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This paper addresses the regulation control and stabilization problem of spacecraft
attitude dynamics when there exists an unknown constant discrete delay in the
measurements. Radial basis function neural networks are used to approximate the
kinematics and inertial nonlinearities while a back propagation algorithm is em-
ployed to update neural network weights. By employing a Lyapunov-Krasovskii
functional, a delay independent stability condition is obtained in terms of a linear
matrix inequality, the solution of which gives the suitable controller gains. Finally,
to show the effectiveness of the proposed controller, a set of simulations are per-
formed and the results of the proposed control strategy are compared with results
obtained using the method for delayed attitude control suggested by Ailon et al.1
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INTRODUCTION

In recent decades, the problem of delayed feedback control has been subject to intensive research
because of the wide range of applications in mechanical systems such as spacecraft attitude ma-
neuvers, underwater vehicles, cooperative robot manipulation, etc. The attitude modeling problem
depends on the choice of attitude parameters (coordinates) to represent the orientation of a rigid
body relative to an inertial frame. When modeled as rigid bodies, spacecraft dynamics are studied
based on certain kinematic and kinetic equations, where the kinematic equations depend on the se-
lected attitude coordinates. While the kinetic equations are nonlinear, the kinematic equations can
be either linear or nonlinear depending on the choice of attitude coordinates and hence different
approaches have been developed for feedback control.

Attitude parameters can be either the rotation matrix, the principal angle and principal axis, Eu-
ler angles (EA), Euler parameters or quaternions (EPs), classical Rodriguez parameters (CRPs) or
modified Rodriguez parameters (MRPs), among others2 . The principal rotation vector is a basis for
many attitude representations, but it has the disadvantage of the mathematical singularity for zero
rotation. Therefore, this set is not suitable for regulation control where the reference state is the zero
rotation. EAs are easy to visualize, but the reference frame is never more than 90 degrees rotation
from a singularity. EPs, on the other hand, have considerable benefits including the facts that they
are nonsingular and their corresponding kinematic equation is linear, and hence are widely used in
spacecraft attitude studies. However, they are quite hard to visualize. CRPs, also known as Gibbs
vector, reduce the EPs to a minimal three-parameter set. Based on their definition, they are much
better suited for large spacecraft rotations than EAs. A further improved attitude representation,
known as MRPs, moves the singularities to 360

o rotation instead of 180o as in the case of CRPs.

Several control laws have been developed so far for the control of rigid body attitude. Tsiotras3

designed an optimal controller, based on CRPs and MRPs, to minimize a quadratic cost function
for a dynamical system, and investigated the stability of the system using Lyapunov functions.
Sharma and Tewari4 addressed the tracking control problem of a rigid asymmetric spacecraft by
using Hamiltonian-Jacobi formulation, where MRPs were used as the coordinate set. The result-
ing controller was nonlinear and optimal and capable of tracking maneuvers with arbitrarily large
initial conditions. Using geometric control, Lee and McClamroch5 proposed a controller for both
translational and rotational dynamics of a rigid body, where a Lie group variational integrator was
implemented to treat the dynamics of the system. Using this strategy, the authors guaranteed that
the geometry of the optimal solutions was preserved.

Few studies, however, to the authors’ knowledge, have focused on delayed feedback control of
spacecraft. Ailon et al1 introduced a velocity free output-based controller for attitude regulation of
a rigid spacecraft considering the effects of time delay in the system. The angular velocity feedback
was replaced by the filtered attitude where the classical Rodriguez parameters (CRPs) were selected
as the attitude parameters. Sufficient conditions for attitude stabilization of the spacecraft were
studied . The time delay was assumed to be known in their study. Recently, new constructions of
Lyapunov-Krasovskii (L-K) functionals have been developed for the stability analysis of systems
with time delay. A modified L-K functional is developed, in particular, by Chunodkar and Akella6

for spacecraft attitude stabilization with unknown but bounded delay in the feedback control loop.
Exponential stability was obtained for all values of the time delay within the selected bounds.

Neural networks (NNs) are used to approximate unknown complex nonlinear functions in non-
linear dynamical systems with interconnection terms or when precise knowledge of the system dy-
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namics is lacking. One main advantage of these schemes is that the adaptive laws are derived based
on Lyapunov synthesis and, therefore, guarantee the stability of continuous-time systems without
the requirement for offline training7 . A NN approach is used by Yadmellat et al8 for stabilization
of nonlinear affine single-input systems, where a modified back propagation (BP) algorithm is em-
ployed to update the weights of the NN. Further, the second method of Lyapunov was implemented
to investigate the stability of the system.

In this paper, the delayed feedback control of rigid spacecraft attitude dynamics is studied. Pro-
cessing delays including time delays between the measurement and application of the control law
would cause the time delay to appear in the feedback control. Here, the time delay is considered to
exist in the sensors, while another method is investigated by the authors for the case where delay ap-
pears in the actuators9 . The behavior of the system under two different control laws is investigated.
First, the delayed states are fed to the NN for the control process. Next, another simulation is per-
formed based on the velocity independent controller introduced by Ailon et al1 . Unlike that study,
and based on the descriptions given above on the advantages of using MRPs over other coordinate
sets, however, the MRPs are used here as the attitude coordinates of the system. The closed-loop
delayed system is integrated using MATLAB dde23. Although stability of the system depends on
the NN error, by picking a suitable coefficient for the additional robust term in the feedback control,
asymptotic stability of the closed loop system is guaranteed.

PRELIMINARIES AND SYSTEM MODELING

The MRP vector, � 2 R3, can be expressed in terms of principle rotation elements as2

~� = tan

�

4

ê, (1)

where ê is the unit eigenvector of the rotation matrix C corresponding to the eigenvalue of +1, �
is the principle rotation angle, and the matrix C is the rotation matrix from the body frame to the
inertial frame. More details about the attitude coordinate parameters are given in the literature9, 2 .

Consider the attitude dynamics of a rigid spacecraft as

˙~�(t) =
1

4

B(~�(t))~!(t)

˙~!(t) = �J�1!̃(t)J~!(t) + J�1~u(t), (2)

where ~!(t) 2 R3 is the angular velocity and ~u(t) 2 R3 is the control input analogous to the torque
vector, J 2 R3 is the inertia matrix, !̃ is defined as

!̃ =

0

@

0 �!
3

!
2

!
3

0 �!
1

�!
2

!
1

0

1

A , (3)

and the nonlinear matrix B is defined as

B(~�) =
⇥�

1� ~�T~�
�

I
3

+ 2�̃ + 2~�~�T

⇤

, (4)

where I
3

is the three dimensional identity matrix.
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By adding and subtracting 1

4

~!(t) and 4~�(t) to the first and the second parts of Eq. (2), respec-
tively, it can be split into linear and (almost) nonlinear parts as

˙~�(t) =
1

4

~!(t) +
1

4

[B(~�(t))� I
3

]~!(t),

˙~!(t) = �4~�(t) +
⇥

4~�(t)� J�1!̃(t)J~!(t)
⇤

+ J�1~u(t). (5)

Such an approach was also recently used in the delayed attitude control methodology suggested by
Chunodkar and Akella.6 Note that in Eqs. (2) and (5), the dynamics of the sensors and actuators
have not been considered and it is supposed that three actuators are employed to provide the required
torque about the body frame axes.

The control objective is to find a control law to regulate the system about an equilibrium point
(the origin) in the presence of an unknown single discrete constant time delay in the measurements
such that all the MRPs and angular velocities go to zero in some region of the state space as t ! 1,
i.e.

lim

t!1
||~�|| = 0, lim

t!1
||~!|| = 0, (6)

DELAYED FEEDBACK CONTROLLER DESIGN VIA NEURAL NETWORKS

In this section, an adaptive NN technique is implemented to approximate the kinematic and iner-
tial nonlinearities of the rigid body system, and subsequently a Lyapunov-Krasovskii functional is
used to guarantee the local asymptotic stability of the otherwise linear closed loop delay differential
system.

Controller Design

It is assumed that the current states are unavailable for feedback due to measurement delays as
shown in Fig. 1. The control law is therefore defined in the following form

~u(t) = �K
1

~�(t� ⌧)�K
2

~!(t� ⌧) + ~⌫(t) + ~a(t), (7)

where ~⌫(t) is a new control variable, ~a(t) is an additional robust term, K
1,2

are constant controller
gain matrices with suitable dimensions, and ⌧ is the known constant time delay in the feedback
control. The schematic block diagram of the system is shown in Fig. 1, in which the delay is
considered to be in the measurements.

Substituting Eq. (7) into Eq. (5) the closed loop dynamics can be obtained as

˙~�(t) =
1

4

~!(t) +
1

4

[B(~�(t))� I
3

] ~!(t)

˙~!(t) = �4~�(t) +
⇥

4~�(t)� J�1!̃(t)J~!(t)
⇤

� J�1K
1

~�(t� ⌧)� J�1K
2

~!(t� ⌧)

+J�1~⌫(t) + J�1~a(t). (8)

The system above can be expressed in the form

˙~x(t) = A~x(t) +A
d

~x(t� ⌧) + C(~⌫(t) + ~a(t)) + ~f(~x(t)), (9)
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Figure 1. Feedback control system with delay in the measurement, block
diagram of the closed-loop system.

where ~x =

�

~�T ~!T

�

T 2 R6 is the state space vector, and

A =

✓

0

3

1

4

I
3

�4I
3

0

3

◆

, A
d

=

¯J�1

✓

0

3

0

3

�K
1

I
3

�K
2

I
3

◆

,

C =

¯J�1

✓

0

3

I
3

◆

,

~f(~x(t)) = ¯J�1

✓

1

4

(B(~�(t))� I
3

) ~!(t)

4J~�(t)� !̃(t)J~!(t)

◆

. (10)

The matrix ¯J in Eq. (10) is defined as

¯J =

✓

I
3

0

3

0

3

J

◆

. (11)

Neural Network Approximation

As discussed earlier, the time is assumed to be in the measurement, consequently, all the state
variables are measured with time delay. Hence, implementing the feedback linearization method
to cancel the (almost) purely nonlinear term ~f(~x) in Eq. (9) is difficult. Therefore, we choose to
approximate this unknown nonlinear vector-valued function by a feedforward NN on a compact set
S by the radial basis function

~f(~x(t)) = W ~
�(V~x) + ~"(t), (12)

where V and W are unknown constant weight matrices, ~�(V~x) : S ! Rn is a known function
with the NN node number n > 1, and ~"(t) is the bounded NN approximation error (i.e. ||~"||  "

N

where "
N

is a positive constant). The basis function ~
�(~x) can be defined as a sigmoid function

�

i

(V
i

~x) =
2

1 + e�2Vi~x
� 1, (13)

where V
i

is the i�th row of the matrix V , and �

i

(V
i

~x) is the i�th element of the vector ~�(V~x). For
simplicity purposes, the weight matrix V is considered to be the n dimensional identity matrix, and
the optimal weight matrix W is defined as

W = arg min

ˆ

W2Rn

⇢

sup

x2S

�

�

�

~f(~x)� ˆW (t)�(~x)
�

�

�

�

, (14)
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Figure 2. Neural Network Scheme

where ˆW (t) represents the estimated weight matrix. The structure of i�th (i = 1, 2, · · · , n) branch
of the NN is illustrated in Fig. 2. Using the above neural network approximation along with the
control law in Eq. (7), we can obtain the following result which guarantees the local stability of the
system.

Remark. Note that the MRPs are used based on the advantages mentioned before, and, to the
knowledge of the authors, the combination of MRPs and the proposed NN does not necessarily
provide any benefits over the other attitude parameterizations beyond these well-known advantages
of MRPs.

Theorem 1 Consider the system described by Eq. (5) and the control law given in Eq. (7) with the
new control variable

~⌫(t) = �C+

ˆW (t)~�(~x), (15)

where C+ denotes the pseudoinverse of the matrix C such that

CC+

= I
6

, (16)

where I
6

is the 6⇥ 6 identity matrix, and

~a(t) = C+~x(t� ⌧), (17)

is an additional robust term, where  is a constant. If the weights of the NNs are updated according
to

˙

ˆW (t) = �⌘
@J

@ ˆW (t)
(18)

where ⌘ > 0 is an arbitrary constant, and J is the cost function defined as

J =

1

2

~xT (t)~x(t), (19)

then asymptotic stability of the system is guaranteed if there exists positive definite matrices P , Q,
K

1

, and K
2

such that the following linear matrix inequality (LMI) holds

M =

0

@

ATP + PA+Q PA
d

F T

+ P

A
d

TP �Q 0

3

F + P 0

3

0

3

1

A  0, (20)
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where F = ⌘�A�1

T and � is a constant symmetric positive definite matrix. Thus all the signals in
the closed loop system are bounded which shows the local stability condition for the system.

Proof 1 Defining the weighted matrix error as

˜W (t) = W � ˆW (t) (21)

the Lyapunov-Krasovskii functional candidate is assumed as

V (t) = ~xT (t)P~x(t) +
Z

t

t�⌧

~xT (�)Q~x(�)d� + tr(

˜W (t)
T

�

˜W (t)), (22)

where P , Q, and � are constant symmetric positive definite matrices with suitable dimensions.
Taking the time derivative of V (t) along the trajectory of the closed loop dynamical system we
obtain

˙V (t) = ˙~xT (t)P~x(t) + ~xT (t)P ˙~x(t) + ~xT (t)Q~x(t)�

~xT (t� ⌧)Q~x(t� ⌧) + 2tr(

˜W T

(t)� ˙

˜W (t)). (23)

Substituting Eqs. (12), (15), and (17) into (9), and plugging the result into into (23) we obtain

˙V (t) = ~xT (t)(ATP + PA+Q)~x(t) + ~xT (t� ⌧)(�Q)~x(t� ⌧)

+~xT (t)PA
d

~x(t� ⌧) + ~xT (t� ⌧)A
d

TP~x(t) +

~
�

T

(~x) ˜W TP~x(t) + ~"T (t)P~x(t) + ~xT (t� ⌧)P~x(t) +

~xT (t)P ˜W ~
�(~x) + ~xT (t)P~"(t) + ~xT (t)P~x(t� ⌧) +

2tr(

˜W T

(t)� ˙

˜W (t)). (24)

The adaptive control law ˆW (t) can be calculated by using the BP algorithm as8 in Eq. (18).

On the other hand, the cost function defined in Eq. (19) and the control variable given in Eq. (15)
are used in the following chain rule to obtain the trace of the partial derivative of the cost function
with respect to the estimated weights vector as

tr

✓

@J
@ ˆW

◆

= tr

✓

@J
@~x

@~x

@~⌫

@~⌫

@ ˆW

◆

= ~xT
✓

@~x

@⌫̂

◆

⇣

�C+~
�(~x)

⌘

. (25)

In order to calculate the term @~x

@⌫̂

in Eq. (25) the same strategy is used as in the literature8, 10 , where
the static approximation gradient ˙~x ⇡ ~

0 is assumed. Hence from Eq. (9)

@~x

@⌫̂
= �A�1C. (26)

Inserting Eq. (26) into Eq. (25), and using the property (16) we obtain

tr

✓

@J
@ ˆW

◆

= ~xTA�1

| {z }

~

b

T
1

~
�(~x)
| {z }

~

b2

. (27)
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By using the identity tr(

~b
1

~bT
2

) =

~bT
1

~b
2

, Eq. (27) yields

@J
@ ˆW

=

�

~xTA�1

�

T ~
�

T

(~x). (28)

Now, by substituting the result back into Eqs. (18) and (21) the NN learning rule can be approxi-
mated as

˙

˜W (t) = � ˙

ˆW (t) = ⌘
�

~xTA�1

�

T ~
�

T

(~x). (29)

Hence, the term 2tr(

˜W T

�

˙

˜W ) in Eq. (24) can be written as

2tr

⇣

˜W T

�⌘
�

~xTA�1

�

T ~
�

T

(~x)
⌘

. (30)

Defining F as F = ⌘�A�1

T , Eq. (30) becomes

2tr

⇣

˜W TF~x~�T

(~x)
⌘

= 2

~
�

T

˜W TF~x =

~
�

T

˜W TF~x+

~xTF T

˜W ~
�. (31)

Therefore, ˙V (t) in Eq. (24) can be represented as

˙V (t) = ~xT (t)(ATP + PA+Q)~x(t) + ~xT (t� ⌧)(�Q)~x(t� ⌧) +

~xT (t)PA
d

~x(t� ⌧) + ~xT (t� ⌧)(A
d

TP )~x(t) +

~
�

T

(~x) ˜W T

(F + P )~x(t) + ~xT (t)(F T

+ P )

˜W ~
�(~x) +

(~x(t� ⌧) + ~"(t))TP~x(t) + ~xT (t)P (~"(t) + ~x(t� ⌧)) (32)

The augmented vector ~⇠ is defined as

~⇠ =

8

<

:

~x(t)
~x(t� ⌧)
˜W ~
�(~x)

9

=

;

(33)

such that Eq. (32) becomes

˙V (t) = ~⇠TM~⇠ + (~"+ ~x(t� ⌧))T P~x(t) + ~xT (t)P (~"+ ~x(t� ⌧))

=

~⇠TM~⇠ + 2~xT (t)P (~"+ ~x(t� ⌧)) , (34)

where

M =

0

@

ATP + PA+Q PA
d

F T

+ P

A
d

TP �Q 0

3

F + P 0

3

0

3

1

A (35)

can be investigated using standard LMI theory. In order to guarantee that the last two terms in the
right hand side of Eq. (34) are negative, we set

~"(t) + ~x(t� ⌧) = �↵~x(t), ↵ > 0. (36)
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For a stable system ||~x(t)||  ||~x(t� ⌧)|| as t goes to infinity, hence Eq. (36) implies that

 = �~xT (t� ⌧)~"(t) + ↵~xT (t� ⌧)~x(t)

||~x(t� ⌧)||2

= �~xT (t� ⌧)~"(t)

||~x(t� ⌧)||2 � ↵
~xT (t� ⌧)~x(t)

||~x(t� ⌧)||2

 "
N

||~x(t� ⌧)|| + ↵  "
N

||~x(t)|| + ↵. (37)

For a proper value of  that satisfies Eq. (37), plugging Eq. (36) into (34) yields

˙V (t) = ~⇠M~⇠ + ~xT (�2↵P )~x < 0. (38)

Since M and �2↵P are negative definite matrices, one can say ˙V (t) < 0 occurs only at the
equilibrium point of the system which guarantees asymptotic stability of the system in some regions
by Lyapunov’s second method, and the proof is complete. ⇤

DELAYED FEEDBACK CONTROL VIA A VELOCITY-FREE APPROACH

The following technique adapted from1 is used in this paper to compare the performance of the
proposed neural network approach presented above. In the first case, for attitude regulation, the
delay is considered to be known and u is assumed as an input torque in terms of the state space
parameters and is injected into the system at t = 0

1

~u = �1

4

BT

(~�)KN(~� � ~z), (39)

where the meta-state ~z is such that

˙~z = �(N +M)~z +N~� +

~L, (40)

and where ~L is a constant feedback vector whose value depends on the selected set-point. Thus, if
we set ~� = [0, 0, 0]T , then ~L will be zero. The 3 ⇥ 3 constant symmetric matrices N , M , and K
should be chosen such that they have the commutative property

KN = NK, KM = MK, MN = NM. (41)

In this method, a torque is applied to control the system which can be either due to the thrusts or the
change of moments about the gyroscopic axes.

Stability Analysis of the Corresponding Delay Free System

Let us first consider the delay free case. In order to prove that the origin of Eqs. (2), (39), and
(40) is asymptotically stable, consider the following Lyapunov candidate function1

V (x) =
1

2

⇥

~!TJ~! + (~� � ~z)TKN(~� � ~z) + ~zTKM~z
⇤

> 0. (42)
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The time derivative is found as

˙V (~x) = ˙~!TJ~!
(

˙~� � ˙~z)TKN(~� � ~z) + ˙~zTKM~z

=

⇥

J�1!̃J~! � J�1BT

(~�)KN(~� � ~z)
⇤

T

J~! +



1

4

B(~�)~! + (N +M)~z �N~�

�

T

KN(~� � ~z) +

[�(N +M)~z +N~�]T KM~z

=



�~!TJ !̃J�1 � (~�T � ~zT )KN
1

4

B(~�)J�1

�

J~! +



~!T

1

4

BT

(~�) + ~zT (N +M)� ~�TN

�

KN(~� � ~z) +
⇥

�~zT (N +M) + ~�TN
⇤

KM~z

= �~!TJ !̃~! � (~�T � ~zT )KN
1

2

�

I
3

� �̃ + ~�~�T

�

~! +



~!T

1

2

(I
3

+ �̃ + ~�~�T

) + ~zT (N +M)� ~�TN

�

KN(~� � ~z) +

⇥

�~z(N +M) + ~�TN
⇤

KM~z. (43)

However, !̃~! = ~!⇥ ~! = 0, and using the facts that KN~�~�T

= ~�~�TKN , and that for vectors ~↵, ~�
and matrix A, ~↵TA~� = �TA~↵, Eq. (43) will be

˙V (~x) = �1

2

⇥

~!TKN~� � ~!TKN~z + ~!TKN �̃~� + ~!TKN �̃~z + ~!TKN~�~�T~� � ~!TKN~�~�T~z
⇤

+

h

~!T

1

2

KN(~� � ~z) +
1

2

~!T �̃KN(~� � ~z) +
1

2

~!T~�~�TKN(~� � ~z) +

~zT (N +M)KN(~� � ~z)� ~�TNKN(~� � ~z)
i

+

⇥

�~zT (N +M)KM~z + ~�TNKM~z
⇤

= �~zT (N +M)K(N +M)~z + ~zT (N +M)KN~� + ~�TNK(N +M)~z � ~�TNKN~�

= ~zT (N +M)K [�(N +M)~z +N~�]� ~�TNK [�(N +M)~z +N~�]

=

⇥

~zT (N +M)� ~�TN
⇤

K [�(N +M)~z +N~�] = � ˙~zTK ˙~z  0,

which is negative semi definite. Now, applying the LaSalle invariance principle, the set S is defined
as

S =

n

~x 2 D| ˙V (~x) = 0

o

. (44)

Setting ˙V equal to zero implies that

˙~z(t) = ~
0, ¨~z(t) = ~

0. (45)

Equation (2) reads

¨~z(t) = �(N +M)

˙~z +N ˙~� =

~
0, (46)

from which ˙~�(t) = 0. Again, referring to Eq. (2), either ~! or B(~�) must be zero. However,
the diagonal arrays of the matrix B(~�) are 1 + �2

i

for i = 1, 2, 3, and thus, B(~�) can never be
zero, which along with previous conclusion reads ~!(t) = 0 and consequently ˙~!(t) = 0, which
the latter, according to Eq. (39) implies that ~� = ~z. On the other hand and referring to Eq. (40),
˙~z = �(N +M)~z +N~� = �M~z =

~
0. Therefore,

~z = ~� = ~! =

~
0. (47)
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In other words, we have proved that no solution stays in the set S other than the origin, and thus,
the origin is asymptotically stable for the delay free case.

In the calculations above,

~x =

8

<

:

~�
~!
~z

9

=

;

2 <9 (48)

is the assembled state vector. Note that all variables and parameters stated so far indicate vectors or
matrices except for the V , ˙V , and, of course, the time t.

Stability Analysis of the Delayed System

Equations (2), (39), and (40) with delayed feedback can be written as (~L =

~
0)

˙~� =

1

2

~! +

1

4

¯B(~�)~!,

˙~! = J�1!̃J~! + J�1~u(t� ⌧)

= J�1!̃J~! � 1

2

J�1KN [~�(t� ⌧)� ~z(t� ⌧)]� J�1

1

4

¯B (~�(t� ⌧))KN [~�(t� ⌧)� ~z(t� ⌧)]

˙~z = �(N +M)~z +N~� (49)

for t � 0, where 1

4

¯B = �1

2

I
3

+

1

4

B, and ~x(t) = ~�(t) for t 2 [�⌧, 0]. Splitting the time invariant
and time-varying matrix multiplier, the governing equations of the system (49) can be written as

˙~x = E~x(t) + F~x(t� ⌧) +G(~x(t))~x(t) +H(~x(t� ⌧))~x(t� ⌧), (50)

where

E =

0

@

0

3

1

2

I
3

0

3

0

3

0

3

0

3

N 0

3

�(N +M)

1

A , F =

0

@

0

3

0

3

0

3

�1

2

J�1KN 0

3

1

2

J�1KN

0

3

0

3

0

3

1

A ,

G(~x(t)) =

0

@

0

3

1

4

¯B(~�(t)) 0

3

0

3

J�1!̃(t)J 0

3

0

3

0

3

0

3

1

A ,

H(~x(t� ⌧)) =

0

@

0

3

0

3

0

3

�1

4

J�1

¯BT

(~�(t� ⌧))KN 0

3

1

4

J�1

¯BT

(~�(t� ⌧))KN

0

3

0

3

0

3

1

A , (51)

and the matrices are separated based upon whether they are multipliers of ~x(t) and ~x(t � ⌧), and
upon whether they are constant or time-varying. The response of the system can then be obtained
by using the convolution integral (method of steps) as

~x(t) = exp(Et)~�(0) +

Z

t

0

exp (E.(t� ⌧
1

))

h

F ~�(⌧
1

� ⌧) +G(x(⌧
1

))~x(⌧
1

) +

H
⇣

~�(⌧
1

� ⌧)
⌘

~�(⌧
1

� ⌧)
i

d⌧
1

, t 2 [0, ⌧ ] (52)
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~x(t) = exp ((E + F ).(t� ⌧)) ~x(⌧) +

Z

t

⌧

exp ((E + F ).(t� ⌧))
n

Z

⌧1

⌧1�⌧

[�FE~x� FG(~x)~x] d⌧
2

+G(~x)~x+

H(~x(⌧
1

� ⌧))~x(⌧
1

� ⌧)
o

d⌧
1

, t � ⌧ (53)

or by numerical integration.

Proposition 1 A set of positive constants a
f

, a
e

, a
fe

, ↵, and k, ⇣ � 1 can be selected such that1

a
f

= ||F ||, a
e

= ||E||, a
fe

= ||FE|| > 0, ||exp(At)||  k exp(�↵t), t � 0

sup

t2[0,⌧ ]
||exp(Et)||  ⇣ (54)

Proof 2 See reference1 . ⇤

Theorem 2 Considering Eq. (54), if one defines q as

q =

ka
fe

↵
⌧, (55)

then for q < 1, the trivial solution of the system given in (50) is locally but exponentially stable.

Proof 3 See reference1 . ⇤

SIMULATION RESULTS

In this section, the proposed NN-based controller is first implemented and its results are compared
to the velocity-free controller introduced in Section . In order to develop the simulations based on
the velocity-free controller, the feedback controller in Eq. (39) is implemented to the system and
MATLAB dde23 is used in the simulations to integrate the time delayed system. The syntax of
dde23 is given by

sol = dde23(ddefun,lags,history,tspan) (56)

where ddefun is the handle to the function describing the system, lags is a vector of discrete de-
lays, history is the handle describing the initial function, and tspan is the vector of the integra-
tion limits. Finally, the norm of the assembled state-space vector (||~x|| =

p

||~�||2 + ||~!||2 + ||~z||2),
and the variation of the feedback control law ~u(t) are obtained versus time, and compared to those
obtained in the literature.

In the first step, in order to compare the proposed NN-based controller with the velocity-free
controller, the system parameters for two different cases given in Table 1 are considered. Figures 3–
6 compare the results obtained by our NN-based controller to those obtained using velocity-free
controller for a small spacecraft (case 1) and a large one (case 2) (see Table 1) with the initial
conditions ~�

0

= [�0.3,�0.4, 0.2]T (rad) and ~!
0

= [0.2, 0.2, 0.2]T
�

rad

sec

�

for two different values
of the time delay (⌧ = 0.1 sec and ⌧ = 0.5 sec). It should be mentioned here that the initial meta-
state vector ~z for the velocity-free controller is zero in both cases. The constant control parameters
⌘ and  for the NN-based controller are also given in Table 1.
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Table 1. System parameters for two sample cases

Parameter Case 1 Case 2

J
�

Kg.m2

�

diag(50, 30, 20) diag(1000, 700, 500)

⌧ (sec) 0.1, 0.5 0.1, 0.5
⌘ 0.01 7
 -75 -1575

Table 2. Parameter values as defined by Ailon et al1

Parameter Matrix Value

J diag
⇥

1000 700 500

⇤

K diag
⇥

1035 517.5 724.5
⇤

M diag
⇥

.0767 .0767 .0767
⇤

N diag
⇥

.6128 .6128 .6128
⇤

As shown in the figures, the magnitude of the controlled signal in the NN approach is initially
higher than those obtained using the approach in Eqs. (39) and (40). The reason is that all the
nonlinear terms in the present approach are supposed to be unknown and must be approximated.
Therefore, it is reasonable for the magnitude of the proposed controller to be higher than that in
Eqs. (39) and (40). Furthermore, there are no considerable over- or undershoots in the responses
obtained by the NN approximation, whereas all the controlled states in the velocity-free controller
approach have some over- or undershoots before they die out. Since the values of the state variables
at the current time are unknown, delayed states are considered in the NN-based controller func-
tion (7) and the NNs are subject to some approximated nonlinear terms with the time delay in the
input as well as delayed linear terms. Another advantage of the NN-based controller is its delay-
independence which means that for proper controller gains ⌘ and , as long as there exist positive
definite matrices P , Q, K

1

, and K
2

such that the LMI (20) holds, the proposed delayed feedback
controller can regulate the system, no matter what the delay value is. It should be mentioned that in
order to regulate the system with higher values of the time delay, the control gains  and ⌘ should be
changed accordingly which may result in higher torque magnitude and consequently higher control
cost which may not be practical. The results obtained by the NN-based controller are compared to
those obtained by velocity-free controller in Fig. 7 for the large spacecraft with ⌧ = 1.1 sec, where
the controller gains in the NN-based controller are  = �1100, and ⌘ = 700. As can be seen in
the figure, the system is controlled by NN-based controller while the velocity-free controller cannot
control the system for this time delay. By performing some simulations we found that the maximum
value of the time delay which can be handled by the velocity-free controller is about ⌧ ⇡ 1.085 sec.

Further, we consider the same inertia matrix J , and the symmetric gain matrices K, M and
N (Table 2) as those given by Ailon et al1 . The results for the stable system with time delay
⌧ = 0.0125 and initial state space vector ~�(✓) = [0, 0.001,�0.001, 0, 0, 0, 0.001, 0, 0]T for ✓ 2
[�⌧, 0] are compared to those obtained by Ailon et al1 in Fig. 8. Differences with the results can
be attributed to the fact that Ailon et al1 have used CRPs for their simulation, while here MRPs are
used instead.
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Figure 3. Neural network approach (Left) vs. velocity-free controller (Right) for the
small spacecraft (see Table 1) with ⌧ = 0.1 sec.

Figure 4. Neural network approach (Left) vs. velocity-free controller (Right) for the
small spacecraft (see Table 1) with ⌧ = 0.5 sec.
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Figure 5. Neural network approach (Left) vs. velocity-free controller (Right) for the
large spacecraft (see Table 1) with ⌧ = 0.1 sec.

Figure 6. Neural network approach (Left) vs. velocity-free controller (Right) for the
large spacecraft (see Table 1) with ⌧ = 0.5 sec.
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CONCLUSIONS

The delayed feedback control of spacecraft attitude dynamics is studied in this paper where an
unknown discrete time delay is considered in the feedback control of a rigid spacecraft, and the
MRP vector is selected as the attitude coordinate set. The advantage of using MRPs is that they
can describe tumbling motion by switching to the shadow set at a certain value of principle rotation
angle. A NN approximation along with a suitable Lyapunov-Krasovskii functional have been imple-
mented to investigate the regulation of the closed-loop controlled system. Finally, the results of the
NN approach are compared to those of a simulation based on the velocity-independent controller
given in the literature1 . The proposed controller has shown a smoother response in terms of the
over- and undershoots for the controlled states as compared to the velocity-free approach, and can
guarantee the local stability of the closed-loop system. According to the results of the NN method,
and due to the delay-independence, even for higher values of time delay the local stability of the
system is guaranteed with proper selection of the control gains. A possible future work in this area
would be investigating the effectiveness of the proposed controller on tumbling motion.
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Figure 7. Neural network approach (Left) vs. velocity-free controller (Right) for the
large spacecraft (see Table 1) with ⌧ = 1.1 sec.
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Figure 8. Simulation results for the stable case (⌧ = 0.0125) based on the
velocity-free controller; present study with the use of MRPs (Top); results
given in Ref.1 with the use of CRPs (Bottom)
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