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Accurate and computationally efficient dynamics are paramount for high-accuracy
astrodynamics simulation and spacecraft control. To yield such dynamics, re-
searchers need high-fidelity representations of the gravitational potential from
which trajectories are propagated. Traditionally these models are constructed an-
alytically using spherical harmonics, mascons, or polyhedrons, and accelerations
are computed by taking the gradient of the potential function. While these rep-
resentations are convenient for theory, they each come with unique disadvantages
in application. Broadly speaking, analytic representations are often not compact,
requiring thousands or millions of parameters to adequately model high-order fea-
tures in the environment. In some cases, analytic models can also be operationally
limiting by diverging near the surface. Moreover, these representations can expen-
sive to regress, requiring large volumes of carefully distributed data which may not
be readily available in new environments. To combat these challenges, this paper
aims to shift the discussion of potential representations away from analytic models
and towards computational models. Within the past decade alone there have been
dramatic advances in the field of deep learning which may help to bypass some of
the limitations inherit to the analytics of existing gravity models. Specifically, this
paper investigates the use of a recent type of neural network, Physics-Informed
Neural Network (PINN), to represent the gravitational potential of a celestial body
and predict consequent dynamics. The findings presented suggest that these neu-
ral network representations can offer advantages over their analytic counterparts
in model compactness, regressive ability, and computation speed.

INTRODUCTION

The search for an efficient representation of the gravitational potential continues to be a domi-
nant discussion within the astrodynamics community. Starting in 1933, Brillouin proposed using the
spherical harmonic basis to represent the gravitational field of Earth [1]. This representation is espe-
cially efficient at capturing Earth’s largest gravitational perturbation – its oblateness or J2 – as well
as other large-scale perturbations making it the defacto standard within the field. The success of the
spherical harmonic representation has prompted multiple generations of experiments and missions
like GRACE, GRAIL, and GRACE-FO to resolve exponentially higher-order spherical harmonic
representations of the potential[2, 3]. Today the highest-fidelity spherical harmonic representation
of Earth is EGM2008 which combines satellite ranging data as well as ground base measurements
to reach a maximum spherical harmonic degree of 2,190 – a model with over 4 million parameters
[4].
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While spherical harmonics are ubiquitous for most spacecraft operations, they become less reli-
able in landing or touch-and-go maneuvers. Specifically, the dynamics imparted from a spherical
harmonic representation begin to diverge once inside the Brillouin sphere – the sphere that circum-
scribes the celestial body of interest. With the recent push for small body exploration, this becomes
a problem as many asteroids are irregularly shaped and their surface often exists within that sphere.
Ellipsoidal harmonics are a more general extension of the spherical harmonics representation which
allow for a tighter circumscribing ellipsoid about the small body, but they remain prone to the same
diverging dynamics once inside of the circumscribing ellipsoid [5].

Figure 1: Popular gravity modeling options include spherical harmonics (left), mascons (center), or
polyhedral (right) representations of the potential.

Multiple alternative potential representations exist to combat this divergence. One alternative is
to use mascons to represent the potential. Assuming a shape model of the body exists, the shape
can be algorithmically packed with discrete mass elements, whose individual contributions summed
together can form a representation of the potential [6]. While mascons yield stable dynamics inside
the circumscribing sphere, the representation begins to generate inconsistent dynamics as the space-
craft approaches the surface where the discrete nature of the mascons become increasingly apparent
[7]. In 1996, Werner and Scheeres introduced the polyhedral gravity model to resolve this problem.
The polyhedral model generates a potential directly from the shape model, without additional dis-
cretization. This allows for a stable solution all the way down to the surface of the body [6]. This
stability comes at the cost of assuming an underlying density profile for the body, which is often
difficult to uniquely estimate [8]. Each of these potential representations are powerful under certain
conditions, but they all come with unique limitations or assumptions from the analytics. Ideally
there can exist a representation that is flexible enough to capture the most dominant features, robust
enough to work across all operational conditions, and require no assumptions about the underlying
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body – all-the-while remaining relatively inexpensive to compute.

This paper attempts to address some of these challenges using machine learning representations
of the gravitational environment. Machine learning is a field markedly successful at constructing
accurate models from data observed in complex environments, typically through the use of deep
artificial neural networks [9]. These neural network models learn an optimal mapping between
some desired input variable and output variable, while making no inherent assumptions about the
problem formulation. This is immediately advantageous to the gravity modeling problem, as the
classical analytics are precisely what cause divergence within the circumscribing sphere, or require
assumptions about the shape and density of the body. By having an artificial neural network learn the
mapping between position and acceleration from the data alone, there is not an a priori expectation
of how the model must be represented. Instead the network’s only goal is to resolve a basis that is
maximally efficient in representing the data rather than the mathematics.

Using machine learning methods to model small-body gravity fields has already been demon-
strated with some level of success in the literature [10, 11, 12]. These works predict small bodies
dynamics with machine learning models, but they fail to thoroughly compare the advantages and
disadvantages of these representations with other analytic models. For instance, it is unclear what
conditions are required to regress a sufficiently accurate neural network representation of the gravity
field, or if the neural network representations are inherently richer/more representationally compact
than their analytic counterparts. At what point do these networks begin to overfit or diverge? Can
they regress gravitational perturbations faster than other approaches?

This paper attempts to broaden the discussion about robustness of the neural network representa-
tion of the gravity field and explore new constraints that can improve performance. While artificial
neural networks are strong candidates to model high-dimensional problems, their flexibility often
comes at the cost of interpretability and predictability. Because these machine learning models are
data driven, there are no obvious physical insights that can be drawn about the learned representa-
tion – that is until recently. In 2019, Raissi et. al. introduced the physics-informed neural network
(PINN) which injects the underlying physics and dynamics into the training process of a traditional
network [13]. Using automatic differentiation, the PINNs are trained not only to prioritize an accu-
rate mapping from an input space to an output space, but also to enforce that the solution resolved
by the network satisfies some underlying differential equation and boundary conditions. PINNs are
therefore able to unify the flexibility of a machine learning model with centuries of analytic insight.
This makes the PINN a natural candidate to apply to the gravity modeling problem. Rather than
forcing a solution to be of a preconstructed analytic form, a PINN can generate a flexible solution
and simply ensure that neural network representation satisfies the equations of Newton and Poisson.

The paper aims to investigate the compactness and rigor of these machine learning gravity solu-
tions for two representative gravitational bodies: Earth and 433-Eros. Earth is an interesting body
as it has a dominant near-ellipsoidal shape which is well modeled with spherical harmonics, but
the higher-order perturbations form an almost random surface topology that is challenging to cap-
ture using a periodic basis. Alternatively, 433-Eros is non-spherical asteroid whose dynamics are
commonly represented using a polyhedral model. Together these bodies allow for a comprehensive
comparison of the neural network model in contrast to other popular representations.

The paper is divided into the following sections: First, the paper discusses the current state of
spherical harmonic models used for Earth – investigating the performance of these models at varying
levels of fidelity. These results are the baseline metrics which the traditional and physics-informed
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neural network models are compared against. Following this characterization is a discussion of the
neural network representations alongside information about the training data and hyperparameters
used to generate them. The paper then compares the performance of the neural network represen-
tations to that of the spherical harmonic representation focusing specifically on arguments of repre-
sentational compactness, generalization ability, regressive efficiency, and finally evaluation speed.
The paper concludes with an brief exploration of how the network gravity representations can be
applied the asteroid 433-Eros along with a discussion of future work.

SPHERICAL HARMONIC REPRESENTATION

In 1933 Brillouin introduced the spherical harmonic representation of the gravitational potential:

U(r̄) =
µ

r

l∑
l=0

l∑
m=0

(
R

r

)l

Pl,m[sin(φ)]
[
C ′l,m cos(mλ) + S′l,m sin(mλ)

]
(1)

where r is the position, µ is the gravitational parameter of the body, R is the circumscribing radius
of the celestial body, l is the degree of the spherical harmonic model, m is the order of the spherical
harmonic model, C ′l,m and S′l,m are the regressed spherical harmonic coefficients, λ is the geodetic
longitude, φ is the geodetic longitude, and Pl,m are the associated Legendre polynomials.

This representation is efficient at modeling large, predominately spherical celestial bodies as it
captures one of the most dominant perturbing features (the oblateness) with the first non-zero term
after the point mass. While this is a significant advantage of the spherical harmonic representation,
its modeling efficiency does not persist at higher degrees. To demonstrate, consider the next most
dominant gravitational perturbations beyond the oblateness of the body by removing the point mass
and degree/order 2 contributions from the potential and taking the gradient:

δal,i = |∇U1000(ri,DH)−∇Ul(ri,DH)| (2)

where U is the scalar gravitational potential, the l denotes the maximum degree of the potential
expansion, δai,l is the norm of the high-order contributions of the acceleration generated at ri,DH ,
the i-th position vector in an Driscoll and Healy (DH) grid which is uniformly sampled every 0.5
degrees in latitude and longitude [14]. U1000 is constructed from the EGM2008 gravity model and
is taken to be ground truth. To avoid singularities at the poles, Pines’ algorithm is used to take the
gradient of the potential [15].

Figure 2 shows the values of δa2,i across Earth and reveals that the next most dominant grav-
itational perturbations beyond J2 are discontinuous features in the crust like tectonic shelves and
mountain ranges like the Himalayas and Andes. These perturbations, or gravitational features, are
what will be used to evaluate the efficacy of the spherical harmonic gravity model and, later, the
neural network gravity models.

Specifically, a mean root-squared error (MRSE) metric is introduced to evaluate how well the
spherical harmonics model capture these high-order features:

MRSE(A) =
1

N

N∑
i=1

δal,i δal,i ∈ A (3)

whereN is the total number of position vectors in the DH grid, and δal,i are drawn from one of three
sets: The first set includes all accelerations within the DH grid, A : {δai,l ∀i < N}. The second
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Figure 2: Map of δa2,i

is a feature set, generated by masking data within the DH grid that exceed 2 standard deviation of
the mean perturbing acceleration (δā) or F : {|δai − δā| > 2σ(A)}. The final set is a mask of the
compliment of those features, C : {A/F}. The mean root-squared error of δai within these sets are
presented in Figure 3 as a function of spherical harmonic fidelity.

The significant relative error of MRSE(F) as compared to MRSE(A) demonstrates the stark in-
efficiency of the spherical harmonic representation at capturing the most dominant gravitational
features. Note that |F| << |C| so MRSE(A) more closely resembles MRSE(C), but the dynam-
ical significance of C is much lower than that of F . The clear separation between MRSE(A) and
MRSE(F) showcases how spherical harmonics fail to capture information in order of dynamical
significance. Instead, spherical harmonics prioritize fitting to prescribed geometries that are not
obviously present in the system. As a consequence, the spherical harmonic model must superim-
pose many high-order frequencies before capturing these features – the three dimensional analog
to Gibbs’ phenomenon [16]. In some circumstances this may not be seen as a problem. When a
sufficiently high-fidelity model exists and the researcher is not computationally limited, spherical
harmonics will eventually converge even over the discontinuous features. However, on-board, com-
putational resources may be limited and a high-fidelity spherical harmonic model may not exist for
the body in question. In these conditions, operations over short time scales near large perturbations,
like in a touch-and-go or landing maneuvers, could be negatively affected by spherical harmonics
inability to efficiently represent the most dominant features.

MACHINE LEARNING REPRESENTATIONS

Traditional Neural Network

Artificial neural networks are a series of learned, non-linear transformations that map data from
an input space to a desired output space by minimizing a prescribed loss function such as mean
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Figure 3: Plot of MRSEi as a function of total parameters, p, in used the spherical harmonic gravity
model where p = l(l + 1).

squared error:

J (Θ) =
1

Nf

Nf∑
i=1

∣∣(yi − ŷ(xi|Θ)i)
2
∣∣ (4)

where yi is the true output, ŷi is predicted output by the artificial neural network, Θ is the vector
of trainable weights, w, and biases, b, of the network, and Nf is the total number of points used to
train the network.

The networks for this paper are constructed as a series of densely connected hidden layers with
N nodes per layer:

h
(k)
i = σ

(
w

(k−1)
ij h

(k−1)
j + bi

)
(5)

where h(k) is the k-th hidden layer, i is the node in the layer, wij are the weights connecting the hid-
den layers, bi are the biases attached to the nodes in the layer, and σ is the non-linear transformation
(typically sigmoid, hyperbolic tangent, or rectified linear unit). Note that h(0) = x, and h(kmax) = ŷ.

The neural network is trained by tuning the weights and biases to minimize Equation 4 such that:

w∗ = arg min
w∈Θ

(J(w)); b∗ = arg min
b∈Θ

(J(b)) (6)

which can be solved using a gradient descent algorithm like Adam or SGD [17, 18]:

Θm+1 = Θm − η∇ΘmJm(Θ) (7)
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where η is the learning rate and m is the training iteration. This allows the network to iteratively
update its weights such that it learns an optimal mapping from the input data to the output data.
When applied to the gravity modeling problem, the input data x for the traditional neural network
are the position vectors and the output data y are the acceleration vectors with the point mass and
degree 2 contributions removed.

Physics-Informed Neural Networks

One of the disadvantages of traditional neural networks is that the networks do not account for
the underlying dynamics of the solution they are attempting to represent. In the case of gravity
modeling, the traditional neural networks do not know the acceleration they are attempting to model
has a relationship with an underlying potential function U as expressed through

a = −∇U (8)

Consequently, the network will be trained agnostic to the fact that the force it represents is a conser-
vative force and the potential needs be sufficiently smooth and continuous for sensible dynamics.
Instead the network prioritizes minimizing error, with no respect for the physics.

In 2019, Raissi et. al. recognized this problem and suggested that the numerical, machine learning
models do not need to be agnostic of the dynamics they are attempting to model [13]. Instead, they
can make use the underlying differential equation guiding those dynamics to help identify a solution
more efficiently while respecting the analytics. To this end, Raissi et. al. introduced the Physics-
Informed Neural Network (PINN). PINNs inject analytic forms of a differential equation into the
cost function of a neural network, and use machine learning methods like automatic differentiation
to enforce the dynamics. For the gravity modeling problem, consider the following cost function:

J(Θ) =
1

Nf

Nf∑
i=1

∣∣∣ai −∇Ûi(xi|Θ)
∣∣∣2 (9)

where ai is the measured acceleration at position xi, and Ûi(xi) is the neural network predicted
potential solution at position xi.

This setup is extremely similar to that of a traditional network with the small difference: the
neural network output is not the acceleration vector. The output is instead a model of the potential
(Û ), from which the gradient is taken using automatic differentiation and then compared against the
measured acceleration. The cost function is therefore enforcing that the predicted accelerations must
be a byproduct of a more fundamental, and physically realistic, solution – thereby using analytics
to more efficiently train the network.

This is the only physics-informed constraint applied to the networks in this paper. It is worth not-
ing that additional physics constraints could be applied. For example, the cost function in Equation
9 only accounts for errors in the acceleration. The cost function could also include a penalty for
violating the boundary condition U(x) = 0 as |x| → ∞, or for mis-modeling the potential function
itself (assuming an accurate representation of the potential already exists) i.e.

J(Θ) =
1

Nf

Nf∑
i=1

∣∣∣ai −∇Ûi(xi|Θ)
∣∣∣2 +

∣∣∣U(xi)− Û(xi|Θ)
∣∣∣2 (10)
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Network Type N Network Params l Spherical Harmonics Params
NN 20 3,083 55 3,080
NN 40 11,763 110 12,210
NN 80 45,923 215 46,440

PINN 20 3,040 55 3,080
PINN 40 11,680 110 12,210
PINN 80 45,760 215 46,440

Table 1: Total number of free parameters in the neural network representations matched with the
spherical harmonic degree which shares a similar number of parameters

Raissi et. al. shows a variety of these additional constraints applied to different partial differential
equations which further improve accuracy. For this paper, only Equation 8 is applied to cost to gen-
erate a conservative estimate of how much these constraints affect performance. Future work will
explore the impact of including preexisting knowledge of the potential, as well as other dynamics
and boundary considerations.

Architectures

Three network architectures are tested in this study. Each network consists of 8 densely connected
hidden layers with N nodes per layer, using a hyperbolic tangent activation function, and a weight
initialization defined in Glorot and Bengio [19]. The number of nodes per layer were chosen specif-
ically so that the total number of trainable parameters in the network would share approximately
the same number of parameters as a particular degree spherical harmonic model as shown in Table
1. This way the modeling accuracy can be compared using the same representational compactness
(i.e. number of parameters required to describe the model).

All data fed to the network is preprocessed by scaling all input and output data using a min-max
transformation to fit between the interval [−1, 1], and weights in the network are updated using the
Adam optimizer. Assume each network was trained for 100,000 epochs with a batch size of 40,000
unless otherwise specified. All networks were trained using mixed precision in Tensorflow 2.1∗ on
a Nvidia RTX 2060 graphics card.

REPRESENTATIONAL COMPACTNESS

One of the primary considerations when approximating a physical system is how many parame-
ters are necessary to capture a certain level of accuracy. As shown in Figure 3, a spherical harmonic
representation requires on the order of 104 coefficients/parameters before it begins converging on
the dominant gravitational features. This section aims to demonstrate how many parameters a neural
network representation requires to capture comparable performance.

The representational efficiency of the network models is tested by training each network on
950,000 position/acceleration vector pairs which are drawn from a uniform distributions in alti-
tude (U(0, 420)km), latitude (U(0, 180) degrees) and longitude (U(0, 360) degrees). Once trained,
the networks are evaluated using the same testing data as is used to evaluate spherical harmonic
efficiency – δa2,i ∈ A,F , C. The mean root-squared error for the traditional neural networks with

∗https://www.tensorflow.org/
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N = {10, 20, 40, 60, 80} and the physics-informed networks of N = {10, 20, 40} are presented in
Figure 4.
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Figure 4: Plot of MRSEi as a function of total model parameters. Dashed lines represent traditional
neural networks. The lines with circle markers represent the physics-informed neural networks.

Figure 4 demonstrates that there exists a relatively wide regime (103−104 parameters or between
l = 30 to l = 100) in which neural networks outperform their spherical harmonic counterparts at
capturing features. While the performance across the sets A and C remained nearly identical in
both the traditional and physics-informed neural network cases to that of the spherical harmonic
representation, the performance in F offered up to a maximum of 50% reduction in model size for
the PINN case of N = 20.

Figure 4 also provides helpful insight to interpreting the value of using physics-informed con-
strains when training the networks. While the traditional neural networks offered comparable per-
formance to their spherical harmonic counterparts on average, there exist cases where the neural
networks do worse. Particularly in the N = {10, 60, 80} cases, the traditional neural network has
higher error even in F . The physics-informed cases offer a different story, consistently outperform-
ing their analytic counterparts in F . This aligns with expectation as the physics-informed networks
are attempting to find solutions to a much more fundamental (and continuous) function – the po-
tential. The dynamics included in the cost of Equation 9 gives a richness to the physics-informed
network representation, that is otherwise unobserved by the traditional networks – allowing the
PINN to make more efficient use of the same amount of training data.

It is worth noting that for both the traditional and physics-informed cases, the representational
success is a function of network capacity and amount/quality of training data. Deep neural net-
works are capable of modeling any function so long as the network is sufficiently wide and/or deep
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(i.e. has high capacity) [20]. This is why in Figure 4 the error decreases with the number of pa-
rameters – a behavior generally true of any regressed model. If the networks are not given adequate
amounts of sufficiently diverse data, however, the network capacity will not be the factor which lim-
its performance. This is seen in the N = {60, 80} cases of the traditional network representation
in Figure 4. Despite having many more parameters in the model, there is simply not enough data
to properly resolve the optimal weights and biases in that network. The physics-informed network
does not suffer as much as the traditional network, because its additional dynamics constraint in
the cost function allow the data to be “triple-counted” thanks to the partial derivatives of the po-
tential. Recognizing these architecture and data requirements, it is reasonable to assume that given
even more data, each of these networks would perform better than observed in Figure 4 and the
representational advantage of the neural network representations would grow even more apparent.

GENERALIZATION

The analysis thus far has only focused on accuracy at the Brillouin sphere, but it is also important
to consider how well the network models generalize to different orbit regimes. Generalization to
higher altitudes is tested using the same isotropic 0.5 degree latitude/longitude DH grid as before,
but varying the altitude of that grid between 0 to 500 km to generate Am where m is the altitude
of the grid. Fm is also generated by keeping the same points in the original set F and observing
modeling error as those data position themselves at higher altitudes. Measuring the MRSE of Am

andFm grants insight into at what altitudes the traditional network representation begins to weaken.
Figure 5 shows the errors associated with Am and Figure 6 shows the errors associated with Fm.
Both figures include a histogram showing the radial distribution of the data which are used to train
the traditional networks.

In general, the traditional neural networks outperform spherical harmonics in the lower altitudes
feature set, Fm, where the perturbations are more discontinuous. Spherical harmonics surpass the
neural networks in higher altitudes where discontinuities are attenuated. The success of the neural
networks at low altitudes is attributed to network training process. Given the MSE loss function, the
network will prioritize fitting the model to areas where the perturbations are highest (at the surface).
Until such perturbations are adequately captured, the neural network will not prioritize regions in
the data where model errors are less variable.

The generalization analysis assumes that the training data distribution is uniformly distributed in
altitude as shown by the histograms in Figures 5 and 6. The uniform training distribution, however,
is a luxury that is unlikely to be found in application. More realistic training datasets might include
data that is predominantly taken at the surface of a body with infrequent observations at higher al-
titudes (surface constrained) or data taken predominately from orbit with infrequent observations
near the surface (orbit constrained). To study generalization behavior under more realistic data con-
ditions, two new training sets are generated using the following exponential probability distribution
defined by:

E(x, x0, β) = exp

{
−x− x0

β

}
(11)

where x0 is the reference altitude (0 km for surface constrained and 420 km for orbit constrained),
and β is the scaling parameter responsible for determining how quickly the exponential decays.
For both datasets β = 42 and 950,000 data are sampled. Note that to prevent sampling from
inside the circumscribing sphere, the distribution of the orbit constrained dataset is restricted to
x ∈ [0, 420] km, whereas the surface constrained dataset can span x ∈ [0,∞). The results of the
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Figure 5: MRSE(Am) as a function of altitude. Solid lines represent the neural network generaliza-
tion error. Dashed lines represent the spherical harmonics generalization error. The blue histogram
represents the training data distribution in altitude that is used to train the traditional neural net-
works.
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Figure 7: Training data distribution and error curves for traditional neural networks
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Figure 8: Training data distribution and error curves for physics-informed neural networks
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N = {20, 40, 80} traditional networks are shown in Figure 7 and the N = {20, 40, 80} physics-
informed networks are shown in 8.

These figures yield a number of interesting findings. Figure 7c shows that the traditional neural
network representations trained on the surface constrained dataset are better at capturing features up
to approximately 30 km in the N = 80 case, 60 km in the N = 40 case, and 75 km in the N = 20
case. The performance of the physics-informed neural networks exceed this, reaching reaching 30,
70, and 95 km for its N = {80, 40, 20} cases respectively as shown in Figure 8c. Despite the
low-altitude accuracy of these networks, they begin to diverge from truth at higher altitudes, albeit
their error remains below that of a simple l = 2 spherical harmonic model. There also appears
to be a relationship between the value of N and how strongly the network begins to diverge. This
relationship again highlights the challenges of training a high-capacity network without enough data
to prevent overfitting.

The neural networks trained on the orbit constrained dataset offer a different narrative. These
networks consistently perform worse than their spherical harmonic counterparts; however, they are
surprisingly effective at generalizing to lower altitudes. The well-behaved extrapolation is likely a
result of the smoothness of the perturbations as seen in a high-altitude orbit. The discontinuities
from the Brillouin sphere are largely attenuated at high-altitude and only the most prominent per-
turbing features are preserved. The trained network therefore only extrapolates the dominant pertur-
bations down to the Brillouin sphere, irrespective of the finer details of those features. The surface
constrained models have the opposite, more difficult, problem, as they are tasked with extrapolating
fine surface features to high-altitude. These extrapolation effects can be directly observed in Figure
9.

The last observation comes from the orbit constrained dataset where the physics-informed net-
works did worse at modeling the high altitude Am and Fm sets than their traditional network coun-
terparts. This runs counter to expectation, as the physics-informed networks are typically better
at extracting more information from the data than traditional networks. This surprising result is
likely because physics-informed constraints act as a means of regularization. Traditional neural
networks will fit to the data regardless if the fit is physically realistic, granting greater modeling
flexibility. Alternatively, physics-informed networks must constantly amend their representation to
match the dynamics. Using the orbit constrained dataset, the physics-informed network likely found
a simple and physically-realistic representation of the attenuated features; however, each time that
representation is given a data point closer to the highly discontinuous Brillouin sphere (data that
is significantly less well-behaved) that same model must scramble to reconcile a dynamical expla-
nation of the unusual surface signature. The physics-informed neural networks therefore sacrifices
model accuracy at high altitudes to provide a physical relevant explanation of the occasional Bril-
louin data.

REGRESSIVE ABILITY

The neural network models in each of the prior analyses are compared against the performance
of a truncated model of the EGM2008 potential spherical harmonic representation. This is not an
inherently fair comparison. The EGM model was constructed using large swaths of information
taken from formerly regressed potential models, data collected from multiple satellite missions,
and ground measurements. Conversely, the neural networks are trained with only 950,000 training
data and nothing more. This is unfair, as the neural network representation will always be at a
disadvantage because it is only constructed using a small fraction of the data made available to
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(c) Brillouin N = 80; E(x, 0, 42)
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(d) LEO N = 80; E(x, 0, 42)
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(e) Brillouin N = 80; E(x, 420, 42)
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(f) LEO N = 80; E(x, 420, 42)

Figure 9: N = 80 traditional neural network predictions of the surface and LEO features as a
function of training data distribution. Note how the surface constrained set fails to extrapolate to
higher altitudes, whereas the orbit constrained set extrapolates to the surface with greater success.

the high-fidelity EGM2008 model. A more interesting comparison is how well the neural network
representations compare to a spherical harmonic model that is fit with the same data.

A new experiment is conducted which fits both a neural network representation using back-
propagation and a spherical harmonic representation using iterative least squares with only 9,500
randomly distributed position and acceleration measurements from the same uniform distribution in
altitude between 0 and 420 km as before. Immediately the spherical harmonic representation is at a
disadvantage. The spherical harmonic model is formed in a periodic basis, and its coefficients can
only be regressed to high-degree successfully if there are sufficient data that are distributed properly
such that the regression can observe the higher frequencies and avoid aliasing. The maximum angu-
lar separation between two points in the dataset is approximately 5.5 degrees, therefore the spherical
harmonic fit can only observe a maximum degree of l = 33 [21].

This effect is shown by fitting increasingly high degree spherical harmonic models beginning
at l = 3 and ending at l = 33 to the randomly distributed training data. These models are then
compared against the N = {5, 10, 15, 20, 40, 80} traditional and physics-informed neural networks
by observing the MRSE on the A, F , and C sets. Their performance is shown in Figure 10.
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Figure 10: Plot of MRSEi as a function of total model parameters. Solid lines represent the error
associated with the regressed spherical harmonic model. Dashed lines represent the performance of
traditional neural networks. Lines with circles represent the physics-informed networks. All models
were regressed on a datasets of 9,500 randomly distributed position and acceleration pairs.

The neural network representations outperform their analytic, regressed counterparts – offering a
20% more accurate solution in A for the physics informed N = 40 case. The spherical harmonic
representation struggles to capture the same accuracy as the original EGM model for multiple rea-
sons. One reason is that the signals from higher-degree harmonics still exist within the measure-
ments. If those signatures are not explicitly sought out in the least-squares fit, their contributions
will wrongfully bias the low-degree coefficients in the solution. The other challenge is identifying
the contributions of the high-degree harmonics in high-altitude samples. The perturbing signature of
high-degree harmonics decay as

(
R
r

)l
, so identifying their contributions from a high-altitude sample

is challenging. Altogether, this irregular sampling distribution and faint signatures cause the model
to overfit to the training data, and generate more erroneous results than the EGM2008 solution.

The neural network representations maintain a consistently lower error on the test set in a manner
that is generally independent with the number of parameters used in the representation. While there
exists a slight advantage of using a physics-informed network over the traditional networks, both
network representations are more accommodating to non-uniform distributions of data which could
have potential ramifications for resolving the gravity field of bodies for which data is generally
sparse – such as with flybys.

COMPUTATIONAL SPEED

The last analysis investigates the total evaluation speed of the neural network representations
as compared to the spherical harmonics and polyhedral gravity models. Each representation is
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tested at varying levels of fidelity. The spherical harmonics representations are each generated
from the EGM2008 dataset with different truncation degrees. The polyhedral models are evaluated
on increasingly degraded shape models of 433-Eros generated using Blender †. The two analytic
representations are written in Python, just-in-time compiled with multithreading using Numba ‡, and
executed on a Ryzen 3400G CPU. The neural network representations are written in Tensorflow 2.1
and executed on an NVIDIA RTX 2060 GPU in the GPU case and on the Ryzen 3400G for the CPU
case. Figure 11 shows the execution time required to evaluate the accelerations of 10,000 randomly
distributed position data for models of varying levels of fidelity/parameters.
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Figure 11: Total evaluation time to evaluate 10,000 random data using the various gravity models.

The polyhedral representation is by far the most time consuming to evaluate. The spherical har-
monics representation is quite efficient to evaluate at low degree, but it also has the steepest gradient
as the degree increases. The neural network GPU representation holds a relatively steady evaluation
speed, independent to the number of parameters in the model. This is attributed to the parallelization
capabilities of the GPU which allow for all nodes per layer in the network to be evaluated simultane-
ously. So long as the number of nodes per layer does not exceed a given hardware-specific core and
memory threshold, the evaluation time should remain relatively stagnant for the architectures cho-
sen in this paper. Furthermore this baseline time will likely decrease as GPU memory access grows
faster. The neural network CPU representation grows exponentially with respect to the number of
parameters in the model, similar to that of polyhedral models.

†https://www.blender.org/
‡https://numba.pydata.org/
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APPLICATION: EROS

An interesting application for the traditional and physics-informed neural network gravity model
is in the case of small-body exploration. Unlike with larger celestial bodies, it often undesirable
to use a spherical harmonic representation of the potential for dynamics as the solutions begin to
diverge within the circumscribing sphere. A polyhedral gravity model is typically used to combat
this divergence. A polyhedral gravity model takes a shape model of a body comprised faces and
vertices and uses it to predict dynamics down to the surface of the body using the following equation:

∇U = −Gσ
∑

e∈ edges

Ee · re · Le +Gσ
∑

f∈ faces

Ff · rf · ωf (12)

where G is the gravitational constant, σ is the density of the body, Ee is an edge dyad, re is the
position vector between the center of the edge and the field point, Le is an analog to the potential
contribution by the edge, Ff is the face normal dyad, rf is the distance between the face normal
and the field point, and ωf is analog to the potential contribution by the face. More details can be
found in Werner and Scheeres [6].

While this gravity model remains stable within the circumscribing sphere, it suffers two disad-
vantages. First, there is an assumption of uniform density within the body as indicated by the lack
of subscript for σ in Equation 12. A unique density profile can be forced onto the model, but those
profiles are challenging to resolve uniquely [22, 8]. The second disadvantage is the computational
overhead of such a model as shown in Figure 11. The computation time of Equation 12 directly
relates to the fidelity of the shape model and can include looping over 100,000s of edges and faces
to evaluate a single field point. This become computationally expensive and poses a challenge for
both offline simulation and onboard control unless properly parallelized (similar challenges plague
the mascon model [23]).

A neural network gravity model may circumvent these primary disadvantages. The neural net-
work representation does not rely on the fidelity of a shape model, nor does it make any assumptions
about the underlying density distribution. To this end it may be able to acquire a more representative
picture of the accelerations experienced by a spacecraft in orbit. There are also no analytic reasons
that the neural network model cannot generalize within the circumscribing sphere – already yielding
an advantage over the alternative spherical harmonic representation.

These theories are tested using similar analyses from the Earth specific case. The representa-
tional compactness of the polyhedral model is tested by generating four increasingly high-fidelity
representations of the astroid 433-Eros using Blender. The number of unique parameters needed
to construct the polyhedral model are defined by counting the number of unique vertices and mul-
tiplying by 3 to include the components of their positions. The number of faces on the model are
then added to this total to account for the unique combinations of these vertices that make up the
individual faces. The truth gravity field for Eros is generated using a polyhedral model based on
the highest fidelity shape in the set which comprised of 245,760 total parameters. The same mean
root-squared error metric is taken at the circumscribing sphere to compute the error of the lower
fidelity shape models, though the density of the DH grid is reduced from 1 datum per 0.5 degree to
1 datum per degree in latitude and longitude to form sets A′,F ′, and C′.

The neural networks are trained using only 100,000 position and acceleration data that are ran-
domly distributed in latitude and longitude and between the surface of the body and 10 km above the
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Figure 12: Plot of MRSEi as a function of total model parameters. Solid lines represent the er-
ror associated with the polyhedral model of various shape fidelities. Dashed lines represent the
performance of traditional neural networks. Dotted lines represent the performance of PINNs.
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Figure 13: Training data distribution and error curves for neural networks
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circumscribing sphere. There is also no feature engineering of this data prior to training in contrast
to the Earth data which removed∇U2 from the acceleration measurements.

Figure 12 shows the average error across A′,F ′, and C′ for the lower fidelity polyhedral models
and the traditional and physics-informed neural networks of N = {20, 40}. Both network types
form more compact representations of the gravitational environment, however the traditional neural
network achieves greater accuracy than the physics-informed network. It is assumed that this behav-
ior is similar to that of the orbit-constrained training distribution for Earth. The physics-informed
potential must accommodate infrequent and non-conformant samples near the surface which chal-
lenge the representation generated by the more regular high-altitude samples. Figure 13 shows how
the training samples grow less frequent within the circumscribing sphere (negative altitude), but
above the asteroid surface. Future work remains to investigate if this behavior can be combatted,
and how the networks perform within the Brillouin sphere.

FUTURE WORK AND CONCLUSIONS

Combining new machine learning techniques and artificial neural networks offer an interesting
alternative to analytic gravity models. In many cases, the machine learning representation of the
gravitational environment offers strong advantages to modeling highly perturbing features within
the environment without the need for excessive parameters. The machine learning representation is
also more efficient at regressing the gravitational field of a given body as compared to the spher-
ical harmonic representation which has more stringent requirements about the distribution of data
used to constrain the fit. Finally, the neural network representation also has the advantage of fast
execution times when run on a GPU which could make it a viable alternative particularly to the
computationally cumbersome polyhedral model.

Altogether the neural network gravity model is a powerful way to represent the gravitational
environment and offers a number of encouraging prospects for future research. In particular, all
networks in this paper involved minimal user-led optimization. No hyperparameter searches are
conducted, no alternative network architectures are investigated, and no efforts to impose additional
physics-informed constraints are explored. Despite this, the performance of these networks is al-
ready comparable with state-of-the-art spherical harmonic models. With further feature engineering
and tuning, it is likely that these neural network representations may yield even more promising
results in the future.

Other work remains such as analyzing the performance of these networks within the circumscrib-
ing sphere. It is possible that such a representation may yield stable dynamics in a regime that is
otherwise dynamically challenging to model. Other avenues of research include applying these tech-
niques to real data and investigating the effect of uncertainty in measurements on the performance
of the networks. It is possible that the efficient regression capabilities of these networks could be
used to generate higher-fidelity estimates of the gravity field of minimally explored celestial bodies.
In any case, these networks demonstrate promise for many future gravity modeling efforts.
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