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AAS 15-344

GYRO ACCURACY AND FAILURE SENSITIVITY OF
UNDERDETERMINED COARSE SUN-DIRECTION ESTIMATION

Stephen A. O’Keefe∗ and Hanspeter Schaub†

Coarse sun sensors are commonly used to perform coarse attitude estimation and
point a spacecraft’s solar arrays at the Sun. These sensors are attractive due to their
relative inexpensiveness, small size, and minimal power consumption. While, tra-
ditionally, these sensors are used in large quantities to ensure redundant sensor
coverage over the entire attitude sphere, this research examines underdetermined
configurations where not enough sensors are available to uniquely determine the
sun-direction vector at any one time. The sensitivities of two coarse sun sensor
based sun-direction estimation techniques, using underdetermined sensor config-
urations, to rate gyroscope noise and sensor failure are presented. The relative
performance of these schemes when using the spectrum of rate accuracy between
inertial grade and MEMS gyroscopes is examined. In addition, the sensitivity of
these methods to sensor failure is examined along with a method of improving
estimation accuracy when sensor failure occurs.

INTRODUCTION

Cosine-type Coarse Sun Sensors (CSS) output a voltage relative to the input solar irradiance and
are attractive sensors for small satellites due to their inexpensiveness, small size, and minimal power
consumption. These sensors are often used, in concert with other sensors,1, 2 during launch deploy-
ment to accurately point a spacecraft’s solar arrays at the Sun to achieve power positiveness or to
perform coarse attitude determination. The size and cost requirements of increasingly popular small
satellites are a driving factor for making the most of small inexpensive sensors. There is significant
research into improving sun sensors; high accuracy sun sensors combine multiple measurements3

or use Charge-Couple-Devices (CCDs)4 to determine the direction of the Sun, but investigations
into maximizing the performance of existing sensors are valuable and needed.

The performance of two different methods for CSS sun-direction estimation are examined for
various levels of rate gyroscope accuracy, ranging from high-performance inertial units to inex-
pensive MEMS gyroscopes, and in the face of sensor failure. The first scheme is a deterministic
single-point estimator that uses a combination of weighted least squares and minimum norm esti-
mation. The second scheme is based on a hybrid continuous-discrete extended Kalman filter. Both
methods use a state vector composed of a scaled sun-direction vector that is insensitive to common
sensor calibration errors and neither requires knowledge of the spacecraft’s inertial position in order
to estimate a sun-direction vector. It has been previously shown5 that these two methods, used in
conjunction with a control algorithm, are capable of quickly and accurately pointing a spacecraft’s
solar arrays at the Sun despite significant state and measurement biases and noise. Reference 5 also
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shows how both the Weighted Least Squares Minimum Norm (WLSMN) and Extended Kalman
Filter (EKF) methods are capable of performing simultaneous sun-direction estimation and control
even if there is no rate measurements available. However, performance is significantly reduced. It
is desirable to be able to ascertain the level of gyroscope needed in order to achieve power-positive
mission attitude requirements.

This paper examines the sensitivity of these schemes to rate gyroscope noise to determine the nec-
essary sensor accuracy to provide robust system performance. In addition, while there is literature
describing the best approaches for placing sensors to guarantee redundant sensor coverage over the
entire attitude sphere,6, 7 this paper examines the performance of partially underdetermined∗ sensor
configurations suffering from known sensor failure. Such a configuration is a possibility for both
inexpensive small satellites and larger satellites looking to extend mission life as components fail.

An overview of the CSS model is presented with details about the Earth albedo model used.
Next the two estimation techniques used are reviewed. Numerical simulation results are presented
showing the performance of the EKF based method for varying levels of rate gyro accuracy and
these are compared to the weighted least squares method results. Finally, the performance of both
methods in the face of a known single CSS sensor failure is shown.

COARSE SUN SENSORS

The output voltage of a CSS can be modeled, assuming Lambert’s cosine law,8 as

V = C

(
nT

s

‖s‖
− Fα
F�

+ νV

)
(1)

where n is the unit surface normal of the CSS, s is the sun-direction vector in the body frame, C
is a calibration factor, and νv is a zero-mean Gaussian random variable included to compensate for
sensor noise and model errors. The flux seen by the CSS due to the diffuse reflectance of the Earth
is modeled as1, 9

Fα = −
F�
π

∫∫
A

α∥∥rAB∥∥2
(
nTA

s⊕∥∥s⊕∥∥
)(

nTA
rAB∥∥rAB∥∥

)(
nT

rAB∥∥rAB∥∥
)
dA (2)

where F� is the solar irradiance in the vicinity of the Earth; A is the surface of the Earth visible
to the spacecraft that is also illuminated by the Sun; nA is the unit normal of a differential area of
A; s⊕ is the direction vector from the Earth to the Sun; rAB is a vector from dA to the body of the
spacecraft; and α is the albedo, or reflectivity coefficient, of dA.

The value of the Earth’s albedo coefficient is highly dependent on latitude and longitude, weather
patterns, and seasonal changes. Five years of daily measurements, over a 5◦ × 5◦ latitude longitude
grid, are used to calculate mean and standard deviation values that are used in numerical simulations
to create statistically accurate albedo values. The albedo data used in this study were acquired as
part of the NASA’s Earth-Sun System Division and archived and distributed by the Goddard Earth
Sciences (GES) Data and Information Services Center (DISC) Distributed Active Archive Center
(DAAC).
∗In the absence of noise, the sun direction can be uniquely determined at a given time if the Sun is observed by three

or more CSS. An underdetermined configuration is one in which three sensor coverage is not available over the entire
attitude sphere.
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It is assumed the true unit direction vector for a CSS can be spherically expressed in the spacecraft
body frame as

Bn =
[
cos
(
φ+ φβ

)
cos
(
θ + θβ

)
cos
(
φ+ φβ

)
sin
(
θ + θβ

)
sin
(
φ+ φβ

)]T
(3)

where θ is the azimuth angle, measured positive from the body +x-axis around the +z-axis, and φ
is the elevation angle, measured positive toward the body +z-axis from the x-y plane, of the CSS
unit direction vector; and θβ and φβ are uncorrelated random constants

E
[
θβ
]
= 0, E

[
θ2β
]
= σ2θβ

, E
[
φβ
]
= 0, E

[
φ2β
]
= σ2φβ

, E
[
φβθβ

]
= 0 (4)

corresponding to misalignment errors. Assuming ψ is the half angle of the CSS field of view,
Equation (1) becomes

V = C · Cκ (Vd + Vα + νV )

Vd =

{
nT s
‖s‖ if nT s

‖s‖ ≥ cosψ

0 if nT s
‖s‖ < cosψ

Vα =


− 1
π

∫∫
A

α∥∥rAB∥∥2
(
nTA

s⊕∥∥s⊕∥∥
)(

nTA
rAB∥∥rAB∥∥

)(
nT

rAB∥∥rAB∥∥
)
dA if B 6∈ S

0 if B ∈ S

(5)

where B is the spacecraft’s position in orbit, S is the region of the spacecraft’s orbit in the shadow
of the Earth, and Cκ is a constant random scale factor

E[Cκ] = 1, E
[
C2
κ

]
= σ2Cκ (6)

included to account for error in the knowledge of the calibration coefficient. Over time, radiation
and other factors may cause the parameter Cκ to change, but it is assumed to be constant over short
time scales.

The spacecraft used for this study is assumed to be equipped with eight cosine-type CSS in a
dual pyramid configuration. Eight sensors with 120◦ edge-to-edge fields of view are arranged on
the +z and −z faces of the spacecraft oriented 90◦ apart and angled 45◦ from the body z axis. The
−z facing sensors are rotated by 45◦ about the z axis with respect to the +z facing sensors. An
illustration of this configuration and the associated sensor map, shown using a Lambert cylindrical
area preserving projection,10 are shown in Figure 1.

SUN-DIRECTION ESTIMATION

It is important to note that accounting for the effects of Earth albedo in the measurement model of
the CSS requires both an inertial reference sun-direction vector and a spacecraft position estimate.
It is assumed here as a worst-case scenario that this information is not available; a situation that
might occur immediately after launch vehicle separation before ground communication has been
established. Without the ability to model the Earth’s albedo its impact on CSS measurements is
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(a) Schematic of spacecraft.
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(b) CSS coverage map.

Figure 1: Illustration of spacecraft, with CSS unit vectors, for an offset dual pyramid configuration
and the associated coverage map.

treated as a systematic bias Vαβ and Equation (5) is modified to

V = C · Cκ
(
Vd + Vαβ

+ νV

)
Vd =

{
nT s
‖s‖ if nT s

‖s‖ ≥ cosψ

0 if nT s
‖s‖ < cosψ

. (7)

Despite this significant assumption, the estimation algorithms developed here are shown to perform
coarse sun-direction estimation adequate for satellite health monitoring and safe-mode maneuvering
to power-positive orientations.

WEIGHTED LEAST SQUARES MINIMUM NORM (WLSMN) METHOD

Assuming the irradiance recieved due to albedo is small∗, and that the common calibration factor
C is not known, Equation (7) can be written in terms of a scaled sun-direction vector d ≡ Cs asV1...

VN

 =

 Ĉκ1n̂1
...

ĈκN
n̂N

d+

 ν1...
νN

 (8)

If some estimate of the individual biases are available, from ground or on-orbit calibration, they can
be substituted instead of the nominal values of Ĉκi = 1.0, θ̂β = 0.0, and φ̂β = 0.0. Noting this
measurement model is of the same form as the tradition least squares problem, if there are at least
three measurements, the best estimate of the state is given by the least squares solution11

x̂ =
(
HTWH

)−1
HTWỹ (9)

∗Assuming the bias due to albedo is small is a significant assumption, however, this leads to a linear form and numer-
ical Monte Carlo results show that the resulting coarse pointing performance, when coupled with a control algorithm, is
sufficient for coarse sun pointing.
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where W is a diagonal weighting matrix in which the weights of the individual CSS are set equal
to their output voltage. If, however, there are only one or two observations the system is underde-
termined and the minimum norm criterion11

x̂ =HT
(
HHT

)−1
ỹ (10)

is used to determine a unique solution.

EXTENDED KALMAN FILTER (EKF) METHOD

The second estimation method is based on an extended Kalman filter approach with a state vector
chosen to be the scaled sun-direction vector d in the body frame

x(t) =
[Bd(t)] (11)

The reader is referred to References 11, 12, and 13 for more information on the EKF equations
and their derivation. It is assumed that angular velocity measurements that follow Farrenkopf’s
approximation14

Gω̃(t) = [GB] Bω(t) + Gωβ(t) +
Gηω(t) (12a)

Gω̇b(t) =
Gηωβ

(t) (12b)

are used for propagation where Bω is the true body angular velocity in the body frame, Gω̃ is the
measured body angular velocity in the frame of the rate gyro, [GB] maps vectors written in the body
frame B into vectors written in the gyroscope frame G, Gωβ is the measurement bias, and Gηω and
Gηωβ

are zero-mean Gaussian white-noise processes.

The scaled sun-direction vector dynamics can be written, assuming the inertial sun vector is
constant, as

Bd
dt
[Bd(t)] = Bd(t)× [BG]

(Gω̃(t)− Gωβ(t)− Gηω(t))− Bηs(t) (13)

where ηs is a zero-mean Gaussian white-noise process with E
[
ηs (t)ηs (τ)

T
]
= σ2sδ (t− τ) I3×3.

Given the non-linear dynamics and measurement equations

ẋ(t) = f(x(t) ,u(t) ,η(t) , t) , η(t) =
[BηTs (t) GηTω (t)

]T (14a)

yk = hk(xk,νk, tk) , νk =
[
νV,k

]
(14b)

the key values for the implementation of this EKF are given by

F (t) ≡ ∂f

∂x

∣∣∣∣
x̂,u

=
[
−
[
[BG] Gω̃(t)

]
×

]
(15a)

G(t) ≡ ∂f

∂η

∣∣∣∣
x̂,u

=
[
−I3×3 −

[B
d̂(t)

]
×
[BG]

]
(15b)

Hk ≡
∂hk
∂xk

∣∣∣∣
x̂−k

=
[
H1,k · · · HN,k

]T
, Hi,k =


Ĉκi
Bn̂i if n̂Ti d̂k

‖n̂i‖‖d̂k‖
≥ cosψi

0 if n̂Ti d̂k
‖n̂i‖‖d̂k‖

< cosψi

(15c)

Mk ≡
∂hk
∂νk

∣∣∣∣
x̂−k

=
∥∥∥d̂k∥∥∥diag(Ĉκ) (15d)
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where [·]× represents the skew-symmetric cross product matrix given by

a =

a1a2
a3

 , [a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 .
Note that if the current estimate of the sun direction is not within the field of view of the sensor the
corresponding Kalman gain is zero. This results in strong measurements due to direct sunlight being
ignored if the current estimate of the sun direction is in significant error. Because the EKF method
is initialized using the WLSMN method, it is possible to have an initial guess with such error,
therefore, the measurement model is modified to process any measurements above a threshold, 0.5
is used here, even if the current estimate does not predict the sensor should be receiving input.

NUMERICAL SIMULATION

A spacecraft is modeled in a 90◦ inclined, circular, 400 km altitude orbit starting on 2015 June
1, 00:00 UTC. The spacecraft is assumed to have a mass of 100 kg, a drag area of approximately
0.38m2, a ballistic coefficient of 2.1, and a cross sectional area of 1.3m2 subject to SRP. Accel-
erations due to J2 through J6 Earth zonal gravitational perturbations, atmospheric drag, and solar
radiation pressure (SRP) are modeled. This orbit has a period of approximately 92.5min and the
spacecraft spends approximately 56.6min in view of the Sun per orbit. The relative positions of the
Earth and Sun are simulated using ephemeris from the NASA Navigation and Ancillary Information
Facility (NAIF) SPICE toolkit.15

The spacecraft’s initial true anomaly and attitude are uniformly distributed amongst all possible
values and its initial angular velocity is uniformly distributed about all three axes with a max-
imum value of 2.0 ◦ s−1. The spacecraft is assumed to have an inertia matrix given by [I] =
diag

[
10.5 8.0 6.75

]
kgm2, and four reaction wheels for control purposes. In the spacecraft

body frame the spin, or alignment, axes gs for these reaction wheels are given by

Gs =
[
gs1 . . . gs4

]
=

 0 0 cos(45◦) − cos(45◦)
cos(45◦) sin(45◦) − sin(45◦) − sin(45◦)
sin(45◦) − cos(45◦) 0 0


Each reaction wheel is assumed to have a spin-axis inertia of Js = 0.001 kgm2 and a maximum
torque of 30mNm. A nonlinear three-axis attitude control, as documented in Reference 16 and
explained in Reference 5, is used simultaneously in conjunction with the estimators to damp out
any angular velocity and orient the spacecraft toward the estimated sun direction.

The CSS alignment azimuth and elevation standard deviations are set to σθβ = σφβ
= 1.0◦.

All CSS are assumed to be affected by a common uniformly distributed calibration error between
0% to 50%, and normally distributed multiplicative errors from this common value with standard
deviations of 2.0%. CSS measurements are processed at 2Hz and white Gaussian noise is added to
each sensor with a standard deviation of 0.05.

Sensitivity to Rate Gyroscope Accuracy

Table 1 lists the values of rate gyro accuracy used in this study. These values are taken from
a table of generally accepted performance grades listed in References 17 and 18. The angular
acceleration white-noise process variance σωb is computed from the bias stability typically quoted
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by gyro manufacturers as σ2ωb =
(
2/τωr

)
σ2ωr , where τωr is the specified drift stability interval and

ωr = ω(t0).
19

Table 1: Rate gyro accuracy levels used.

Parameter Units Inertial Intermediate Moderate Low

Rate Noise (σω)
◦/
√
s 10−6 10−4 10−2 10−1

Bias Stability
(
σωr

)
◦ s−1 10−8 10−6 10−3 10−2

In order to ground the values shown in Table 1, data from a smartphone equipped with an In-
venSense MPU6515 MEMS gyroscope is analyzed. According to the manufacturer specifications20

the gyro is expected to have a rate noise spectral density of 0.01 ◦/
√
s. The calculated noise statis-

tics for the actual gyro are shown in Table 2. As can be seen the measurement rate noise spectral
density is within the manufacturer specification and the noise statistics place this gyro between the
intermediate and moderate performance grades listed in Table 1.

Table 2: Calculated rate gyro noise statistics for InvenSense MPU6515 gyroscope.

Axis σω, ◦/
√
s σωr , ◦/s3/2 σωβ

, ◦ s−1

X 0.0051 0.0034 0.00068
Y 0.0059 0.0035 0.00062
Z 0.0052 0.0025 0.00076

Average 0.0054 0.0031 0.00068

The results of a 1000 case Monte Carlo analysis in which the level of gyroscope accuracy is varied
are shown in Figure 2. The calculated 3σ error bounds of the total angular error in the estimate of
the scaled sun-direction vector are shown Figure 2a and the total time that the spacecraft spent with
an estimation error in excess of 10◦ is shown in Figure 2b. It should be noted that the WLSMN
method does not use the gyroscope measurements for propagation. Because the rates are only used
by the control to damp out any rotational motion there is no significant difference in the WLSMN
method when altering the gyro performance, therefore, only the results of the intermediate level
gyro accuracy are shown.

As can be seen, the EKF method generates nearly identical results using the inertial and in-
termediate grade rate gyro performance levels. The performance of the simultaneous estimation
and control of the EKF method only noticeably suffers when the rate gyro is reduced to low level
accuracy. Even when reduced to levels lower than available in mass market commercial MEMS
gyroscopes, the EKF method outperforms the WLSMN method. However, the WLSMN is still able
to achieve sun pointing from an unknown tumble in time to spend the majority of its orbit pointed
to within a stringent 10◦ threshold.

The total calculation time of the propagation and measurement updates are computed for both
methods over the entire 100min simulation. The average and standard deviations of the compu-
tation times, for C code compiled on a Windows i7 2.5GHz machine, are shown in Table 3. The
EKF propagation update is computed using an RK4 integrator. While this is not flight hardware, the
relative difference shows there is very little difference in estimation time, but the WLSMN method
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Figure 2: 1000 case Monte Carlo analysis results for varying levels of gyro accuracy.

Table 3: Averages and standard deviations for computation times of various filters.

Method Propagation Update, µs Measurement Update, µs

EKF 1.74± 0.57 1.28± 1.09
WLSMN - 1.21± 0.52

benefits from a lack of propagation.

Sensitivity to Sensor Failure

When using an underdetermined configuration, as shown in Figure 1, sensor failure is a key
concern. Figure 3 shows a coverage map for when CSS 1 fails. As can be seen, a single sensor
failure results in a significant area with zero sensor coverage and reduced coverage by three or more
sensors. While the single-point estimation scheme will obviously fail when the Sun is this region of
zero coverage, the EKF based approach is capable of propagating through such a dead zone given
sufficient prior measurements. It is possible that, because regulation control is being performed
simultaneous to sun-direction estimation, the spacecraft’s angular velocity can be brought to zero
with the spacecraft in an attitude where the Sun is only visible to a failed sensor. This is easily
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avoided by delaying all control efforts when no sensors are reporting measurements above some
threshold, 0.5 is used here. The cases that use this additional control delaying logic are labeled as
“Delayed Ctrl” in the Monte Caro analysis plots.
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(a) Schematic of spacecraft, θ = 45◦.
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(b) CSS coverage map.

Figure 3: Illustration of spacecraft with CSS unit vectors ni for a dual pyramid configuration with
a single sensor failure and the associated CSS coverage map shown on a cylindrical projection.

The results of a 1000 case Monte Carlo analysis run simulating a known failure of CSS 1 are
shown in Figures 4 to 6. The calculated 3σ error bounds of the total angular error in the estimate of
the scaled sun-direction vector are shown along with the total time that the spacecraft spent with an
estimation error in excess of 10◦. Results for the EKF method are shown for the intermediate and
low gyro levels, and the WLSMN estimator results are shown for intermediate level gyro perfor-
mance. The nominal full sensor suite performances are reproduced from Figure 2 for comparison.

The WLSMN estimation method suffers significantly with a single sensor failure as compared
to the nominal performance. Even though all cases are able to point in the general direction of the
Sun, many fail to stably maintain pointing accuracy and spend the majority of the orbit pointed
greater than 10◦ away from the Sun. Unfortunately, delaying the control when no CSS are reporting
measurements does little to improve the sun-pointing performance.

The EKF method shows better results. The majority of the intermediate level gyro cases spend
fewer than 6min outside the 10◦ threshold. However, several cases never achieve sun-pointing. In
these cases, the control halts all angular motion and the spacecraft comes to rest in an attitude with
the Sun only in view of the failed sensor. Applying the delayed control logic helps avoid this with
only two cases spending longer than 6min with an error greater than 10◦. Similar trends are seen
when using the EKF method with low level rate gyros. The performance is degraded compared
to the nominal full sensor suite, but all cases quickly converge and spend the majority fo the orbit
pointed within 10◦ of the Sun.

CONCLUSION

This paper examines the sensitivity of two sun-direction estimation schemes, both using under-
determined sensor configurations, to rate gyroscope noise and known CSS sensor failure. Both
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Figure 4: 1000 case Monte Carlo analysis results for WLSMN method with known single CSS
failure and intermediate gyro performance.

estimation techniques, one a single-point estimator and one a sequential estimator, provide an esti-
mate of the sun-direction vector in the body frame without any knowledge of a spacecraft’s inertial
position despite significant noise and without modeling the input due to Earth’s albedo. Numerical
simulations shown that sun pointing, to less than 10◦ accuracy, is quickly achieved by both methods
even using rate gyroscope with performance lower than that available in mass market commercial
electronics MEMS gyroscopes. Note that this results is achieved despite simulating sensor input bi-
ases due to Earth’s albedo and sensor alignment corruptions. The weighted least squares minimum
norm method has half the computation cost of the extended Kalman filter approach. However, the
performance of the WLSMN method degrades more severely in the face of known sensor failure.
The EKF method is shown to lose a little accuracy if the sensor failure is known, but still quickly
converges to a sun-pointed attitude. Future work will investigate methods to autonomously detect
sensor failure in order to take advantage of this lack of performance degradation immediately post
launch vehicle separation if a sensor were to fail.
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