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Abstract
Gravity field estimation is a problem of increasing importance for small-body exploration. Specifically, the gravity

fields of celestial bodies like asteroids and comets are often poorly characterized upon first approach, and engineers
and scientists require lengthy mission phases dedicated to the construction of a more accurate gravity field model
before attempting increasingly ambitious orbits or manuevers. Traditionally these gravity characterization periods
rely on advanced orbit determination pipelines which are used to estimate the spacecraft state as well as low degree
and order coefficients of a spherical harmonic gravity model. This research proposes an alternative gravity estimation
framework which leverages a powerful and new gravity model: the Physics-Informed Neural Network (PINN) gravity
model. PINN gravity models alleviate many of the inconveniences of past gravity representations such as divergence
at the surface of the body (spherical harmonics), assumptions for the internal density profile of the body (polyhedral),
and computational inefficiency (many). Moreover, the PINN gravity model has demonstrated greater sample efficiency
than spherical harmonics, generating more accurate gravity representations from fewer and noisier measurements.
Such characteristics make the PINN gravity model a desirable representation to be used online in small-body contexts,
however no literature exists which discusses how this novel representation can be embedded into traditional filtering
frameworks flown today. This work aims to fill this implementation hole, specifically exploring how the PINN gravity
model can be used in conjunction with or embedded directly within Kalman filters. This work leverages simulated
spacecraft data to train a PINN in an online manner compatible with current filtering techniques. This research also
investigates various design choices including how frequently the PINN gravity model should be updated to ensure safe
and productive learning, as well as highlights advantages and tradeoffs of transitioning to this new representation.

1. Introduction

In the past two decades, small-body exploration has blos-
somed into a major research focus for interplanetary ex-
ploration. Missions like Hayabusa2, Psyche, DAWN,
OSIRIS-REx, Janus, and others have demonstrated this
priority and the corresponding need enhanced tools to en-
able the rapid and safe exploration of these interesting tar-
gets [1–5]. For each past and future mission, it is imper-
ative that the scientists and engineers prioritize the deter-
mination of a reliable gravity field model. These gravity
models form the basis from which planetary scientists can
build an intuition about the body’s density distribution and
surface properties, and by which dynamicists and mission
designers can build trajectories that leverage the natural
dynamics of the system [6–8].

Traditionally these gravity models are constructed by
first assuming the body in question can be modeled as a
point-mass, i.e. the body in question is infinitely small,

perfectly spherical, and homogenous in density. These
assumptions are often adequate for placing a spacecraft
in an initial, high-altitude orbit around the body, but they
quickly become problematic as more nuanced mission op-
erations begin. Specifically, as spacecraft enter lower-
altitude orbits, each of the assumptions begin to break
down. The body is often not spherical – consider the as-
teroids Eros or Itokawa, both of which have highly irreg-
ular geometries – and their densities are not homogenous
[9]. Taken together, these irregular shapes and inhomoge-
nous densities produce non-uniform gravity fields which,
in turn, yield highly non-keplerian motion.

Naturally it is important to capture these gravitational
perturbations, particularly before the spacecraft enters
lower orbits or attempts a landing. To accomplish this,
dynamicists often turn to other, alternative gravity mod-
els. For ground-based simulation, dynamicists can use the
polyhedral gravity model[10]. If the spacecraft is able to
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capture many images of the body, teams on the ground
can generate a shape model of the body. Using this shape
model — comprised of many vertices and facets — dy-
namicists can compute the exact gravitational potentials
and accelerations of that shape assuming the body has
constant density. This approach provides a considerably
more accurate gravity model than the prior point mass
model, but it with two caveats. First, it is likely that the
body violates the constant density assumption. While the
polyhedral gravity model can accommodate inhomoge-
neous density profiles, these profiles are notoriously chal-
lenging to estimate uniquely [11]. Failing to account for
density variations can, inturn, cause erroneous spacecraft
dynamics which can prove to be dangerous when trajec-
tories are propagated for extended periods of time. The
second, and arguably larger, disadvantage of the polyhe-
dral gravity model is its computational requirements[12].
High-fidelity shape models of asteroids can contain hun-
dreds of thousands of vertices and facets which must be
looped over at each propagation timestep. This can make
it extremely expensive to compute accelerations both in
ground based simulations and on-board.

The alternative to the polyhedral gravity model is the
popular spherical harmonics gravity model[13] (or its
close cousin the ellipsoidal harmonics gravity model[14]).
These gravity models provide slightly more forgiving as-
sumptions about the body in question — namely no as-
sumptions about the density of the body — by represent-
ing the gravity field as the superposition of harmonic basis
functions, or the three-dimensional analogs to a Fourier
series. These harmonics can provide a more represen-
tative model of the true gravity field than a point mass
model, and they are most commonly expanded to rela-
tively low degree and order. These truncated low-order
models make spherical harmonics considerably easier to
include within an orbit determination pipeline where the
harmonic coefficients can be directly estimated over the
mission lifetime.

Despite this, these harmonic gravity models are not
without their own disadvantages. For one, these harmon-
ics models rely on the assumption that the spacecraft will
remain in orbit outside of the bounding sphere or ellip-
soid. For missions that seek to land on the surface, or
merely attempt closer flybys of the object, this assumption
can be operationally limiting. Moreover, these harmonic
models are extremely inefficient at capturing discontinu-
ity. Large gravitationally perturbing features like craters,
boulders, mountain ranges, etc. can require hundreds-
of-thousands of harmonics superimposed together before
they are represented accurately [12]. Moreover, the har-
monic coefficients can be difficult to regress, requiring
strict sampling requirements for observability.

Recently, the Physics-Informed Neural Network grav-
ity model (PINN-GM) was proposed which attempts to

bypass each of the limitations of past gravity models[12].
By learning, rather than prescribing, basis functions, the
PINN-GM is able to produce high-fidelity gravity mod-
els without making any assumptions or imposing opera-
tional limits on the mission. While the PINN-GM offers a
compelling solution to the gravity modeling problem of-
fline, little research has been conducted to investigate how
the PINN-GM can be trained online or included within
an orbit determination pipeline. Early results demonstrate
that the PINN-GM can produce high-fidelity models of
the asteroids Eros and Bennu using relatively sparse and
noisy measurements [15]; however the literature fails to
demonstrate how the acceleration training data is gener-
ated in-situ. This paper attempts to fill these holes, focus-
ing specifically on how the orbit determination pipeline
can be constructed to leverage a PINN-GM trained in-situ
over a mission gravity characterization phase.

2. Methods

2.1 Spherical Harmonics Gravity Model

Spherical harmonics are a popular way to represent the
gravitational potential of an arbitrary body through:
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where r is the field point, µ is the gravitational parameter
of the body, R is the circumscribing radius of the celes-
tial body, l is the degree of the model, m is the order of
the model, C 1l,m and S1l,m are the regressed spherical har-
monic coefficients, λ is the longitude, φ is the latitude,
and Pl,m are the associated Legendre polynomials [13].

When expanded to low-degree and order, this grav-
ity model is particularly well-suited to capture gravita-
tional perturbations like planetary oblateness and obliq-
uity. This ability make it an effective basis set for grav-
ity field estimation to first-order — particularly for large,
near-spherical bodies. This representation, however, does
come with a variety of pitfalls.

First, the spherical harmonic gravity model assumes
that spacecraft motion will be conducted outside of a
bounding sphere with Brillouin radius R. If a spacecraft
enters within the bounding sphere, the representation is
prone to diverging numerics due to the

`

R
r

˘l
term in the

expansion. This makes the model unreliable when at-
tempting to use it in small-body landing or touch-and-go
operations where high-fidelity models are required (high
values of l) and the field points may be at a consider-
ably lower altitude then the bounding Brillouin sphere
(r ăă R).

In addition to the numerically diverging representation,
the spherical harmonic model is also inefficient at cap-
turing discontinuity. Consider the Earth’s gravitationally
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perturbing features. Listed in order of significance, the
Earth’s field deviates from the point mass assumption due
to things like planetary oblateness, mountain ranges, tec-
tonic plate boundaries, and regional hotspots. Of these
four perturbing features, three are highly discontinuous in
nature. Harmonic basis are very poorly suited at captur-
ing such discontinuity (as best demonstrated through the
infamous Gibbs phenomenon[16]). Infinitely many har-
monics must be superimposed together before spherical
harmonics can represent a discontinuous or localized fea-
ture. This poses a problem both for large planetary ob-
jects and small-bodies, making spherical harmonics (or
ellipsoidal harmonics) an inefficient basis set for captur-
ing high-order gravitational perturbations.

Finally, harmonic gravity models also suffer from the
drawback of sample inefficiency. In order to regress high-
degree harmonics, the field in question must sampled with
a homogenous distribution of positions to avoid aliasing
other harmonics [17]. These sampling requirements can
prove difficult for trajectory and mission designers for
which it may be fuel inefficient to manuever the space-
craft to these carefully distributed points.

Despite this, spherical harmonics remain a popular
gravity model to use in the gravity estimation problem.
Part of the reason for this is that the model is analyt-
ically differentiable. When collecting measurements of
the spacecraft in an orbit determination pipeline, engi-
neers can differentiate the accelerations produced by low-
degree harmonics with respect to the spacecraft state to
then be used in estimating the low-degree spherical har-
monic coefficients. This analytic differentiability is also
necessary when propagating state covariances.

2.2 Physics-Informed Neural Network Gravity Model

In 2022, the second generation of the Physics-Informed
Neural Network Gravity Model (PINN-GM-II) was intro-
duced [15]. This gravity model bypasses many of the
failings of the prior analytic models by allowing a neu-
ral network to learn an efficient basis set that is natu-
rally amenable to the gravity field the dynamicist is at-
tempting to model. The training of the neural network si-
multaneously prioritizes predicting accurate predictions,
while also enforcing that the learned model satisfies rel-
evant differential equations such as Laplace’s equation
(∇2U “ 0), relationships between potentials and accel-
erations (a “ ´∇U ), and conservative vector field prop-
erties (∇ ˆ ∇U “ 0). This augmenting of a traditional
cost function with differential constraints is what makes
the network “Physics-Informed” [18].

For the second generation PINN-GM the cost function

is defined as
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where
AD
∇ refers to the gradient taken using automatic dif-

ferentiation, and fpxi|Θq is the gravitational potential as
learned by the neural network.

2.2.1 Automatic Differentiation

Automatic differentiation is a way to compute the exact
derivative of any algorithm [19]. Because all algorithms
are comprised of sequences of elementary functions (+, -,
/, *, exp, log, sin, cos, etc.) — to which there exist ex-
act derivatives — a generalized form of chain rule can be
applied to compute the exact derivative of the output of
the algorithm with respect to the input (or any other inter-
mediate value within said algorithm). Automatic differ-
entiation is most famously applied in stochastic gradient
descent algorithms — the same algorithms used to train
neural networks [20]. Physics-informed neural networks
simply take the same tool to compute the derivatives of
the network to be used in the differential constraints of
the cost function.

2.2.2 Advantages of the PINN-GM

A number of advantages are acquired by approaching the
gravity field modeling problem with a PINN-GM. Fore-
most, the PINN-GM is extremely sample efficient. Pre-
cise and carefully distributed collections of data are not
required to regress an accurate model. Instead, the PINN-
GM can be trained with arbitrarily distributed data; itera-
tively improving its model based on where new informa-
tion is gathered. In addition, the physics-informed con-
straints act as a form of regularization, making the PINN-
GM robust to noise in the training data set. The PINN-GM
is also efficient to evaluate — taking orders-of-magnitude
less time to produce acceleration estimates than equiv-
alent accuracy spherical harmonic or polyhedral gravity
models [12]. Lastly, the PINN-GM is also exactly differ-
entiable. This is a key advantage of the PINN-GM for
orbit determination. Just like spherical harmonics, the Ja-
cobian of the accelerations produced by the gravity model
can be evaluated exactly for used in propagation of the
STM and covariance updates.

2.3 Kalman Filter

Kalman filters are online algorithms used to estimate rele-
vant spacecraft state and environmental parameters given
uncertain measurements [21]. The general framework un-
der which the state and parameters are estimated is as fol-
lows:
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Fig. 1: Second generation of the PINN-GM [12]

1. Initialize the filter with an initial reference state x0,
the initial state deviation / error ∆x0, the initial state
covariance P0, process noise covariance matrix Q,
measurement noise covariance matrix R.

2. Obtain a measurement yi

3. Propagate the reference state and state transition ma-
trix (STM), Φpti, ti´1q to the time of the measure-
ment through the differential equations

9x “

»

—

—

—

—

—

—

–

9x
9y
9z
:x
:y
:z

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, 9Φ “
B 9x

Bx
Φ (3)

where :x, :y, :z correspond to the perturbing acceler-
ations like gravity, solar radiation pressure, and/or
thrust vectors.

4. Perform the time update:

∆x´i “ Φ∆x`i´1 (4)

P´i “ ΦP`i´1ΦT `Qi (5)

5. Perform the measurement update:

ri “ yi ´ ŷi (6)

Hi “
Bh

Bx

ˇ

ˇ

xi
(7)

Ki “ P´i H
T
i pHiP

´
i H

T
i `Riq

´1 (8)

∆x`i “ ∆x´i `Kipri ´Hi∆x
´
i q (9)

P`i “ pI´KiHiqP
´
i pI´KiHiq

T (10)

where h is the measurement function.

6. Repeat for each incoming measurement

For a more comprehensive derivation of these equations,
see [22].

A few important notes regarding the algorithm: first,
the Kalman filter relies heavily on the assumption that
there exists an analytic form of the perturbing acceler-
ations such that the partial B 9x

Bx can be evaluated for the
propagation of the STM. This is precisely why low-degree
spherical harmonics gravity model are popular. The par-
tials of the acceleration produced by the model can be de-
rived analytically, and once programmed, can be evalu-
ated efficiently for the propagation of the STM.

While this analytic form is convenient, it is not explic-
itly required. If the gravity model is of sufficiently high
fidelity, evaluating the jacobian may be too computation-
ally cumbersome. Alternatively, an analytic form may not
exist. In these cases the jacobian can be computed numer-
ically through finite differencing which introduces its own
computational expense and accuracy limitations.

The second interesting note is that the filter, in its cur-
rent form, captures dynamical uncertainty through the
process noise matrix Qi. By formulating the filter in this
way, these dynamical uncertainties will never be known
explicitly – it simply ensures that the filter does not grow
overconfident in its state estimate given the limited knowl-
edge of the dynamics. This is known as stochastic noise
compensation (SNC).

While SNC is a popular way to inject noise into the
filter to ensure conservative state estimates, it is not the
only way to capture dynamical uncertainty. An alternative
approach is to use dynamic model compensation (DMC).

2.3.1 Dynamic Model Compensation

Dynamical model compensation assumes that process
noise is correlated in time, and this correlation can be ex-
ploited to reconstruct unmodelled dynamics. By assum-
ing there is an underlying differential equation governing
the evolution of the process noise, the noise can be treated
as part of the dynamical system and estimated as part of
the state. This is often done by assuming the process noise
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evolves according to a first-order Gauss-Markov process

9w “ ´
1

τ
w (11)

Using the approximation, the unknown perturbations, w,
can be augmented the state vector and estimated directly
to produce an approximation of any unmodelled accelera-
tions like those produced by a mis-aligned thrust vector or
high-order gravitational accelerations. More information
regarding DMC can be found in [23].

2.4 PINN-GM Kalman Filter

As discussed, traditional filters in small-body settings tend
to leverage spherical harmonic gravity models due to their
analytic convenience and differentiability; however, these
conveniences come at the cost of operational limitations
and challenging estimation requirements to regress the
harmonic coefficients. This paper provides the first im-
plementation of the novel PINN-GM into the orbit deter-
mination pipeline.
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Fig. 2: PINN-GM Kalman Filter

The proposed filtering framework in shown in Figure
2. This new filter uses a PINN-GM as the dynamics back-
end to the estimation pipeline, and uses DMC to gener-
ate training data to then update the PINN-GM over time.
Explicitly, the PINN-GM can be trained if there exists
measurements of the spacecraft position and the corre-
sponding gravitational acceleration at that position. In
the past, these measurements have been generated offline

using previous constructed high-fidelity gravity models
(EGM-2008 for Earth, or high-fidelity shape models for
asteroids). In most circumstances, however, these offline
models do not exist, and measurements must be taken in-
situ.

DMC offers a compelling way to provide these train-
ing data. By estimating the unmodelled accelerations as
part of the state, the filter can accumulate “observations”
of the gravitational acceleration at an estimated spacecraft
position. Once a sufficient number of these observations
exist, the neural network can be updated with traditional
stochastic gradient descent using that data. Moreover, in
the recent PINN-GM-II paper it has been shown that the
model is robust to noisy training data, so even if the esti-
mates are erroneous, the PINN-GM is able to converge on
a reliable solution.

One of the advantages of approaching the gravity field
estimation problem in this way is that there is no longer a
strict sampling requirement to update the model. Spheri-
cal harmonics is prone to aliasing other harmonics if the
measurements are not properly distributed. The PINN-
GM can accept data regardless of distribution, and use
that data to improve the gravity model in whatever region
it was collected.

The other advantage to using a PINN-GM within the or-
bit determination pipeline is that it allows for the rapid dif-
ferentiation of the dynamics with respect to the spacecraft
state B 9x

Bx . Thanks to automatic differentiation, a PINN-
GM of arbitrary fidelity can be differentiated and used to
propagate the state and update the covariance. Moreover,
this approach is general such that as the gravity model im-
proves it can immediately be leveraged within the pipeline
without having to reformulate the state.

3. Problem Setup

To investigate the performance of the PINN-GM enabled
Kalman filter, a simple scenario is developed. Consider a
spacecraft orbiting a non-rotating asteroid with the shape
of 433-Eros. The spacecraft is subject only to the natural
gravitational dynamics of this artificial asteroid, produced
using the polyhedral gravity model. The initial orbital ele-
ments and the position propagated for approximately 3 or-
bit periods are shown in Table 1 and Figure 3 respectively.
In this scenario, there exists perfect range and range-rate
measurements of the spacecraft taken from an inertially-
fixed observer at a distance of approximately 0.1 AU. It is
also assumed that the bulk density / gravitational param-
eter for the asteroid in question is known a-priori. The
state, covariance, process noise matrix, and measurement
noise matrix used to initialize the filter are listed in Table
2. This scenario, while not representative of a true system,
provides a testbench to characterize the preliminary per-
formance of the PINN-GM applied to orbit determination
and gravity field estimation.
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Table 1: Initial orbital elements
Element Value Unit
a 30,000 [m]
e 0.2 [-]
i 0.1 [rad]
ω 0.0 [rad]
Ω 0.0 [rad]
M 0.0 [rad]

x

−2×104

−1×104

0

1×104

2×104

y

−2×104

−1×104

0

1×104

2×104

z
(m

)

−2×104

−1×104

0

1×104

2×104

Fig. 3: Spacecraft trajectory about the asteroid

An experiment is designed to first characterize the
PINN-GM enabled filter with respect to certain hyperpa-
rameters. Specifically, the PINN-GM is first trained on-
line using a point-mass reference model (i.e. the PINN-
GM is trained to initially mimic point mass behavior).
This filter uses dynamic model compensation to estimate
unmodelled accelerations, and once a sufficient number
of state estimates and acceleration estimates are produced,
the PINN-GM is updated using stochastic gradient decent.

The online training of the PINN-GM using the position
and DMC estimates is a nuanced process which is sen-
sitive to multiple parameters. For one, stochastic gradi-
ent decent relies on a user-defined learning rate, η, which
weights how heavily the measurements should influence
the model update step. If this learning rate is too large,
the network will disproportionally favor correctly model-
Table 2: Initial state, covariance, process noise matrix, and mea-

surement noise matrix
State Value Unit
x0 [24,000, 0, 0] [m]
v0 [0, 4.7, 4.716 ] [m/s]
w0 [0 , 0, 0] [m/s2]
Px0

diag([100, 100, 100]) [m2]
Pv0 diag([0.01, 0.01, 0.01]) [m2/s2]
Pw0

diag([1E-14 , 0, 0]) [m2/s4]
Q diag([1E-22, 1E-22, 1E-22]) [m2/s2]
R diag([1, 1E-6]) [m2] and [m2/s4]
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Fig. 4: DMC with different values of q and τ

ing the incoming data, potentially at the expense of other
regions that were trained using past data. Alternatively, if
the the learning rate is too small, the network will require
an excessive amount of data before learning the proper
dynamics.

The second parameter is how many samples should
be used in a stochastic gradient update step, i.e. what
is the mini-batch size? Large mini-batches can produce
the most representative estimates of the cost landscape,
but this can cause the networks to converge into local
minimums and intrinsically requires more measurements.
Small batch sizes have much noisier gradient descent
steps, which can cause the network to learn more slowly
albeit with greater chance of launching out of a local min-
imum into a more desirable part of the cost landscape.

The third parameter is the number of epochs used dur-
ing training. An epoch corresponds to the total number
of times the entire data set is iterated over. I.e. if a mini-
batch has size 32, but the data set has 128 samples then
4 gradient descent updates are taken in a single epoch.
The number of epochs and the learning rate have coupled
effects on one another. A small learning rate would re-
quire more epochs to achieve the same loss value as a
large learning rate and a small number of epochs. The
former would produce a more stable, but slow, learning
process; whereas the later would produce a fast and less
stable descent.

IAC-22,C1,8,2,x70686 Page 6 of 10



73th International Astronautical Congress, Paris, France.
Copyright c©2022 by the International Astronautical Federation. All rights reserved.

x

y

0

5

10

15

20

A
cc

el
er

a
ti

o
n

P
er

ce
n
t

E
rr

o
r

x

z

0

5

10

15

20

A
cc

el
er

a
ti

o
n

P
er

ce
n
t

E
rr

o
r

y

z

0

5

10

15

20

A
cc

el
er

a
ti

o
n

P
er

ce
n
t

E
rr

o
r

x

y

0

5

10

15

20

A
cc

el
er

a
ti

o
n

P
er

ce
n
t

E
rr

o
r

x

z

0

5

10

15

20

A
cc

el
er

a
ti

o
n

P
er

ce
n
t

E
rr

o
r

y

z

0

5

10

15

20

A
cc

el
er

a
ti

o
n

P
er

ce
n
t

E
rr

o
r

Fig. 5: Top Row: Point mass gravitational acceleration error. Bottom Row: PINN-GM acceleration error after trained with in-situ
DMC estimates and best performing hyperparameters. Color bar corresponds to percent error in the gravitational acceleration.
Black line is trajectory of spacecraft for 1/5th of the mission duration.

The final parameters of note are the value of τ used
within the dynamics of the noise model and q, the magni-
tude of the process noise matrix. Large values of τ assume
that the unmodelled accelerations have greater correlation
in time whereas small values assume the accelerations are
more instantaneous. Given the irregular geometries and
varying densities of the celestial body in question, one
needs to carefully consider the time scales over which the
high-order gravitational accelerations would be expected
to change by a considerable amount before selecting τ .
The parameter q is the remaining process noise left un-
modelled after DMC. Large values produce more conser-
vative state and acceleration estimates, where as too small
q can produce an overconfidence in the solution.

A hyperparameter experiment is performed which tests
a variety of combinations of the mentioned parameters for
a subset of the mission duration; specifically the PINN-
GM only learns from the DMC estimates collected during
the first two orbits. The performance of the PINN-GM
within the filter is estimated by measuring the average
percent error of the gravitational accelerations produced
along the XY, YZ, and XZ planes. For reference, the
PINN-GM trained only on a point mass reference has an
average error of 7.57%, therefore any PINN-GM model
that achieves lower error is considered to be learning a

better representation of the true gravitational dynamics.
The network hyperparameters include the learning rate,

the number of epochs run per network update, the mini-
batch size, and the type of PINN constraint used (see [15]
for details). Additionally, different values for the dynamic
model are tested (τ and q).

4. Results

First, the accuracy of the default PINN-GM trained on a
point mass reference model is explored. Figure 5 shows
the error along each cartesian plane of this model com-
pared to the truth model (a 200k facet polyhedral model
of the asteroid). At low altitudes, this model is in ex-
cess of 20% error, and at increasing altitudes transitions
towards 5% error. These high errors can become large
problems depending on the orbit of the spacecraft. Even
if the spacecraft is not performing a landing or touch-and-
go manuever, this point mass gravity model may be in-
sufficiently representative of the true system such that the
linearization applied in the filter will begin breaking down
over extended periods of time when the state deviation
grows to far from the true trajectory.

When averaged across all planes, the error of the PINN-
GM trained on a point mass reference model is 7.57%.
This average error serves as the benchmark metric by
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Fig. 6: Results of the hyperparameter search quantifying average percent error along the XY, YZ, and XZ planes.

which different hyperparameter configurations are eval-
uated. Figure 6 shows the effect of different hyperparam-
eter combinations on this metric. The first observation
from Figure 6 is that there exist hyperparameter combi-
nations that yield solutions that produce error below the
7.57%. This suggests that the PINN-GM can learn more
accurate dynamics using DMC acceleration estimates as
training data. While the most dramatic improvement only
achieves an average error of 7.30% (a 3.5% increase in
accuracy compared to the baseline), this provides the first
proof of concept that there is a viable means by which
these models can be trained.

In contrast, there are also hyperparameter combinations
which yield suboptimal performance, producing higher
average error after the network updates than the original
model. Generally these less successful models are the
result of high learning rates, combined with long train-
ing times (epochs), and small mini-batch sizes. These re-
sults are somewhat expected as small batch sizes produce
less reliable estimates of the loss landscape, and the high
learning rate and long training times allow for the weights
to update too quickly in counterproductive directions.

Other high-level observations regarding the hyperpa-
rameters include the sensitivity to the DMC hyperparam-
eters, τ and q. In general, large values of τ produced more
productive acceleration measurements for the PINN-GM
than smaller values. This suggests that longer time cor-
relation between unmodelled accelerations can generate
more stable training.

The PINN-GM that achieved the lowest error is plot-
ted in the middle row of Figure 5. The error decreases
most prominently in the YZ plane, where the trajectory
intersects the region of high-error (originally ą30%) and

reduces it down to approximately 10%. In the XY and XZ
planes, some regions show a decrease in error — namely
around the semi-minor axis of the body – whereas regions
at higher altitudes show a slight increase in error. This
increase in error is undesirable though expected. Given
that the in-situ training data is produced at low altitudes,
the PINN-GM will give preference to these samples ac-
curately at the expense of mismodeling regions for which
there is little to no data. This problem is exacerbated when
the entire mission duration is used to update the model.
Future work will investigate how to mitigate this behav-
ior.

5. Conclusion

This paper introduces the Physics-Informed Neural Net-
work Gravity Model (PINN-GM) into a Kalman filter for
small-body gravity estimation. While the preliminary re-
sults show that there is some marginal improvements to
the on-board gravity model, there are a number of sensi-
tivities of which the researcher must be attuned. Specif-
ically, the PINN-GM can produce considerably different
field representations given the same measurement when
provided different values for the network learning rate,
training epochs, and DMC characterization. This sensi-
tivity is undesirable, forcing engineers and scientists to
carefully tune the network learning parameters before de-
ployment. Despite this, there remains a number of encour-
aging outlets for future research. For one, the hyperpa-
rameter study shown in Figure 6 demonstrates that there
exists a wide range of possible parameters in which the
network can achieve better performance than the baseline
model. With further optimization and testing it is likely
that these results can be further exploited.
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73th International Astronautical Congress, Paris, France.
Copyright c©2022 by the International Astronautical Federation. All rights reserved.

In addition, higher-order forms of dynamical model
compensation have been shown to produce more reliable
estimates of high-order gravitational perturbations [23].
By incorporating such models into the filter, it is possible
that the training data used to update the on-board PINN-
GM will be of higher quality such that the gradient de-
scent is less noisy and less likely to introduce unwanted
error into the system.

Another area for future research is improving the filter
implementation. This filter implementation is not numer-
ically desirable for training neural networks. By fram-
ing the problem in a dimensionalized (as opposed to non-
dimensionalized) manner, the numerics of the algorithm
are more likely to be unstable or inaccurate. In small-
body settings, this choice can be detrimental to the ac-
curacy of the filter solutions. The unmodelled acceler-
ations in question are orders-of-magnitude smaller than
the measurements and remaining state variables. When
performing the corresponding matrix inversions for state
updates, naturally there will be a loss of precision given
such large differences in scales. One potential solution is
to use a non-dimensionalized form of the dynamics to en-
sure greater numerical stability. The other remedy is to
use alternative filter types, such as the square-root infor-
mation filter (SRIF). Using a SRIF cuts the required nu-
merical precision in half making it particularly useful for
deep space navigation. A non-dimensionalized SRIF can
therefore produce more precise acceleration predictions /
training data for the on-board PINN-GM.

Finally, in addition to continuing to improve the train-
ing pipeline, future work will investigate a more represen-
tative mission scenario. This paper focused on a largely
equatorial trajectory which makes observability of the
state and acceleration along the z-axis particularly chal-
lenging. Moreover, this scenario only simulates gravita-
tional effects on the spacecraft. Future work will inves-
tigate how these new filters perform in a more represen-
tative setting with additional perturbations like solar ra-
diation pressure, thermal radiation pressure, and N-body
effects.
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