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AAS 15-392

ON-ORBIT COARSE SUN SENSOR CALIBRATION SENSITIVITY
TO SENSOR AND MODEL ERROR

Stephen A. O’Keefe∗ and Hanspeter Schaub†

The size and budgetary limitations of increasingly popular smaller satellites as a
lower cost alternative to traditional satellites are a driving factor for making the
most of inexpensive components and sensors. One example of an attractive, inex-
pensive sensor is the coarse cosine-type sun sensor (CSS) that outputs a voltage
relative to the input irradiance. CSS are often used, in combination with other
sensors, to perform attitude determination. The accuracy of these estimation tech-
niques can be greatly improved by on-orbit calibration of the CSS. However, the
requirements for achieving high-accuracy on-orbit calibration can often necessi-
tate significant ground-based support. A Modified Rodrigues Parameter calibra-
tion filter, based on an extended consider Kalman filter, that uses an albedo model
is presented along with a second filter in which the CSS input due to albedo is
treated as a bias. The accuracy of these two methods and their relative compu-
tational cost is evaluated. It is found that the estimation schemes are minimally
impacted by reduced orbit reference sun-direction accuracy, and that a lower res-
olution albedo model can significantly reduce computation time without overly
sacrificing accuracy.

INTRODUCTION

In recent years there has been a significant increase in interest in smaller satellites as a lower cost
alternative to traditional satellites. The size and cost limitations of these satellites are a driving factor
for making the most of inexpensive components and sensors. Cosine-type coarse sun sensors (CSS)
that output a voltage relative to the input irradiance are an example of such a small, inexpensive
sensor. CSS are often used in concert with other sensors1, 2 to perform coarse attitude determination
or initially point a spacecraft’s solar arrays at the Sun. On-orbit calibration of these sensors can
significantly improve the accuracy of attitude estimation techniques,3 but calibration can involve
significant computational and memory requirements.

As noted by Springmann, literature on the on-orbit calibration of sun sensors is sparse.3 Or-
tega, López-Rodrı́guez, et. al., and Wu and Steyn both present calibration of 2-axis sun sensors
specific to an individual model.4, 5 Springmann presents a CSS calibration filter capable of calcu-
lating CSS scale factor and misalignment.3 The filter is a quaternion based extended Kalman filter
(EKF) approach that assumes the albedo contributions to the EKF Jacobians are small, and the filter
performance is shown for flight data.

Presented here are two CSS calibration filters, formulated using Modified Rodrigues Parameters
(MRPs) and based on an extended consider Kalman filter (ECKF) approach. A MRP based attitude
estimation filter is used here as they have been shown to have equal accuracy to and faster initial
∗Graduate Research Assistant, Aerospace Engineering Sciences, University of Colorado, Boulder, CO
†Professor, Aerospace Engineering Sciences, University of Colorado, Boulder, CO, AAS Fellow
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convergence than quaternion filters with slightly faster numerical evaluation and simpler coding
implementation.6 An extended consider Kalman filter is used, instead of a traditional EKF, in order
to account for known biases in the measurement model. In addition, the impact of the irradiance
due to albedo is included to first order in the system Jacobians. The first filter uses an Earth albedo
model to estimate the irradiance received by a CSS due to Earth’s albedo, whereas the second treats
the irradiance due to albedo as an unmodeled bias that is considered. The goal is to compare the
relative accuracy and computation time of the two methods in order that the amount of ground-based
support required by small satellites may be reduced and autonomy increased.

Numerical simulations are used to demonstrate the performance of the two filters. Significant
noise and biases are added to the simulation to make it as realistic as possible. In particular, Refer-
ences 7 and 8 show that simultaneous sun-direction estimation and pointing can be performed when
scale factor uncertainties are normally distributed with a standard deviation of 2 %. Here those scale
factors are distributed by 30 %, an order of magnitude larger. For comparison, the total solar irradi-
ance only changes by 0.1 % between minimum and maximum solar activity, and has only changed
by 0.09 % over the last 400 years.9 Additionally, photodiode calibration is typically on the order of
5 % for visible light. If calibration to a few percent can be achieved for a large initial uncertainty,
such a filter could also be used for autonomous fault detection of CSS as having a good calibration
and covariance measure of the CSS would help detect if a sensor is not operating properly.

An overview of the coarse sun sensor model used is presented first, along with a description of
the CSS configuration used in this study. The extended consider Kalman filter is briefly reviewed.
A full calibration filter formulation is presented followed by a reduced filter in which the irradiance
due to albedo is treated as a bias. Finally, the accuracy and computation time of the algorithms
are compared and their sensitivity to reduced fidelity orbit knowledge and sun-direction reference
model are illustrated through numerical simulation.

COARSE SUN SENSORS

Assuming Lambert’s cosine law,10 the output voltage of an individual CSS can be modeled as

V = C

(
nT

s

‖s‖
− Fα
F�

+ νV

)
(1)

where n is the unit surface normal of the CSS, s is the sun-direction vector in the body frame, C
is a calibration factor, and νV is a zero-mean Gaussian random variable included to compensate for
sensor noise and model errors. The flux seen by the CSS due to the diffuse reflectance of the Earth
is modeled as1, 11

Fα = −
F�
π

∫∫
A

α∥∥rAB∥∥2
(
nTA

s⊕∥∥s⊕∥∥
)(

nTA
rAB∥∥rAB∥∥

)(
nT

rAB∥∥rAB∥∥
)

dA (2)

where F� is the solar irradiance in the vicinity of the Earth; A is the surface of the Earth visible
to the spacecraft that is also illuminated by the Sun; nA is the unit normal of a differential area of
A; s⊕ is the direction vector from the Earth to the Sun; rAB is a vector from dA to the body of the
spacecraft; and α is the albedo, or reflectivity coefficient, of dA.

The value of the Earth’s albedo varies significantly with position, and due to seasonal, ground
cover, and cloud cover changes, therefore, daily measurements from 2000 to 2005, corresponding to
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Figure 1: Mean reflectivity of Earth as measured by TOMS mission between 2000 and 2005.

a 1◦×1.25◦ latitude longitude grid, are used to calculate mean and standard deviation values, shown
in Figure 1. The data used in this study to model the Earth’s albedo constant were acquired as part of
the NASA’s Earth-Sun System Division and archived and distributed by the Goddard Earth Sciences
(GES) Data and Information Services Center (DISC) Distributed Active Archive Center (DAAC).
These values are used to generate statistically accurate values for the Earth’s albedo coefficient used
in the numerical simulations.

Assuming rotation about the normal of the CSS does not significantly change the output of the
sensor∗, the true unit direction vector for a CSS can be spherically expressed in the spacecraft body
frame as

Bn =
[
cos(φ) cos(θ) cos(φ) sin(θ) sin(φ)

]T (3)

where θ is the azimuth angle, measured positive from the body +x-axis around the +z-axis, and φ
is the elevation angle, measured positive toward the body +z-axis from the x-y plane, of the CSS
direction vector. Accounting for field of view limitations of actual hardware, Equation (1) becomes

V = C (Vd + Vα + νV )

Vd =

{
nT s
‖s‖ if nT s

‖s‖ ≥ cosψ

0 if nT s
‖s‖ < cosψ

Vα =


− 1
π

∫∫
A

α∥∥rAB∥∥2
(
nTA

s⊕∥∥s⊕∥∥
)(

nTA
rAB∥∥rAB∥∥

)(
nT

rAB∥∥rAB∥∥
)

dA if B 6∈ S

0 if B ∈ S

(4)

where ψ is the half angle of the CSS field of view, B is the spacecraft’s position in orbit, and S is
the region of the spacecraft’s orbit in the shadow of the Earth.

The spacecraft used for this study is assumed to be equipped with eight cosine-type CSS in a
dual pyramid configuration. Eight sensors with 120◦ edge-to-edge fields of view are arranged on
∗Test data from a heliostat shows there is some variability in the output of a sensor corresponding to rotation about

the normal vector of the CSS; however, the magnitude of this variability is small.
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the +z and −z faces of the spacecraft oriented 90◦ apart and angled 45◦ from the body z axis. The
−z facing sensors are rotated by 45◦ about the z axis with respect to the +z facing sensors. An
illustration of this configuration is shown in Figure 2a.
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(a) Schematic of spacecraft.
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(b) CSS coverage map.

Figure 2: Illustration of spacecraft, with CSS unit vectors, for an offset dual pyramid configuration
and the associated coverage map.

Figure 2b shows the number of CSS to which the Sun is visible for any relation of the Sun with
respect to the spacecraft. Note that the fields of view of the CSS are clipped at the local-horizontal
plane by the spacecraft structure and solar panel arrays. A Lambert cylindrical area preserving
projection12 is used so as to give a fair relative area comparison of the regions of coverage.

COARSE SUN SENSOR CALIBRATION

It has been shown that CSS can be calibrated to account for scale factor and alignment errors
using a quaternion based EKF.3 However, this approach is computed by ground-based support using
a ground-based orbit solution. In order to reduce mission costs it would be highly valuable if such
calibration could be carried out autonomously on-board a spacecraft. With the computational and
memory limitations of small satellites it is important to consider the level of accuracy needed and
use an appropriate estimation technique. An overview of the continuous-discrete extended consider
Kalman filter is presented, followed by the equations specific to this application for both a full and
reduced calibration filter.

Continuous-Discrete Extended Consider Kalman Filter

Initially presented by Schmidt,13 the consider Kalman filter formulation here is adapted from
References 14 and 15. Consider a system with the augmented state vector given by

z(t) =

 x(t)
βη(t)

βν(t)

 (5)
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where x is the vector of states to be estimated, βη is a random zero-mean constant dynamic model
bias with

E
[(
β̂η(t)− βη(t)

)(
β̂η(τ)− βη(τ)

)T]
= Bη(t) δ (t− τ) (6a)

E
[
(x̂(t)− x(t))

(
β̂η(τ)− βη(τ)

)T]
= L(t) δ (t− τ) (6b)

and βν is a random zero-mean constant measurement equation bias with

E
[(
β̂ν(t)− βν(t)

)(
β̂ν(τ)− βν(τ)

)T]
= Bν(t) δ (t− τ) (7a)

E
[
(x̂(t)− x(t))

(
β̂ν(τ)− βν(τ)

)T]
= Λ(t) δ (t− τ) . (7b)

It is assumed the bias vectors are uncorrelated with either the measurement or dynamic process
noise. Similar to the augmented state vector, the covariance matrix can be written in block form as

Pz(t) = E
[
(ẑ(t)− z(t)) (ẑ(t)− z(t))T

]
=

Px(t) L(t) Λ(t)
LT (t) Bη(t) 0

ΛT (t) 0 Bν(t)

 . (8)

The continuous-time state dynamics are assumed to be of the form

ż(t) = f(z(t) ,u(t) ,η(t) , t) (9)

where u(t) is the control input, η(t) is continuous-time zero-mean white Gaussian process noise
with spectral densityQ(t). The state covariance propagation equations are written as

Ṗx(t) = F (t)Px(t) + Px(t)F T (t) + S(t)LT (t) +L(t)ST (t) +G(t)Q(t)GT (t) (10a)

L̇(t) = F (t)L(t) + S(t)Bη(t) (10b)

Λ̇(t) = F (t) Λ(t) (10c)

Ḃη = 0 (10d)

Ḃν = 0 (10e)

where

F (t) =
∂f

∂x

∣∣∣∣
ẑ,β̂η ,u

, S(t) =
∂f

∂βη

∣∣∣∣
ẑ,β̂η ,u

, G(t) =
∂f

∂η

∣∣∣∣
ẑ,β̂η ,u

. (11)

The discrete-time measurements are assumed to be of the form

yk = h(zk,uk,νk, tk) (12)

where νk is discrete-time zero-mean Gaussian white-noise with covariance Rk. The measurement
update equations are given by

P+
x,k = P−x,k −K

∗
x,kWkK

∗T
x,k (13a)

L+
k =

(
I −K∗x,kHk

)
L−k (13b)

Λ+
k =

(
I −K∗x,kHk

)
Λ−k −K

∗
x,kJkBν (13c)

B+
η = B−η (13d)

B+
ν = B−ν (13e)
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where

Hk =
∂hk
∂xk

∣∣∣∣
x̂−k ,β̂

−
ν,k

, Jk =
∂hk
∂βν

∣∣∣∣
x̂−k ,β̂

−
ν,k

, Mk =
∂hk
∂νk

∣∣∣∣
x̂−k ,β̂

−
ν,k

(14)

and

K∗x,k =
(
P−x,kH

T
k + Λ−k J

T
k

)
W−1 (15a)

Wk = HkP
−
x,kH

T
k + Jk

(
Λ−k
)T
HT
k +HkΛ

−
k J

T
k + JkBνJ

T
k +MkRkM

T
k . (15b)

Full CSS Calibration Filter

The full CSS calibration filter assumes the spacecraft has CSS, inertial attitude, and angular rate
measurements available, as well as an orbit solution and an estimate of the reference Earth-Sun
vector. The calculation of the reference Earth-Sun vector requires the current Julian date. The state
vector and process noise vectors are set to

x(t) =


σ(t)
Gωβ(t)

C(t)
θ
φ

 , η(t) =

 Gηω(t)
Gηωβ

(t)

ηC(t)

 (16)

where σ(t) is the MRP attitude description of the spacecraft, θ is a vector of CSS azimuth angles,
and φ is a vector of CSS elevation angles.

The rate gyro measurement are assumed to follow Farrenkopf’s approximation16

Gω̃(t) = [BG]
(Gω(t) + Gωβ(t) + Gηω(t)

)
(17a)

ω̇β(t) = ηωβ
(t) (17b)

where a left superscript G indicates a quantity expressed in the rate gyro frame; [BG] is the DCM
describing the rotation from the rate gyro frame to the spacecraft body frame; ω̃(t) is the sensed
angular velocity; ω(t) is the true angular velocity; ωβ(t) is the measurement bias drift, modeled
as a rate random walk process; and ηω(t) and ηωβ (t) are zero-mean Gaussian rate and angular
acceleration, respectively, white-noise processes.

The MRP dynamics are given by

σ̇(t) =
1

4
[B(σ(t))] [BG]

(Gω̃(t)− Gωβ(t)− Gηω(t)
)

(18)

where
[B(σ)] =

[(
1− σTσ

) [
I3×3

]
+ 2 [σ]× + 2σσT

]
. (19)

The individual sensor calibration factors C(t) are assumed to be governed by

Ċ(t) = ηC(t) . (20)

It is expected over time the values of C will slowly decrease as CSS degrade due to radiation. For
short time scales it is expected to remain constant and is modeled as having a random walk as a
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worst case analysis. Defining the best estimate of the true spacecraft angular velocity in the body
frame as

Bω̂(t) = [BG]
(
Gω̃(t)− Gω̂b(t)

)
(21)

the pertinent propagation Jacobians are given by

F (t) =

1
2

(
σ̂Bω̂T + Bω̂σ̂T −

[
Bω̂
]
×

+ σ̂T Bω̂I3×3

)
−1

4 [B(σ)] [BG] 03×3N

0(3+3N)×3 0(3+3N)×3 0(3+3N)×3N

 (22a)

G(t) =


−1

4 [B(σ)] [BG] 03×3 03×N
03×3 I3×3 03×N
0N×3 0N×3 IN×N
02N×3 02N×3 02N×N

 (22b)

where σ̂ is the current best estimate of the attitude MRP, and N is the total number of CSS. The
block structure of the Jacobians, particularly the sections equal to zero, should be noted when im-
plementing the state update in order to reduce the total computations necessary.

As noted previously, it is assumed direct measurements of the body’s attitude, via a star tracker
or other generic attitude sensor, are available in addition to CSS measurements. Because these
measurements may be sampled at different frequencies, and their noise values are uncorrelated,
they are presented here as separate measurement updates.

The attitude measurements are modeled by

yk = σk + νσ,k (23)

where νσ,k is discrete-time white noise with covariance Rσ,k. The measurement update Jacobians
for these attitude measurements are given by

Hk =
[
I3×3 03×(3+3N)

]
, Jk = 0, Mk = I3×3. (24a)

The CSS measurement model given by Equation (4) is modified so that it is written in terms of
the chosen state vector. It is assumed that the spacecraft has some estimate of the Earth-Sun vector
s⊕ and its own position relative to the Earth rB . The actual sun-direction vector can be written as

Bs = [BN ]
N(
s⊕ − rB

)
(25)

where rB is the actual position of the spacecraft relative to the Earth, s⊕ is the actual direction
vector from the Earth to the Sun, and the direction cosine matrix [BN ] is written in terms of the
attitude MRP as

[BN ] =
[
I3×3

]
+

8 [σ]2× − 4
(
1− σ2

)
[σ]×

(1 + σ2)2
(26)

where σ2n =
(
σTσ

)n. Because the estimation algorithm is assumed to only have estimates of the
spacecraft position and Earth-Sun reference vector, the best estimate of the sun-direction vector is
given by

Bŝ = [BN ]
N(
ŝ⊕ − r̂B

)
(27)

7



where rB = r̂B − rBβ , rBβ is a bias in the uncertainty in the spacecraft position with

E
[(
r̂Bβ
− rBβ

)]
= 0,

E
[(
r̂Bβ
− rBβ

)(
r̂Bβ
− rBβ

)T]
= BrB ,k

δjk ∀ j, k (28)

s⊕ = ŝ⊕ − s⊕β , and s⊕β is a measurement bias due to model errors in the reference Earth-Sun
vector with

E
[(
ŝ⊕β ,k

− s⊕β ,k
)]

= 0,

E
[(
ŝ⊕β ,k

− s⊕β ,k
)(
ŝ⊕β ,k

− s⊕β ,k
)T]

= Bs⊕,k
δjk ∀ j, k. (29)

The error in a properly post-processed orbit solution will most likely resemble white noise. How-
ever, the error in a real time propagation of the spacecraft position will more likely exhibit bias-like
characteristics and so it is treated as such.

The vector from the differential area to the spacecraft is written as

NrAB = NrB − NrA (30)

and the best estimate of this vector is given by

Nr̂AB = Nr̂B − NrA (31)

using the definitions given previously.

Substituting into Equation (4) gives

V = C (Vd + Vα + νV )

Vd =


B[

cosφ cos θ cosφ sin θ sinφ
]

[BN ]
Ns⊕−NrB∥∥Ns⊕−NrB∥∥ if nT s

‖s‖ ≥ cosψ

0 if nT s
‖s‖ < cosψ

Vα =


− 1
π

∫∫
A

(α+ να)
NnTA

Ns⊕∥∥NrAB∥∥2∥∥Ns⊕∥∥
(
NnTA

NrAB∥∥NrAB∥∥
)

∗
(
B[

cosφ cos θ cosφ sin θ sinφ
]

[BN ]
NrAB∥∥NrAB∥∥

)
dA if B 6∈ S

0 if B ∈ S

(32)

where να is zero-mean Gaussian noise representing the uncertainty in the albedo coefficient of dA
calculated from the NASA TOMS data. Defining the measurement noise and bias vectors as

νk =

[
νV,k
να,k

]
, βν =

[Ns⊕β ,k
NrBβ ,k

]
(33)

where να,k is vector, of length Nα, of all the albedo coefficient uncertainty terms in A, the mea-
surement update Jacobians are given by

Hk = Hd,k +Hα,k (34a)
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Hd,k =


a1,k...
aN,k

 0N×3 diag
(
b1,k, . . . , bN,k

)
diag

(
c1,k, . . . , cN,k

)
diag

(
d1,k, . . . , dN,k

)

(·)i,k =


(̄·)i,k if nTi ŝk∥∥ni∥∥∥∥ŝk∥∥ ≥ cosψi

0 if nTi ŝk∥∥ni∥∥∥∥ŝk∥∥ < cosψi

āi,k = Ĉi,k
B[

cosφi cos θi cosφi sin θi sinφi
] ∂

∂σ

(
[BN ]

Nŝk∥∥Nŝk∥∥
)∣∣∣∣∣
σ̂k

b̄i,k =
B[

cosφi cos θi cosφi sin θi sinφi
]

[BN ]
Nŝk∥∥Nŝk∥∥

c̄i,k = Ĉi,k
B[− cosφi sin θi cosφi cos θi 0

]
[BN ]

Nŝk∥∥Nŝk∥∥
d̄i,k = Ĉi,k

B[− sinφi cos θi − sinφi sin θi cosφi
]

[BN ]
Nŝk∥∥Nŝk∥∥ (34b)

Hα,k =


a1,k...
aN,k

 0N×3 diag
(
b1,k, . . . , bN,k

)
diag

(
c1,k, . . . , cN,k

)
diag

(
d1,k, . . . , dN,k

)
(·)i,k =

{
(̄·)i,k if B 6∈ S
0 if B ∈ S

, % =
αNnTA

Nŝ⊕∥∥Nr̂AB,k∥∥2∥∥Nŝ⊕∥∥
(
NnTA

Nr̂AB,k∥∥Nr̂AB,k∥∥
)

āi,k ≈ −
Ĉi,k
π

∫∫
A

%

B[cosφi cos θi cosφi sin θi sinφi
] ∂

∂σ

(
[BN ]

Nr̂AB,k∥∥Nr̂AB,k∥∥
)∣∣∣∣∣
σ̂k

 dA

b̄i,k = − 1

π

∫∫
A

%

(
B[

cosφi cos θi cosφi sin θi sinφi
]

[BN ]

Nr̂AB,k∥∥Nr̂AB,k∥∥
)

dA

c̄i,k ≈ −
Ĉi,k
π

∫∫
A

%

(
B[− cosφi sin θi cosφi cos θi 0

]
[BN ]

Nr̂AB,k∥∥Nr̂AB,k∥∥
)

dA

d̄i,k ≈ −
Ĉi,k
π

∫∫
A

%

(
B[− sinφi cos θi − sinφi sin θi cosφi

]
[BN ]

Nr̂AB,k∥∥Nr̂AB,k∥∥
)

dA (34c)

Mk = Mαk
+
[
diag

(
ĈT
k

)
0N×Nα

]
(35a)
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Mα,k =
[
0N×N Lk

]

Lij,k =



− Ĉi,k
π

NnTA
j

Nŝ⊕,k∥∥Nr̂A
j
B

∥∥2∥∥Ns⊕,k∥∥
(
NnTAj

Nr̂A
j
B∥∥Nr̂A
j
B

∥∥
)

(
NnTi

Nr̂A
j
B∥∥Nr̂A
j
B

∥∥
)

∆Aj if dA ∈ A

0 if dA 6∈ A

(35b)

and

Jk = Jdk
+ Jαk

(36a)

Jdk
=

a1,k −a1,k
...

...
aN,k −aN,k



ai,k =


−Ĉi,k

B[
cosφi cos θi cosφi sin θi sinφi

]
[BN ]

∗ 1∥∥Nŝk∥∥
(
I3×3 −

Nŝk
NŝTk∥∥Nŝk∥∥∥∥Nŝk∥∥

)
if nTi ŝk∥∥ni∥∥∥∥ŝk∥∥ ≥ cosψi

0 if nTi ŝk∥∥ni∥∥∥∥ŝk∥∥ < cosψi

(36b)

Jα,k =

a1,k b1,k
...

...
aN,k bN,k

 , (·)i,k =

{
(̄·)i,k if B 6∈ S
0 if B ∈ S

āi,k ≈
Ĉi,k
π

∫∫
A

α∥∥Nr̂AB,k∥∥2∥∥Nŝ⊕,k∥∥NnTA
(
I3×3 −

Nŝ⊕,k
NŝT⊕,k∥∥Nŝ⊕,k∥∥∥∥Nŝ⊕,k∥∥

)
(
NnTA

Nr̂AB,k∥∥Nr̂AB,k∥∥
)(

NnTi

Nr̂AB,k∥∥Nr̂AB,k∥∥
)

dA

b̄i,k ≈ −
Ĉi,k
π

∫∫
A

α
NnTA

Nŝ⊕,k∥∥Nr̂AB,k∥∥3∥∥Nŝ⊕,k∥∥
[

2

N
r̂TAB,k∥∥Nr̂AB,k∥∥

(
NnTA

Nr̂AB,k∥∥Nr̂AB,k∥∥
)(

NnTi

Nr̂AB,k∥∥Nr̂AB,k∥∥
)

−NnTA

(
I3×3 −

Nr̂AB,k
Nr̂TAB,k∥∥Nr̂AB,k∥∥2

)(
NnTi

Nr̂AB,k∥∥Nr̂AB,k∥∥
)

−

(
NnTA

Nr̂AB,k∥∥Nr̂AB,k∥∥
)
NnTi

(
I3×3 −

Nr̂AB,k
Nr̂TAB,k∥∥Nr̂AB,k∥∥2

)]
dA (36c)

where the partial derivative of the DCM [BN ] multiplied by some 3 × 1 vector a with respect to
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the MRP attitude σ is given by

∂

∂σ
([BN ]a)

∣∣∣∣
σ̂

=
8

(1 + σ̂2)3

[(
1 + σ̂2

){(
− [σ̂]× +

1

2

(
1− σ̂2

)
I3×3

)
[a]× − [σ̂ × a]×

+ (σ̂ × a) σ̂T
}

+ 4

(
− [σ̂]× +

1

2

(
1− σ̂2

)
I3×3

)
(σ̂ × a) σ̂T

]
.

(37)

Note that some of the Jacobians associated with Vα are approximate. Because Vα involves an
area integral

Vα =

∫∫
A

f dA (38)

its partial derivative is found using Leibniz’s rule17

∂Vα
∂x

=

∫∫
A

∂f

∂x
dA+

[
f
∂A

∂x

]
CA

(39)

where CA is the bounding contour of the areaA. The variation of f with respect to the state vector
is included in the Jacobians given previously, but the variations of the area being integrated with
respect to the state vector are not. Because the definition of A is dependent on σ, θ, φ, s⊕β , and
rBβ

the second term in Equation (39) needs to be included. However, due to the discrete, and highly
uncertain, nature of the albedo data and the complexity of the definition of the bounding contour
of A, this calculation becomes extremely complex and the associated error in not including it is
small. Instead the associated error is accounted for by inflating vv and verifying through Monte
Carlo analysis.

Reduced CSS Calibration Filter

The minimal CSS calibration filter assumes the spacecraft has CSS, inertial attitude, angular rate
measurements, and an estimate of the current time for calculating a reference Earth-Sun vector. In
contrast to the full CSS calibration filter, it is assumed the received irradiance due to Earth’s albedo is
treated as an unmodeled measurement bias. This method aims to reduce the total computation time,
at the cost of estimation accuracy, by eliminating the costly evaluation of the irradiance contributions
caused by the Earth’s albedo∗. A continuous-discrete extended consider Kalman filter is used again
and the state and process noise vectors are unchanged, along with the attitude measurement update,
from the full CSS calibration filter.

Because the input irradiance due to Earth’s albedo is treated as a bias, Equation (32) is modified
to

V = C (Vd + Vα + νV )

Vd =


B[

cosφ cos θ cosφ sin θ sinφ
]

[BN ]
Ns⊕−NrB∥∥Ns⊕−NrB∥∥ if nT s

‖s‖ ≥ cosψ

0 if nT s
‖s‖ < cosψ

(40)

∗Evaluating the full NASA TOMS albedo model involves looping through 51 840 elements, for each of the CSS, every
measurement update and possibly evaluating several equations at each element; a process which can take significant time
as shown later in the results.
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and the measurement noise and bias vectors are changed to

νk =
[
νV,k

]
, βν =


Ns⊕β ,k
NrBβ ,k
Vαβ ,k

 (41)

where, without an orbit solution, the spacecraft position relative to the Earth is treated as a system-
atic bias. It is expected that this bias will have minimal impact on the estimate, especially when
compared to the effect of Earth’s albedo.

The measurement update Jacobians are given by Equation (34), where nowHα,k = 0,

Mk = diag
(
ĈT
k

)
(42)

and

Jk =


a1,k...
aN,k


a1,k...
aN,k

 diag
(
ĈT
k

)

ai,k =


−Ĉi,k

B[
cosφi cos θi cosφi sin θi sinφi

]
[BN ]

∗ 1∥∥Nŝk∥∥
(
I3×3 −

Nŝk
NŝTk∥∥Nŝk∥∥∥∥Nŝk∥∥

)
if nTi

ŝk∥∥ŝk∥∥ ≥ cosψi

0 if nTi
ŝk∥∥ŝk∥∥ < cosψi

(43)

where, because the nominal value for the bias estimate Nr̂Bβ ,k is a zero vector, Nŝk ≈ Nŝ⊕,k.

NUMERICAL SIMULATION

A spacecraft is modeled in a 400 km altitude circular orbit with an inclination of 90◦ starting on
2015 June 1, 00:00 UTC. The simulation is run for one orbit from when the spacecraft first sees the
Sun until it returns to the shadow of the Earth. The accelerations due to the J2 through J6 Earth zonal
gravitational perturbations, atmospheric drag, and solar radiation pressure (SRP) are modeled. The
relative positions of the Earth and Sun are simulated using ephemeris from the NASA Navigation
and Ancillary Information Facility (NAIF) SPICE toolkit.18 The spacecraft is assumed to have a
mass of 100 kg, a drag area of approximately 0.38 m2, a ballistic coefficient of 2.1, a cross sectional
area of 1.3 m2 subject to SRP, and an inertia matrix given by [I] = diag

[
10.5 8.0 6.75

]
kg m2.

The spacecraft is simulated in an uncontrolled tumble, but calibration can be reliably performed
with Nadir pointing control active, or a similar maneuver in which each sensor is pointed at the Sun
at some point in the orbit.

The spacecraft’s initial attitude is σ = [−0.06166,−0.43080,−0.15439] and its initial angular
velocity is ω = [−0.55989,−0.97885, 1.94116]◦ s−1. Rate gyroscope measurements are simulated
at 10 Hz, the rate white noise standard deviation is assumed to be 0.05 ◦/

√
h with a drift stability

standard deviation of 0.5 ◦ h−1 over 1000 s. Star tracker measurements are simulated at 2 Hz and
corrupted by white Gaussian noise with a standard deviation of 20 arcseconds. Orbit position mea-
surements are simulated at 1 Hz corrupted by position errors with a standard deviation of 1 km and
velocity errors with a standard deviation of 0.1 km s−1 about each axis.
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The alignment azimuth and elevation of each CSS is perturbed by a normally distributed angle
with a standard deviation of 1◦. All CSS are assumed to have calibration scale factors normally
distributed by 30 %, 1σ, from a nominal calibration scale factor of C = 1.0. As noted in the
introduction, this represents a significant variation. CSS measurements are processed at 2 Hz and
white Gaussian noise is added to each sensor with a standard deviation of 0.05. The full 1◦ × 1.25◦

latitude longitude grid of albedo values is used to calculate the reference Earth albedo.

Comparison of Albedo Models

The full and reduced calibration filters are compared along with the full calibration filter run using
lower resolution albedo data sets. The full calibration filter is run using a 1◦ × 1.25◦, 5◦ × 5◦, and
10◦ × 10◦ resolution albedo data sets, where the lower resolution grids are interpolated from the
1◦ × 1.25◦ data. It was found through Monte Carlo analysis that the measurement noise νV needs
to be raised from 0.05, as determined by the CSS noise, to 0.1 for the 1◦ × 1.25◦ albedo grid, to
0.175 for the 5◦ × 5◦ albedo grid, and to 0.3 for the 10◦ × 10◦ albedo grid in order to account for
the unmodeled aspects of the partial derivatives.

The estimation errors and 3σ uncertainty bounds are shown in Figures 3 and 4. As can be seen in
Figure 3, all of the estimators calculate attitude and rate gyro bias estimates within the computed 3σ
uncertainty bounds. The error in these parameters is relatively small and is driven by the accuracy
of the star tracker. The impact of the CSS measurements on the attitude estimate is so small the
differences between methods is indistinguishable at the scale displayed. Because of this, computa-
tion could be saved if a spacecraft already has an attitude estimator by substituting in the estimated
attitude and rate gyro bias from the attitude estimator into the calibration filter.

For brevity, only the calibration estimates for CSS 2 and 6 are shown in Figure 4. These two
CSS are shown as they represent the least and most observable sensors for the particular tumble
the spacecraft is simulated in, and they are representative of the output of all the sensor calibration
parameters. As can be seen, the calibration coefficient C is much more observable than the mis-
alignments of the individual sensors. Additionally, using even a very coarse albedo data set within
the estimator provides significant improvement over treating the irradiance due to albedo as a bias.
For the reduced filter the uncertainty in CSS 2’s calibration coefficient C is reduced to 0.14, 3σ,
in just one orbit. The full filter with 10◦ × 10◦ albedo data reduces that to 0.02, and using the full
1◦ × 1.25◦ albedo data that value is decreased to 0.008. It is shown in References 7 and 8 that with
scale factor uncertainty of 0.06, 3σ, simultaneous coarse sun-direction estimation and control to
within 10 degree can be achieved in just a few minutes from an unknown tumbling attitude. Similar
trends are seen in the alignment angles θ and φ with the full calibration filter uncertainty at least a
full degree less than the reduced calibration filter. All four methods reduce the uncertainty in the
alignment angles below the values used in References 7 and 8, showing that sufficient calibration
for sun-pointing can be achieved with reduced effort.

To compare the computation time for these algorithms the propagation and measurement update
algorithms are timed and recorded. For the 3460 s simulation the propagation update is called 34 601
times and the estimation update 6921 times. The execution time for each algorithm is recorded each
of these times and the averages and standard deviations are shown in Table 1. The simulations
followed exactly the same trajectory and experienced identical simulated sensor measurements.
The propagation algorithms are coded exactly the same except for the size of the bias covariance
matrices. The measurement update equations are coded exactly the same with two exceptions: the
full calibration filter includes a loop over the albedo data to calculate the expected irradiance due to
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Figure 3: Calculated mean (solid) and 3σ (dashed) MRP and rate gyro bias values for full and
reduced estimation techniques.

albedo and the associated uncertainties; and the matrix sizes of the bias covariance matrices have
different dimensions between the full and reduced calibration filters. All code was written in C and
compiled and run on a Windows i7 2.5 GHz computer. While this is not flight hardware, the relative
computation times are what are important.

Table 1: Averages and standard deviations for computation times of various filters.

ECKF Albedo Data Propagation Update, µs Measurement Update, µs

Full 1◦ × 1.25◦ 14.7± 1.5 5868± 1397
Full 5◦ × 5◦ 13.8± 1.8 522± 90.4
Full 10◦ × 10◦ 14.6± 1.2 228± 21.3

Reduced - 17.0± 1.9 278± 29.0

As expected reducing the density of the albedo grid greatly increases the computation speed.
Interestingly, the computation time for the 10 × 10 albedo grid is lower than that of the reduced
calibration filter. This is a result of the total mathematical operations performed. Comparing Equa-
tions (33) and (41) it can be seen that the reduced calibration filter trades the computation of the
albedo, and its associated uncertainty, for an increased number of bias parameters, whose uncer-
tainty and correlation with the state must be propagated and updated. For a low resolution albedo
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Figure 4: Calculated mean (solid) and 3σ (dashed) CSS calibration values for full and reduced
estimation techniques for CSS 2 and 6.

dataset the number of computations necessary to loop through the albedo data will eventually drop
below the number of calculations added by accounting for the albedo as a measurement bias in
the ECKF formulation. For the current state vector this break even point occurs near an albedo
resolution of 10◦ × 10◦.

Comparison of Sun-Direction Models

There are several methods available for computing the direction vector from the Earth to the
Sun based on only a reference time depending on the computational power available and accuracy
desired. When calculating a normalized sun-direction vector in the body frame of a spacecraft in
low Earth orbit these methods provide a relatively small level of error. Vallado gives an analytic
method valid from 1950 to 2050.19 Variations Séculaires des Orbites Planétaires (VSOP) provides
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a series of periodic terms that can be used to determine the position of the planets.20 Meeus provides
an abbreviated set of VSOP87 tables and associated algorithm.21 Finally, the NASA Navigation and
Ancillary Information Facility (NAIF) SPICE toolkit provides full planetary ephemerides.18

Vallado’s method takes less time to evaluate at the cost of accuracy. When compared to the
NASA SPICE toolkit, the method provided by Vallado has maximum errors of 1.33× 10−6 km,
1.33× 10−6 km, and 0.66× 10−3 km about the x, y, and z axes, respectively; and the remaining
methods have a maximum error of 1× 10−6 km about each axis. Expressed alternatively, the error
in Vallado’s method corresponds approximately to an input time error of 6 h using the other algo-
rithms. The full calibration algorithm was run nominally using Meeus’ algorithm, but is run here
with Vallado’s algorithm for comparison, and the results are shown in Figure 5. Additionally in-
cluded is a case in which the orbit knowledge error is increased by an order of magnitude in position
and velocity.

As can be seen, the estimated uncertainty bounds have very little dependence on the sun-direction
model used or the orbit accuracy. The propagation update computation time is unchanged when
switching to Vallado’s sun-direction model, and the measurement update is only sped up by 10 µs,
on average, which is small compared to the total measurement update time of several hundred
microseconds.

CONCLUSION

An MRP-based CSS calibration filter, based on an extended consider Kalman filter, is presented
for estimating the calibration coefficient and alignment misalignment angles of CSS onboard a
spacecraft in low Earth orbit. The full filter uses orbit knowledge to compute the irradiance contri-
butions to each CSS due to Earth’s albedo. A reduced filter is also presented that doesn’t require
orbit knowledge and a a consequence treats the irradiance due to Earth’s albedo as an unmodeled
bias. The relative accuracies and computation time of these two methods are computed using nu-
merical simulations. It is shown estimation using even a very coarse albedo dataset is superior to
treating the albedo as a bias. At best, CSS calibration scale factors can be estimated to less than 1 %
and alignment angles to approximately 1◦. However, computation time can be reduced by a factor
of 25 and calibration coefficient accuracies of 2 % and alignment accuracies of approximately 2◦

can still be achieved. Such a calibration filter could be used onboard a small satellite in order to
reduce necessary ground support and increase autonomy.
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