
Flight Software Development
Through Python!

Scott Piggott, Maria Cols Margenet, John Alcorn,
P. Kenneally, and Hanspeter Schaub

The Basilisk Development Environment!

•  Collaboration between
LASP and the Autonomous
Vehicle Systems
Laboratory at the University
of Colorado
–  Named for the South

American Common Basilisk
•  Simulation internally runs in

C/C++ objects
•  SWIG creates Python

bindings that allow each
module to be treated as
Python objects

•  Cmake allows the whole
package to be built cross-
platform
–  Windows, OSX, Linux

Relevant Basilisk Design Features!

•  Diagram greatly simplified!
•  Algorithm interfaces are

handled via message
passing
–  Pieces work like “Legos”

•  System abstraction allows
user to sandbox messages
–  Dynamics, FSW, analysis,

etc.
•  Interface abstraction for

multi-process
–  Separate FSW

•  Granularity at the Python
“brick” level
–  Completely scalable up to full

integrated model

Dynamics

Reaction
Wheels

Star Tracker

Inter-System MPI

Attitude
Navigation

Pointing

Vehicle
Control

Vehicle System

FSW System

Transition to Target FSW!

•  Overall design philosophy
is to capture what was
executed
–  Python is very good at

introspection
•  Configuration parameters

are captured post-
initialization
–  Python can obtain all

parameters from models
•  Messaging map is obtained

from messaging singleton
post-run

•  Task/Algorithm prioritization
is reflected in code

Code Testing!

•  Unit testing of algorithms performed via Python scripting
–  Significantly easier test setup than with C test-stubs
–  Inline test analysis easily performed with Python/numpy/matplotlib/etc

•  Integrated system-level tests can be based around a central test
base-class
–  Data display/analysis, remote communication configuration, scenario-

macros
–  Post-run products can be generated automatically

•  Automated testing can be easily integrated with continuous
integration methodologies
–  Basilisk utilizes pytest for system checkout

•  Approximately 300 distinct tests running today
•  Complex analysis like code coverage can be performed against

the test-suite
•  Mission-unique code can be separated from Basilisk and built/run/

tested separately
–  Basilisk compatible code can also be integrated directly

Test Execution Analysis!

•  Basilisk is designed to
facilitate analysis using
Python-standard tools
–  numpy/matplotlib/pytest/etc.

•  Any C/C++ variable
accessible via SWIG/Python
can be logged and
interrogated
–  Haven’t found a type yet that

we can’t make work!
•  All system messages that are

exchanged can be logged
–  User-specified rate

•  All logs are returned as
numpy arrays to simplify
analysis

Autocoding a Basilisk Design!

•  Each Basilisk task can have boilerplate architecture generated
–  Queries itself to determine how to generate that data

•  All model parameters are specified in a single function
–  Complex objects (arrays of structures for example) are totally usable with simple SWIG directives

•  Each task requested is then configured with top-level function calls
•  Separate rate-groups can be autocoded separately for multi-rate designs
•  Analogous to Simulink or Labview autocode

css_data_aggregate

adcs_config_data

CSSWlsEst css_wls_est

parsed_imu_data

css_wls_est

sunSafePoint sun_safe_att_err

sun_safe_att_err

adcs_config_data

MRP_Steering controlTorqueRaw

reactionwheel_cmds

acs_thruster_cmds

FSWProcess2DynamicsProcessInterface

DynamicsProcess2FSWProcessInterface

css_sensors_data

imu_meas_data

css_sensors_data cssSensorDecode css_data_aggregate

adcs_config_data

imu_meas_data

imuSensorDecode parsed_imu_data

controlTorqueRaw

rcs_config_data

adcs_config_data

thrForceMapping acs_thruster_cmds

 vehConfigData adcs_config_data

RTEMS/CFS/Basilisk!

•  LASP is working on a project that is using CFS running
on the RTEMS operating system
–  Basilisk is being used for the ADCS application development

•  All algorithm functionality dispatched from a single
application (multi-rate) using an internal blackboard
messaging system
–  CFS’ messaging is ill-suited to Basilisk’s messaging

requirements

•  Inter-application messages are mirrored out to CFE
software bus

•  Autocode is easily inserted into the main ADC app and
called from CFS

Have you Scanned your Planet Today?!

•  Cyan line shows a
distributed all-Basilisk
simulation

•  Blue line shows that same
simulation running
distributed with CFS

•  Now we have easy
reconfigurability
–  Python is our main

development testbed
•  Complex vehicle behaviors

can be assembled from
successive bricks

•  All internal code can be
examined and analyzed by
you

Basilisk Development Direction!

•  Initial Alpha open-source release available January 15th
–  Invitations readily available!

•  Anticipate a full open-source beta release sometime in 2017
•  Simulation model verification (unit-level) complete
•  Majority of software will be undergoing CDR review in 2017
•  Simulation will serve as flatsat driver for flight program

–  Integration starting 2017
•  Algorithms should be on-orbit by late 2020

Conclusions!

•  Basilisk is a free and open-source simulation and
algorithm-development testbed

•  Entire package is designed from the ground up for the
full spacecraft lifecycle on programs of arbitrary
complexity

•  The entire Basilisk system can be run on most PC
operating systems with the addition of some free and
open-source products
–  Tested daily on Windows, OSX, and Linux (Mint)
–  Python, Cmake, SWIG, and your favorite compiler

•  The topics covered today are not even the coolest parts
of the system!
–  Full fidelity vehicle dynamics, vehicle visualization, etc.

Questions?!

