N2 + 3N + 3N + 3 =M (2)

The corresponding layer sizes, total trainable parameters, and the number of spherical harmonics
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coefficients being equated to are presented in Table 1.

Table 1: ANN Architectures
ANN Type # Hidden Layers # Nodes per Hidden Layer Total Params # SH Coef Equivalent

SLFN 1 13 94 100
SLFN 1 141 990 1000
SLFN 1 1428 9999 10000
DNN 3 5 98 100
DNN 3 20 983 1000
DNN 3 68 9863 10000

Training Data

The study only aims to investigate the representative ability of the ANN approach, therefore no
bounds were placed on the amount of training data that could be provided to the network. Moreover,
the study prioritizes capturing features at the Brillouin sphere R0 where the gravitational features
are of highest magnitude and greatest discontinuity.

The first data set used to train the ANNs consisted of 259,200 position vectors as inputs and their
corresponding 259,200 acceleration vectors as output. The acceleration vectors were calculated
using the EGM2008 gravity model expressed to degree and order 1000 using the non-singular Pines
formulation.1 While the EGM2008 model includes higher degrees, the model was truncated at
degree 1000 for its computational tractability and because its Nyquist rate is significantly higher
than that of the sample grid to avoid aliasing. The position vectors are randomly sampled in latitude
and longitude, and constrained to a 0-5km altitude shell above the Brillouin sphere. Given that the
experiment seeks to evaluate how well ANNs can resolve gravitational features, the contributions to
the acceleration from terms C2,2, S2,2 and below were also removed from the outputs vectors prior
to training.

The data set is divided into a training set (70% of all data) and a validation set (30%). The data
was preprocessed by first converting to spherical coordinates, and then performing a min-max nor-
malization for each input component to fit the bounds of [0, 1]. The min-max transformation is
chosen due to the finite domain for the training inputs. Specifically, θ and φ coordinates can only
scale between [0◦, 360◦] and [0◦, 180◦] respectively, therefore is reasonable to normalize those to
bounds [0, 1]. Similarly, a standard normalization was applied to each output component such that
the mean of each component becomes 0 and its standard deviation becomes 1. A standard trans-
form was used for the output data as the accelerations can span a continuous space. Moreover, the
standard transform extenuates features as outliers which will increase their contribution to the ANN
cost thereby forcing greater accommodation from the ANN. Such data normalizations techniques
are common to standardized features and accommodate most ANN activation functions which typ-
ically span the domain of [0,1] or [-1, 1]. Normalization has been shown to affect convergence rate
and final performance of ANNs.28 The validation data was subsequently scaled, based on the results
of the training data transformation.

Hyperparameter Optimization

Each ANN is optimized individually using Talos∗. Talos is a hyperparameter optimization python
package that allows users to sample across a defined hyperparameter space and report the sensitiv-
∗Autonomio Talos [Computer software]. (2019) Retrieved from http://github.com/autonomio/talos.
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ities of those hyperparameters with respect to performance metrics like the validation loss. Using
that sensitivity information, the user can then refine the parameter space to find a heuristic optimum
to be used in production.

This study used Talos’ random search hyperparameter optimization algorithm which is consid-
ered more efficient than a traditional grid search methods for problems with low intrinsic dimen-
sionality.29 Such a method recommends sampling only a fraction of the total hyperparameter space
to understand coarse sensitivities before attempting finer tuning. The initial hyperparameter search
space used for each configuration is presented in Table 2. The two parameters worth noting are
the optimizers and activation functions. Only the Adadelta and Nadam optimizers are tested for
their adaptive learning rates, and only the exponential linear unit and rectified linear units activation
functions are used to avoid vanishing gradients during backpropogation.

After randomly sampling 25% of this hyperparameter space, the top performing ANNs are se-
lected to compete against their equivalent spherical harmonic model. This optimization strategy
should not be considered extensive, and it is reasonable to assume that another ANN with the same
number of parameters may be capable of better performance. The final parameters selected for each
model can be found in Table 3. With the optimal parameters selected, each ANN is retrained for 100
epochs and with batch size of 1 on the original data set spanning the 0-5km shell. Longer training
times allow for better convergence and lower batch sizes can improve generalizability of the model,
more efficiently exposing idiosyncratic data/features to the network. In addition, a separate ANN
of the same hyperparameter configuration, design, and training length / batch size is trained on a
shell of data ranging from RISS − 2.5km, RISS + 2.5km to investigate performance on attenuated
features. The loss curves generated by each ANN are provided in Figure 6. Such figures show that
the ANNs have not overfit to their training data as the validation loss closely follows the training
loss. Moreover, each ANN has converged to some local minimum as demonstrated by the plateaued
loss.

Table 2: Initial hyperparameter search space
Hyperparameter Search Space
Batch Size (BS) [10, 30, 50]
Epochs [100]
Dropout [0.0, 0.3]
Learning Rate (LR) [0.1, 0.2, 0.3]
Kernel Initializer (KI) [glorot normal, glorot uniform]
Kernel Regularizer (KR) [l2, l1, None]
Optimizer [Nadam, Adadelta]
Shapes [brick]
Losses [mean squared error]
Activation [relu, elu]

Table 3: Final hyperparameters for each ANN configuration
Case ANN Type Optimizer Activation KI KR Dropout LR BS

1 SLFN Nadam elu glorot normal None 0.0 0.30 10
2 SLFN Adadelta relu glorot uniform None 0.0 0.30 10
3 SLFN Nadam relu glorot uniform None 0.0 0.20 10
4 DNN Adadelta relu glorot uniform None 0.0 0.30 10
5 DNN Adadelta relu glorot normal None 0.0 0.25 10
6 DNN Nadam relu glorot normal None 0.0 0.25 10
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(a) Loss for R0 distribution
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(b) Loss for RISS distribution

Figure 6: Loss functions for each ANN trained from distributions drawn from R0 + [0, 5] km and
RISS + [-2.5, 2.5] km
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(a) RSE R0 Gravity Model
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(b) RSE RISS Gravity Model

Figure 7: Average root squared error of gravitational feature mask and entire grid as a function of
number of coefficients for both the spherical harmonic (SH) and ANN models

RESULTS

To evaluate the performance of the ANN model against the spherical harmonic equivalent repre-
sentation, the trained networks were tested on the same data set used to generate Figure 3. These
are 175x350 map grids sampled uniformly in latitude and longitude at R0 and RISS. Just as the
spherical harmonic RSE was averaged across the entire map and within the feature mask, the ANN
are evaluated in the same way and their results are provided in Figure 7.

The errors are unsatisfactory. Each ANN, regardless of configuration, resulted in higher error
for the same number of parameters as the equivalent spherical harmonic model – both in their
average across the map and within the feature mask. While the optimization of the ANNs was not
exhaustive, these early results suggest that ANN are not adequately suited to model gravitational
features even as they attenuate at higher altitudes. Intuitively this is reasonable, the ANNs are
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(a) Single Layer NN-16 Gravity Model
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(b) Deep Layer NN-1 Gravity Model
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(c) Single Layer NN-166 Gravity Model
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(d) Deep Layer NN-3 Gravity Model
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(e) Single Layer NN-1666 Gravity Model
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(f) Deep Layer NN-4 Gravity Model

Figure 8: Generated output by each of the NN at the Brillouin sphere

attempting to accommodate the infrequent, yet extremely high-magnitude perturbing features while
also trying to find a model that accommodates the more uniform magnitude in the background.
This results in averaging the acceleration signal of the features and map background, amplifying
the magnitude experienced near the surfaces around the features and lowering the magnitude of the
features themselves. This can be seen explicitly by projecting the results of the network at R0 in
Figure 8. These maps show extremely coarse recognition of grouped features like the Andes and
Himalayas in the SLFN and DNN models with approximately 1000 and 10000 free parameters, but
do not accurately capture the highly discontinuous ridges of the tectonic plates.

It is technically possible that a more elaborate ANN configuration could accurately regress the
gravitational features, but such success likely comes at the cost of additional parameters. If this
is true, one must then decide if the ANN model is in anyway advantageous over more traditional
approaches. ANN have the benefit of being quickly parallelized resulting in faster computation than
the recursive formulations common to spherical harmonic models, however if exorbitant numbers of

10



nodes are needed to capture the equivalent accuracy of only a handful of spherical harmonic terms,
it could be argued that such advantage is negligible.

CONCLUSION

This paper investigates the use of artificial neural networks to generate a more compact basis ca-
pable of regressing surface level gravitational perturbations. Despite different ANN configurations,
training optimization strategies, and diverse data sets, the results suggest that such a model is not
more efficient at expressing gravitational features. It is possible with further optimization effort,
more specialized architectures, and additional feature engineering that a compact representation
may be found – but until such ability has been demonstrated, it is encouraged to be wary of using
such machine learning models for modeling any gravitational perturbations beyond those generated
by the point mass contribution and J2.
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