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Planetary entry and aerocapture trajectories are significantly impacted by random vari-
ability in atmospheric density. The ability to rapidly quantify the impact of this uncertainty
on the vehicle trajectories can improve onboard guidance during atmospheric flight by ex-
plicitly considering the probability distribution of future uncertain vehicle states. This paper
addresses the problem of uncertainty quantification for entry and aerocapture flight by devel-
oping a general theory for linear covariance approximation of nonlinear systems that depend
on Gaussian random fields. The Karhunen–Loève expansion is used to parametrically repre-
sent the Gaussian random field uncertainty, and then the closed-loop trajectory dispersions
are approximated with respect to a given nominal trajectory by a linear covariance method.
Numerical examples for guided entry and aerocapture at Mars, with Mars-GRAM generated
atmosphere variations, demonstrate a close agreement between the proposed approximation
and Monte Carlo.

I. Introduction

Hypersonic atmospheric flight, whether with the intent to land on the surface of the planet or skip out of the
atmosphere on an aerocapture trajectory, is a challenging domain influenced by a number of significant uncertainties.

Most importantly, inherent spatial and temporal variability in atmospheric density must be accounted for at any relevant
destination, including Earth. Errors and uncertainties in the actual and navigated state of the vehicle at entry, as well as
the aerodynamic properties of the vehicle, play an important role. In order to mitigate these uncertainties and fly a
vehicle to a desired final state within small error bounds, some version of closed-loop onboard guidance is required.
Even for vehicles that fly open-loop or passively, the distributions of these uncertainties and their impact on key mission
parameters must be carefully quantified to ensure the mission requirements are met.

Flight-heritage and current state-of-the-art guidance algorithms generally handle these uncertainties by treating the
problem as a deterministic one, then updating commands based on new estimates of the current state. For example, the
longitudinal component of the Apollo final phase guidance computes bank angle commands based on current navigated
states and the adjoint equations evaluated along a reference trajectory [1]. The Mars Science Laboratory (MSL) mission
used a derivative of this approach to guide the entry vehicle during hypersonic flight to follow a provided reference
trajectory [2]. A continuing increase in the amount of computing power available onboard has led to a number of
numerical predictor-corrector (NPC) approaches, including the Orion entry guidance and state-of-the-art algorithms that
have been proposed for both entry and aerocapture [3–5]. While the NPC approach eliminates the need to linearize the
dynamics around a reference trajectory, these algorithms still make error predictions and compute corrective commands
based on a deterministic prediction of the dynamics. In other words, the structure of all of these guidance schemes
implicitly controls uncertainty, and the effectiveness of this approach is estimated in uncertainty quantification studies
of the closed-loop dynamics, namely via Monte Carlo analyses.

An alternative guidance approach is to explicitly control uncertainty by considering the effect of present and future
control decisions on the trajectory uncertainty evolution. While, in general, the complexity of uncertainty quantification
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prohibits optimization with respect to uncertainties, for many applications treating only the mean and covariance of a
linearized system provides a useful and representative surrogate for the true state uncertainty; this approach is referred
to as linear covariance analysis [6]. Rapid approximate uncertainty quantification, via linear covariance analysis, can
be a useful tool for mission design when used in conjunction with Monte Carlo methods. Furthermore, the effect of
feedback control for linearized system models is well understood, and thus linearization methods present an avenue to
include stochasticicty and closed-loop system behavior for guidance optimization [7, 8], including possible onboard
optimization.

Recent developments in stochastic optimal control further motivate the study of linear stochastic systems. Assuming
a control law to be the sum of a nominal input and a linear feedback term, the mean state trajectory is controlled by
the nominal control, while the state covariance is steered by the feedback gain. Thus, the terms in the control law
appear as the inputs steering the state probability distribution. If a linear stochastic system is controllable, then the
selection of a time-varying state feedback gain can lead the state to be distributed with any desired positive-definite
covariance in finite time [9, 10]. Constraints on the probability distribution of an uncertain state, which are referred to
as chance constraints, introduce a coupling between the planned nominal control inputs and the uncertain corrective
closed-loop control inputs [11]. Chance constraints on linear Gaussian-distributed systems can be formulated as convex
constraints on the nominal control and the feedback gain [12]; nonlinear systems can be similarly treated via successive
convexification [11]. It follows that, via the application of chance constraints, stochastic methods allow for a measured
trade-off between performance margin and nominal performance since the state and control probability distributions are
included in the optimization [13].

To be incorporated into the linear covariance analysis as a parameter subject to perturbations, density variability must
be explicitly expressed in some analytical form. Thus, generating dispersed profiles of atmospheric density from some
semi-empirical model, as is commonly done for Monte Carlo analyses [14, 15], does not work well. When non-Monte
Carlo uncertainty quantification methods are applied to planetary entry and aerocapture, one common approach is to
assume an exponential model of density, then simply disperse the surface density and atmospheric scale height [16–18].
However, this is a significant assumption that forgoes a higher-fidelity approach to modeling density variability. As an
intermediate approach, recent work has shown that density variability at Mars as modeled by the Mars Global Reference
Atmospheric Model (Mars-GRAM 2010) is well-approximated by a Gaussian random field, and can thus be represented
in terms of a Karhunen–Loève expansion [19, 20]. This provides an analytical form of density perturbations that can be
incorporated into a linear covariance analysis while allowing for a higher-fidelity model of density variability.

In this paper, atmospheric density is modeled as a Gaussian random field and subsequently approximated
parametrically via Karhunen–Loève expansion. A linear covariance model is constructed with respect to the
Karhunen–Loève expansion terms of the density model, and the approximate trajectory covariance evolution is computed
via numerical integration of the matrix-valued linear system. The approximate covariance evolution along a hypersonic
vehicle trajectory as computed by the proposed method is compared to Monte Carlo for entry and aerocapture scenarios
at Mars using Mars-GRAM to model density variation.

II. Linear Covariance Analysis in Gaussian Random Fields
The domain of linear analysis follows from the basic principle that a large class of functions may be reasonably

approximated to first order. That is, for a smooth mapping 5 : G ↦→ H, the difference of the output H from a nominal
output H̄ = 5 (Ḡ) can be reasonably approximated as

H − H̄ ≈ � (G − Ḡ), where � =
m 5

mG

(
Ḡ). (1)

Furthermore, in the case where the input G is a Gaussian distributed random vector with mean Ḡ and covariance - , then
the output H can be approximated as a Gaussian random vector with mean H̄ ≈ 5 (Ḡ) and covariance

. ≈ �-�T. (2)

In the following section, the basic theory of linear covariance analysis is reviewed for dynamical systems, for which the
input and output belong to function spaces and the mapping is defined by an ordinary differential equation.
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A. Linear Covariance Analysis for Dynamical Systems
Consider a nonlinear dynamical system with state G ∈ R= acting under the influence of @ uncertain parameters

?0 ∈ R@ according to the dynamics

¤G = 5 (C, G, D(C, G), ?0) = 5cl (C, G, ?0), G(C0) = G0, (3)

where D(C, G) is a closed-loop control. For generality, let the initial state G0 be included as an uncertain parameter and
define the new ℓ = = + @ dimensional parameter vector ? as the concatenation

? =

[
G0

?0

]
∈ Rℓ . (4)

The following analysis, which is adapted from Ref. [21] Ch. 3, is concerned with approximating variations in trajectories
of the system (3) as linear functions of variations of the parameter vector ?.

Let G(C, ?) be the solution to (3) for a particular realization of the parameter vector ?, which is given as

G(C, ?) = G0 +
∫ C

C0

5cl
(
g, G(g, ?), ?0

)
dg. (5)

Taking the partial derivative of the trajectory G(C, ?) with respect to the parameter ?, we obtain

mG

m?
(C, ?) =

[
�= 0=×@

]
+

∫ C

C0

{
m 5cl
mG

(
g, G(g, ?), ?0

) mG
m?
(g, ?) + m 5cl

m?

(
g, G(g, ?), ?0

)}
dg. (6)

Next, we approximate the expression (6) about a given nominal parameter value ?̄ = (Ḡ0, ?̄0). Define the matrix-valued
functions of time

((C) = mG

m?
(C, ?̄), �cl (C) = m 5cl

mG

(
C, G(C, ?̄), ?̄0

)
, � (C) = m 5cl

m?

(
C, G(C, ?̄), ?̄0

)
=

[
0=

m 5cl
m?0

(
C, G(C, ?̄), ?̄0

) ]
. (7)

The matrix ((C) is known as the sensitivity function, since the trajectory G(C, ?) can be approximated to first order as

G(C, ?) ≈ G(C, ?̄) + ((C) (? − ?̄). (8)

Furthermore, from (6), the sensitivity function is obtained as the solution to the ODE

¤((C) = �cl (C)((C) + � (C), ((C0) =
[
�= 0=×@

]
. (9)

Now suppose that the parameter vector ?0 is Gaussian distributed as ?0 ∼ N( ?̄0, %0). If the initial state G0 is
uncorrelated with the parameters ?0 and is also Gaussian distributed with covariance matrix -0, then the parameter ? is
also Gaussian distributed as

? ∼ N( ?̄, %), where ?̄ =

[
?̄0

Ḡ0

]
, % =

[
-0

%0

]
, (10)

It then follows from the sensitivity equation (8) that the state G(C, ?) is approximately Gaussian distributed with mean
Ḡ(C) = G(C, ?̄) and covariance

- (C) = ((C)%(T (C). (11)

In summary, the state distribution can be approximated to first order about a nominal trajectory Ḡ(C) by the following
procedure: Integrate the nominal trajectory Ḡ(C) from (3) with ?0 = ?̄0; compute the matrices �cl (C) and � (C) as
functions of Ḡ(C) as in (7); integrate the matrix-valued ODE (9); and, finally, compute the state covariance from (11).

B. Including Spatially-Dependent Uncertainty
The theory of linear covariance analysis is both well known and widely applied in engineering and aerospace

applications [6, 22]. However, many common sources of uncertainty arise as spatially or state-dependent, such as
variations in atmospheres, currents, or gravitation. In the following, an eigenbasis decomposition is used to parametrically
approximate spatially defined random processes so that spatial uncertainty may be incorporated into linear covariance
analysis.
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(a) Single-dimensional GRF Ψ conditioned on
measurements

Ψ

Ψ | H

(b) Two-dimensional GRF Ψ conditioned to have the right-
most edges be constant

Fig. 1 Samples from one and two-dimensional GRFs

1. Gaussian Random Fields
A collection of random variables {Ψ(I) : I ∈ I ⊆ R3} is a Gaussian random field (GRF), also referred to as a

Gaussian process, if for any finite set {I8}A8=1 ⊂ I the values {Ψ(I8)}A8=1 are jointly Gaussian [23, 24]. That is, the value
of the field Ψ(I) at any point I in the domain I is Gaussian distributed, and, furthermore, the values of the field at
multiple points form a Gaussian random vector. The collection {Ψ(I) : I ∈ I} will be simply referred to as as Ψ when
the context is clear. A useful property is that a GRFs is fully characterized by a mean function

` : I→ R, `(I) = E (
Ψ(I)) , (12)

and a positive semi-definite covariance function

Σ : I×I→ R, Σ(I1, I2) = Cov
(
Ψ(I1),Ψ(I2)

)
. (13)

Thus, the values of the field 	 =
(
Ψ(I1), . . . ,Ψ(I=)

)
at any = input points {I1, . . . , I=} ⊂ Iare Gaussian distributed

as 	 ∼ N(-,�), where

- =


`(I1)
...

`(I=)

 , � =


Σ(I1, I1) · · · Σ(I1, I=)

...
. . .

...

Σ(I=, I1) · · · Σ(I=, I=)

 . (14)

GRFs are often used in the context of conditioning based on noisy measurements. For example, one- and two-
dimensional GRFs, with and without conditioning on measurements, are shown in Figures 1a and 1b. In this paper,
however, only the jointly Gaussian property of GRF samples will be used. The interested reader is referred to Ref. [24]
for more details on GRFs.

2. Karhunen–Loève Decomposition
While random processes and random fields are infinite dimensional objects, it is possible to obtain a lower-

dimensional approximation by projecting onto a set of orthogonal basis functions (a generalized Fourier expansion)
[25]. The following result describes an eigenfunction decomposition for GRFs.

Theorem II.1 (Karhunen–Loève (Ref. [26] Thm 6.13.1)). Assume that the domain I of Ψ is bounded and that the
covariance function Σ is continuous and bounded. Then the GRF Ψ may be written as

Ψ(I) = `(I) +
∞∑
8=1

F8i8 (I), (15)
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where {i8}∞8=1 is an orthonormal basis of !2 (I) obtained as the eigenfunctions of the integral operator

()q) (I) =
∫
I

Σ(I, I1)q(I1)dI. (16)

The series in (15) converges in the mean-square sense, that is, for all I ∈ I,

E

(����Ψ(I) − A∑
8=1

F8i8 (I)
����2) → 0, (17)

as A →∞. The random variables {F8}∞8=1 are obtained by

F8 =

∫
I

Ψ(I)i(I)8dI, (18)

and are Gaussian distributed with zero mean, E(F8) = 0, and covariance E(F8F: ) = X8,:_8 , where _8 is the eigenvector
of (16) corresponding to the eigenfunction i8 .

Remark II.2. The version of the Karhunen–Loève (KL) theorem given as Theorem II.1 is a special case for GRFs. For
a general random process the coefficients F8 are mutually independent, but are not necessarily Gaussian distributed.
See Refs. [27, 28] for more details on KL for GRFs.

The eigenbasis decomposition in (15) is useful in that it minimizes the residual mean-square error of any finite
truncation of the series (15), provided the terms are properly ordered with decreasing eigenvalues. Indeed, let {[8}∞8=1 be
an arbitrary orthonormal basis !2 (I), and let ZA and aA be mean-square error residuals for the A-term expansions as

Z2
A = E

(����Ψ(I) − A∑
8=1

F8i8 (I)
����2) , a2

A = E

(����Ψ(I) − A∑
8=1

@8[8 (I)
����2) , (19)

where the random variables @8 are obtained as (18) with the corresponding basis functions @8 . Then ZA ≤ aA for all
A ≥ 1 [28].

3. Linear Covariance with Karhunen–Loève Expansions
Consider now a dynamical system that depends on the GRF Ψ, given by

¤G = 5Ψ
(
C, G,Ψ(I(G))) , G(C0) = G0, (20)

where the argument I of the field Ψ depends on the state G. Replacing Ψ in the system (20) with a @-term truncation

Ψ(I) ≈ Ψ@ (I) = `(I) +
@∑
8=1

F8i8 (I), (21)

enables an analysis of the random field dependent dynamical system (20) using the linear covariance analysis developed
in Subsection II.A. Indeed, after substituting the truncated series (21) into the dynamics (20), the system (20) can be
written in the form of the system (3) as

¤G = 5Ψ (C, G,Ψ(I(G))) ≈ 5Ψ (C, G,Ψ@ (I(G))) = 5cl (C, G, ?0), (22)

where ?0 = (F1, . . . , F@) are the coefficients obtained from (18), which have zero mean and covariance

%0 =


_1

. . .

_@

 , (23)

where _8 are the eigenvalues corresponding to the eigenfunctions i8 . It follows that the partial derivatives of the system
(3) as given in (7) depend on the basis functions i8 by

m 5cl
m?0

=
m 5Ψ

mΨ@

mΨ@

m?0
, (24)
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Fig. 3 Bank angle control

where the partials
mΨ@ (I)
m?0

=

[
mΨ@ (I)
mF1

· · · mΨ@ (I)
mF@

]
and

mΨ@ (I)
mF8

= i8 (I), (25)

are evaluated at the nominal values I = I(Ḡ(C)). Note that the nominal trajectory Ḡ(C) = G(C, ?̄) is evaluated along the
mean value ` of the field Ψ since the nominal value of the parameter ?0 is zero, and the truncation (21) only factors into
the linear covariance approximation via the � matrix in (7).

C. Summary
The linear covariance method developed in this section is summarized in the procedure below.

Linear Covariance Approximation with Gaussian Random Fields:
1) Compute a @-term decomposition of Ψ by solving for the eigenvalues and eigenfunctions of (16).
2) Obtain a nominal trajectory Ḡ(C) for C ∈ [C0, C 5 ].
3) Compute the matrices �(C), �(C), and � (C) as in (7).
4) Integrate the sensitivity equation (9) from C0 to C 5 .
5) Obtain state covariance - (C) from (11).

III. Atmospheric Flight in a Gaussian Random Field
The longitudinal (in-plane) motion of an entry vehicle in atmospheric flight around a spherical, non-rotating planet

is described in planet-relative coordinates by the system of equations

¤A = + sin W, (26a)

¤+ = − d+
2

2V
− `grav sin W

A2 , (26b)

¤W = d+�

2V
cosf −

(
`grav

A2 −
+2

A

)
cos W
+

, (26c)

¤' = + cos W, (26d)

where A is the vehicle radius, + is the planet-relative velocity, W is the planet-relative flight path angle (FPA), and ' is
the range traveled [29]. The bank angle f is the angle between the lift vector and the local vertical, measured about the
velocity vector, d is atmospheric density, � = �!/�� is the lift-to-drag ratio, and V = </(�� is the spacecraft ballistic
coefficient in terms of mass <, reference area (, and drag coefficient �� . The longitudinal flight coordinates and bank
angle definition are shown in Figures 2 and 3.

The density d, which depends on the altitude ℎ, is a random process, and thus is a challenging aspect of controlling
and modeling uncertainty for vehicles in atmospheric flight. In the following sections, the theory developed in Section II
is applied to solve the problem of uncertainty quantification with an random density process.
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A. Representing Uncertainty
The density uncertainty is assumed to follow the model internal to Mars-GRAM 2010 [30]. Samples of density as a

function of altitude
1 =

[
d(ℎ1) · · · d(ℎ#ℎ )

] T

, (27)

for a given grid of input altitudes {ℎ8}#ℎ8=1, are generated by Mars-GRAM 2010. The density function d(ℎ) is then
log-linearly interpolated from the samples in (27). Recent studies by the authors have suggested that Mars-GRAM is
well approximated as a GRF [7, 8, 20], and thus can be represented by a KL decomposition as

d(ℎ) ≈ d̄(ℎ) +
@∑
8=1

F8i8 (ℎ), (28)

where d̄(ℎ) is the mean density profile. Since the density process is defined by discrete points sampled fromMars-GRAM,
the eigenvalues and eigenfunctions of the covariance operator (16) are computed numerically from the sample covariance.

The built-in Monte Carlo functionality of Mars-GRAM 2010 is used to compute #B samples {18}#B8=1 of the density
as in (27) at the discrete altitude values {ℎ8}#ℎ8=1. The mean density d̄(ℎ) is a log-linear interpolation of the sample mean
of {18}#B8=1, and the covariance operator equation (16) is approximated by the sample covariance as follows. Let � be the
sample covariance matrix defined as

� =
1

#B + 1
ΓΓT, where Γ =

[
11 · · · 1#B

]
. (29)

An approximation of the eigenfunctions i8 (ℎ) and eigenvalues _8 are is obtained by solving the matrix eigenvalue
problem

�>8 = _8>8 , where >8 =
[
i8 (ℎ1) · · · i8 (ℎ#ℎ )

] T

. (30)

The functions i8 (ℎ) are approximated by linearly interpolating the vectors >8 .
It follows that any realization of the @-dimensional approximation of the density (28) is obtained by sampling the @

Gaussian random variables {F8}@8=1. This empirical version of a KL expansion is sometimes referred to by other terms
including Karhunen–Loève transform. The resulting profiles of density variation Xd = d/d̄ − 1 obtained from the KL
expansion model are compared with profiles from Mars-GRAM in Figure 4. Note that since the nominal density is
exponential, the absolute effect of density variation is much larger at lower altitudes, and thus the first terms of the KL
expansion capture density variations at lower altitudes.

1. Notes on implementation
In practice, there is more than one correct way to construct a KL expansion to represent density. The above derivation

assumes an expansion on the value of density itself; however, because density varies by orders of magnitude over the
relevant altitudes, it can sometimes be beneficial to instead expand the normalized perturbation of density Xd, which is
defined by

Xd = d/d̄ − 1. (31)

To construct a KL expansion for Xd, simply apply (31) to the density sample data (using the sample mean to approximate
d̄), follow the normal steps to define the KL expansion, and then when evaluating the approximation recover density
as d(ℎ8) = (Xd(ℎ8) + 1) d̄(ℎ8). Other normalization factors could also be chosen, such as the dynamic pressure along
the reference trajectory at that altitude, noting that this particular example would be a poor choice if altitude is not
monotonically decreasing along the reference trajectory as is the case for aerocapture or lofted entries.

In this work the number of terms included in the KL summation was simply set to @ = 50, which was observed to
perform well in this approximation. Alternatively, it is also possible to select the value of @ based on a desired threshold
for the mean-square error. For some level of permissible relative mean-square norms error (1 − U) × 100% and some
sufficiently large number of terms : , one heuristic for selecting @ is as follows:

@ = min

{
9 :

∑ 9

8=1 _8∑ 9+:
8=1 _8

≥ U
}
. (32)
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Fig. 4 Left: First five basis functions from (30). Middle: Mars-Gram samples. Right: 40-term KL samples.
On the middle and right plots, two samples are shown over a shaded region denoting the 2f confidence interval.

B. Linear Sensitivity
In order to compute the sensitivity matrix and perform linear covariance analysis for the closed-loop dynamical

system, the matrices �2; (C) and � (C) must be derived according to (7). The control input D, which is taken to be the
cosine of the bank angle D = cosf, is assumed to follow the linear feedback law

D(C, G) = D̄(C) +  (C) (G − Ḡ(C)) , (33)

for a given feedback gain matrix  (C). The closed-loop matrix �2; (C) can then be expressed as

�cl (C) = m 5cl
mG

=
m 5

mG
+ m 5
mD

mD

mG
= �(C) + �(C) (C), (34)

where the matrices �(C) and �(C) are evaluated along the reference trajectory Ḡ(C) and D̄(C). The matrices �(C), �(C),
and � (C) are provided for this dynamical system in Appendix A.

IV. Numerical Examples

A. Guided Mars Entry

1. Problem Definition
Consider a Mars Science Laboratory (MSL)-like vehicle performing a guided entry at Mars. The vehicle lift-to-drag

ratio is � = 0.24, the ballistic coefficient is V = 130 kg/m2, and Mars is assumed to have gravitational parameter
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Fig. 5 Nominal entry trajectory

Table 1 Vehicle and planetary parameters for entry and aerocapture examples

Parameter Value
Lift-to-Drag ratio, � 0.24
Ballistic Coefficient, V 130 kg/m2

Gravitational Parameter, `grav 4.2828 × 1013 m3/s2

Surface Radius, A? 3397 km

`grav = 4.2828 × 1013 m3/s2 and surface radius A? = 3397 km; these parameters are listed in Table 1. At the initial time
C0 = 0 the vehicle is nominally at an altitude of 125 km with planet-relative velocity 5.8 km/s and flight path angle
−15.5◦. The vehicle state error from these nominal values is Gaussian distributed such that the 3f errors of velocity,
flight path angle, and downrange distance are 20 m/s, 0.5◦, and 5 km, respectively; the initial altitude is assumed to
be exactly 125 km, by definition of the initialization condition at entry interface. Thus the initial state is Gaussian
distributed as

G0 ∼ N(Ḡ0, %0), where Ḡ0 =


125 km + A?

5.8 km/s
−15.5◦

0


, %0 =


0
(20 m/s /3)2

(0.5◦/3)2
(5 km /3)2


. (35)

Both the nominal and samples of the dispersed atmospheric density are provided by Mars-GRAM 2010. The nominal
bank angle is set as a piecewise-linear function of velocity, with the nodes

cos−1 (D̄) 70◦ 70◦ 45◦ 45◦ 10◦ 10◦

+̄ 6 km/s 5.5 km/s 2.5 km/s 1.1 km/s 1 km/s 0 km/s . (36)

The resulting nominal entry trajectory is shown in Figure 5. Closed-loop range control is provided by the Apollo final
phase guidance algorithm [1, 31], which is described in the following.
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Fig. 6 Sample closed-loop entry trajectories with 3f bounds computed from both 5,000 trial Monte Carlo
(MC) and linear covariance (LC).

2. Apollo Final Phase Guidance
Let 5 (C, G, D, ?0) be the right hand side of the equation (26), with control D = cosf, and define the system matrices

�(C) = m 5

mG

(
Ḡ(C), D̄(C), 0) , �(C) = m 5

mD

(
Ḡ(C), D̄(C), 0) , (37)

evaluated along the nominal trajectory Ḡ(C), nominal control D̄(C), and with nominal density d̄(ℎ) (i.e., ?̄0 = 0). The
adjoint state (_, _D) to the system (26) is defined as the solution to the backwards ODE

d
dC

[
_(C)
_D (C)

]
= −

[
�T (C) 0
�T (C) 0

] [
_(C)
_D (C)

]
,

[
_(C 5 )
_D (C 5 )

]
=

[
_ 5

0

]
, (38)

where the boundary value _ 5 is a user-defined vector determining the relative effects of the final states on the final range
error. For the Apollo final phase algorithm, this boundary value is set to

_ 5 =

[
− cot W̄(C 5 ) 0 0 1

] T

, (39)

and the state feedback gain is defined in terms of the adjoint values as

 (C) = − oc
_T (C)
_D (C) , (40)
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Fig. 7 Aerocapture sequence

where  oc is a user-defined overcontrol gain. In this example, we set  oc = 4. Furthermore, we assume that the (range)
control effect is zero during the heading alignment phase, which begins when the vehicle velocity decreases below 1.1
km/s. Thus the control matrix is set to �(C) = 0 when +̄ (C) ≤ 1.1 km/s.

The closed-loop bank angle cosine is thus given by the linear feedback law (33). In practice, the nominal control D̄,
feedback gain  , and reference trajectory Ḡ are all set as functions of velocity. But, for the purposes of linear covariance
analysis, we assume these reference values are set as functions of time. The closed-loop, linearized system is thus
described by the state matrix in (34).

3. Results
The closed-loop entry trajectory dispersions, due to both the initial state uncertainty and the MarsGRAM-generated

density variations, are computed using two methods: Monte Carlo, for which 5,000 sample trajectories are integrated,
each with a fixed MarsGRAM density profile sample; and by linear covariance (LC) analysis, using a @ = 50 dimensional
KL representation of the density profile. Sample Monte Carlo trajectories together with 3f bounds as computed by both
the Monte Carlo and from LC are shown in Figure 6. The 3f bounds from LC approximation is almost exactly equal to
the bounds computed from Monte Carlo.

B. Mars Aerocapture
The same MSL-like vehicle performs an aerocapture trajectory at Mars. Aerocapture is when a vehicle flies a

single pass through a planet’s atmosphere, reducing the energy of the spacecraft enough to capture into orbit. This
atmospheric flight phase is followed by a propulsive periapsis raise maneuver with a nonzero nominal Δ+ magnitude,
and then additional maneuvers to adjust apoapsis and out of plane errors as necessary; see Figure 7. For this scenario,
the desired final orbit is circular at 2, 000 km altitude.

For the aerocapture scenario the vehicle parameters, Mars properties, and atmospheric flight dynamics are all
identical to the entry scenario. The nominal initial altitude, planet-relative velocity, and downrange distance are also
identical to the entry case, with a shallower entry flight path angle of −9.8◦. Smaller dispersions on the initial state
are used for the aerocapture case, such that they are Gaussian distributed about the nominal values with 3f errors of
10 m/s and 0.2◦ for velocity and flight path angle, respectively. Downrange distance is not particularly relevant to
longitudinal aerocapture dynamics so is not dispersed, and initial altitude is again assumed to be exactly 125 km. Thus
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for aerocapture the initial state is Gaussian distributed as

G0 ∼ N(Ḡ0, %0), where Ḡ0 =


125 km + A?

5.8 km/s
−9.8◦

0


, %0 =


0
(10 m/s /3)2

(0.2◦/3)2
0


. (41)

As a point of reference, MSL required entry flight path angle delivery within 3f = 0.2◦ and entry velocity knowledge of
3f = 2.0 m/s [32]. Mars-GRAM 2010 was again used for the nominal and dispersed atmospheric density profiles.

The nominal bank angle profile is assumed to have a bang-bang form with a single transition from lift-up to lift-down
during the flight. To provide margin for feedback, the vehicle has an initial bank angle of f = 85◦ from entry until some
switching time CB, then linearly increases the bank angle over a duration of 30 sec until reaching a final bank angle of
f = 115◦, and finally the bangle angle f = 115◦ is held until atmospheric exit. The switching time CB is solved by a
foot-finding procedure so that the apoapsis after atmospheric exit equals a desired value. For this problem, the switching
time was found to be CB = 114.9 sec to meet a target apoapsis of 2, 000 km, and the resulting nominal trajectory is
described by Figure 8.

In many ways aerocapture is the same as guided entry but with a different final objective, namely, targeting a
Keplerian orbital state at atmospheric exit rather than a final range. Thus, we adapt the Apollo final phase guidance
algorithm for aerocapture. This method of terminal point controller guidance for aerocapture is well-studied [33, 34];
the particular implementation used in this work is briefly reviewed here.

For this study, the closed-loop guidance during atmospheric flight is designed to target the desired apoapsis after
atmospheric exit A0, which is given as a function of the vehicle state G 5 = (A 5 , + 5 , W 5 , ' 5 ) at atmospheric exit by

A0 =
|h 5 |
+0

, (42)
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where h 5 is the specific angular momentum and +0 is the velocity at apoapsis, which are given by

+0 =
`grav −

√
`2
grav + 2Y 5 |h 5 |2
|h 5 | , |h 5 | = A 5 + 5 cos W 5 , (43)

where,

Y 5 =
+2
5

2
− `grav

A 5
(44)

is the specific energy. Note that in (42)-(44) the states are inertial, not planet-relative; when using the simplified
longitudinal dynamics in (26), which assume a nonrotating spherical planet, the inertial and planet-relative states
become identical.

After the atmosphere pass, two maneuvers are required to ensure the spacecraft reaches the desired final orbit. First,
a periapsis raise maneuver is performed at first apoapsis along the velocity direction and with magnitude Δ+1; this
maneuver has some nonzero nominal value because initially the periapsis will be below the atmospheric interface
altitude. Second, an apoapsis correction maneuver is performed at periapsis (at its new altitude) in either the posigrade
(to raise apoaisis) or retrograde (to lower apoapsis) direction and with magnitude Δ+2. Nominally Δ+2 = 0, but the value
of Δ+2 is uncertain as this maneuver corrects for any apoapsis error following the atmospheric pass. Lateral dynamics,
guidance, and a plane correction maneuver are all neglected for the purpose of this study. The magnitudes of these
maneuvers can be computed as shown, where in this study the target orbit is assumed to be circular at some radius A2
(the equations are readily modified to eliminate this assumption). The magnitudes of the velocity at apoapsis after the
first maneuver +1 and the velocity at periapsis before the second maneuver +2 are given by

+1 =

√
2`gravA2
A0 (A0 + A2) +2 =

√
2`gravA0
A2 (A0 + A2) , (45)

where +2 is the circular velocity at the radius A2 , given by

+2 =

√
`grav

A2
. (46)

Finally, the total maneuver cost Δ+ is computed as the sum

Δ+ = Δ+1 + Δ+2 = (+1 −+0) + |+2 −+2 |. (47)

Because of the absolute value sign in the expression for Δ+2, the partial derivatives become undefined at the nominal
value Δ+2 = 0. Therefore, in this work only Δ+1 is linearly predicted.

The aerocapture guidance algorithm consists of integrating the same dynamics for the adjoint state (_, _D) using the
same open-loop system matrices �(C) and �(C) evaluated along the nominal aerocapture trajectory. The state feedback
gain matrix  (C) is also computed the same way and user-defined overcontrol gain is again used, this time with a value
 oc = 3. The first of two differences in the guidance is that the control is active until C = 240 sec, at which point the
feedback control is set to zero, i.e. �(C) = 0 when C > 240 sec. This time was selected to correspond approximately to
when the energy stops decreasing in the reference trajectory, and was set so that the Apollo guidance would remain
well-behaved with minimal modifications.

The second difference between the aerocapture and entry guidance implementations is the way the boundary value
_ 5 is computed. Following the terminal control theory, the terminal condition is set equal to the partial derivative of a
performance index Θ(C) with respect to the state, evaluated at the final time [35]. In Ref. [33], total Δ+ is used as the
performance index; in this study we use radius of apoapsis error, where the target apoapsis radius A2 falls out of the
partial derivative given by

_T
5 =

XΘ(C 5 )
XG(C 5 ) =

(
XA0

XG

)
C=C 5

. (48)

The construction of this control law implicitly assumes a constant bank angle [33] (even though the reference bank
profile is not necessarily constant), and therefore apoapsis targeting is a nearly-equivalent proxy for Δ+ optimization; a
difference in the two solutions would only be expected for steep entry flight path angles [5]. The partial derivatives
of apoapsis radius, apoapsis velocity, and total Δ+ , each with respect to the state, are provided in the appendix. The
aerocapture closed-loop guidance algorithm is implemented as in (37), (38), and (40)-(34), replacing the boundary
value in (39) with the value for apoapsis targeting in (48).
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Fig. 9 Sample closed-loop aerocapture trajectories with 3f bounds computed from both 5,000 trial Monte
Carlo (MC) and linear covariance (LC).

1. Results
As with the guided entry example, dispersions are estimated using both a 5,000-trial Monte Carlo analysis and a

linear covariance analysis using a @ = 50 dimensional KL representation of density variability. The trajectory dispersions
are compared in Figure 9. Additionally, histograms of the Monte Carlo results for apoapsis altitude, velocity at apoapsis,
and total Δ+ are shown in Figure 10 with a Gaussian-fit probability density function estimated from the linear covariance
analysis superimposed.

C. Discussion
The numerical examples show a close match between theMonte Carlo estimates and linear covariance approximations,

as seen by the plots of standard deviation over time in Figures 6 and 9. This suggests that the implemented control
laws keep the dispersed trajectories close enough to the reference for the linearization to remain accurate, and the
linear feedback nature of these control laws enables estimating the full closed-loop system. It also suggests that the
KL expansion of density models the MarsGRAM density variability well enough to make accurate predictions of this
dynamical system. The aerocapture numerical example demonstrates how these predictions can be translated into
performance metrics, such as a histogram of apoapsis targeting or 99th-percentile value of total Δ+ , Δ+99.

The main purpose of these two numerical examples was to show that the Monte Carlo and linear covariance analysis
predictions matched, and this has been achieved. A next step would be removing some of the simplifying assumptions
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regarding the dynamics and guidance algorithms to implement this linear prediction in a more realistic simulation.
Planetary rotation and nonspherical gravity terms were neglected and, for aerocapture in particular, these can be
important effects. Lateral dynamics and guidance were not accounted for, and though these are often handled somewhat
independently using bank reversals, the finite time spent reversing bank introduces a coupling between longitudinal and
lateral guidance that is not considered here. The reference trajectory could also be further optimized for both of these
examples to improve targeting performance, and the overcontrol could vary over the reference trajectory as a function of
time, velocity, or energy. For the aerocapture guidance, traditionally terminal point control implements the feedback
table as a function of energy instead of time as performed here.

One avenue for potential future work is to incorporate such predictions into an onboard guidance scheme. For
example, a numerical predictor-corrector could be wrapped around the linear feedback control, propagating the linear
covariance and using Δ+99 as the error function instead of propagating single deterministic trajectories. The linear
predictions could also be used to optimize the nominal trajectory and overcontrol value(s) to minimize Δ+99 with
constraints on control saturation. Overcontrol could become a function of time and apply differently to different state
errors as part of this process.

V. Conclusion
This paper considered the problem of applying linear covariance analysis to systems for which the primary source

of uncertainty is spatially, rather than temporally, defined. Gaussian random fields were used to represent the spatial
uncertainty, and the Karhunen–Loève decomposition was used to parameterize the field-dependent uncertainty. The
efficacy of the proposed method was demonstrated for closed-loop hypersonic flight during both entry and aerocapture.

In future work, the developed theory could be applied to chance-constrained optimization of closed-loop systems in
Gaussian random fields. On another future direction, linear covariance analysis could be used to supplement on-board
trajectory optimization, or could enable an uncertainty analysis in early trade studies.

Appendix

A. Partial Derivatives
The following partial derivatives are assumed to be evaluated along a nominal trajectory as a function of time, but

explicit dependence on time is suppressed for notational simplicity.
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1. Common Terms
The equations of motion (26) are rewritten below in the form ¤G = 5 (C, G, D(C, G), ?0) = ( 5A , 5+ , 5W , 5') as

¤A = 5A = + sin W, (49a)

¤+ = 5+ = − d+
2

2V
− `grav sin W

A2 , (49b)

¤W = 5W =
d+�

2V
cosf −

(
`grav

A2 −
+2

A

)
cos W
+

, (49c)

¤' = 5' = + cos W. (49d)

Each component of the � matrix, defined by (7), is given below for atmospheric flight. Note that these sensitivities
make use of the atmospheric density scale height � defined such that md/mℎ = −d/�, but this is not equivalent to
assuming an exponential atmosphere, and � can be numerically estimated at each altitude for any density profile. Thus:

m 5A

mA
= 0,

m 5A

m+
= sin W,

m 5A

mW
= + cos W,

m 5A

m'
= 0, (50)

m 5+

mA
=
d+2

2�V
+ 2`grav sin W

A3 ,
m 5+

m+
= − d+

V
,

m 5+

m+
= − d+

V
,

m 5+

m'
= 0, (51)

m 5W

mA
= − d+�

2�V
cosf +

(2`grav
A3 − +

2

A2

)
cos W
+

,
m 5W

m+
=
d�

2V
cosf + cos W

A

( `grav
+2A

+ 1
)
, (52a)

m 5W

mW
=

(
`grav

A2 −
+2

A

)
sin W
+

,
m 5W

m'
= 0, (52b)

m 5'

mA
= 0,

m 5'

m+
= cos W,

m 5'

mW
= −+ sin W,

m 5'

m'
= 0. (53)

Each component of the � matrix, defined by Eq. 37, is given below for atmospheric flight where the control is
D = cosf:

m 5A

mD
= 0,

m 5+

mD
= 0,

m 5W

mD
=
d+�

2V
,

m 5'

mD
= 0. (54)

The � matrix is computed based on the terms in the KL expansion of density variability, following (24) and (25)
where the GRF in this case is density d(I). The partial derivatives of the dynamics with respect to density are given by
(55), and the partial derivatives of density with respect to the uncertain parameters ?0 are given by (56) below

m 5A (C)
md(ℎ) = 0,

m 5+ (C)
md(ℎ) = −

+2

2V
,

m 5W (C)
md(ℎ) =

+�D

2V
,

m 5' (C)
md(ℎ) = 0, (55)

md(ℎ)
m?0

=

[
md(ℎ)
mF1

· · · md(ℎ)
mF@

]
, where

md(ℎ)
mF8

=
√
_8q8 (ℎ). (56)

As per (7), the 8th row of the � matrix is then built by multiplying m 58 (C)/md(ℎ) (a scalar) by md(ℎ)/m?0 (a 1 × @
matrix), then prepending = zeros to the row, such that the dimensions of � are = × (= + @).

2. Aerocapture
The aerocapture guidance law uses the partial derivative of apoapsis radius at the final state (at or after atmospheric

exit) to compute the adjoint state terminal condition. Partial derivatives of the apoapsis velocity and Δ+1 with respect to
the final state are also used during analysis. The states in the following equations must be inertial, meaning either a
nonrotating planet is assumed or the full state is converted from planet-relative to inertial before these expressions are
evaluated.

Begin by noting that downrange distance has no impact on any of these derivatives.
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mA0

m' 5
= 0,

m+0

m' 5
= 0,

mΔ+1
m' 5

= 0. (57)

Next, note that the circular (final) orbit velocity is not impacted by the final states and so this term drops out of the
Δ+ partial derivative:

m+2

mA 5
= 0,

m+2

m+ 5
= 0,

m+2

mW 5
= 0. (58)

Now write the partial derivatives of energy and magnitude of angular momentum with respect to the states,

mY 5

mA 5
=
`grav

A2
5

,
mY 5

m+ 5
= + 5 ,

mY 5

mW 5
= 0, (59)

m |h 5 |
mA 5

= + 5 cos W 5 ,
m |h 5 |
m+ 5

= A 5 cos W 5 ,
m |h 5 |
mW 5

= −A 5 + 5 sin W 5 . (60)

The states affect the velocity at apoapsis through the energy and the magnitude of angular momentum, so take its
partial derivatives with respect to these quantities.

m+0

m |h 5 | = −
©­­«
+0

|h 5 | +
2Y 5√

`2
grav + 2Y 5 |h 5 |2

ª®®¬ ,
m+0

mY 5
= − |h 5 |√

`2
grav + 2Y 5 |h 5 |2

. (61)

The partial derivatives of velocity at apoapsis with respect to the states can then be found via chain rule using the
partial derivatives we’ve already computed.

m+0

mA 5
=

m+0

m |h 5 |
m |h 5 |
mA 5

+ m+0
mY 5

mY 5

mA 5
,

m+0

m+ 5
=

m+0

m |h 5 |
m |h 5 |
m+ 5

+ m+0
mY 5

mY 5

m+ 5
,

m+0

mW 5
=

m+0

m |h 5 |
m |h 5 |
mW 5

+ m+0
mY 5

mY 5

mW 5
. (62)

Now make use of those derivatives in a similar chain rule expression for the derivatives of apoapsis radius, where
the derivatives of A0 with respect to |h 5 | and +0 were included directly in the expressions below.

mA0

mA 5
=

1
+0

m |h 5 |
mA 5

− |h 5 |
+2
0

m+0

mA 5
,

mA0

m+ 5
=

1
+0

m |h 5 |
m+ 5

− |h 5 |
+2
0

m+0

m+ 5
,

mA0

mW 5
=

1
+0

m |h 5 |
mW 5

− |h 5 |
+2
0

m+0

mW 5
. (63)

The states affect the velocity at apoapsis after maneuver 1, +1, only through the apoapsis radius A0, so we take that
derivative below.

m+1
mA0

= − `gravA2 (2A0 + A2)
+1A

2
0 (A0 + A2)2

(64)

Now use chain rule to find the derivatives of +1 with respect to the states.

m+1
mA 5

=
m+1
mA0

mA0

mA 5
,

m+1
m+ 5

=
m+1
mA0

mA0

m+ 5
,

m+1
mW 5

=
m+1
mA0

mA0

mW 5
, (65)

Finally, combine the velocity partial derivatives to get the partial derivatives of Δ+1 with respect to the states.

mΔ+1
mA 5

=
m+1
mA 5
− m+0
mA 5

,
mΔ+1
m+ 5

=
m+1
m+ 5

− m+0
m+ 5

,
mΔ+1
mW 5

=
m+1
mW 5

− m+0
mW 5

. (66)
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