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SMALL BODY NAVIGATION AND GRAVITY ESTIMATION USING
KALMAN FILTER AND LEAST-SQUARES FITTING

Julio C. Sanchez* and Hanspeter Schaub†

This paper considers the problem of simultaneous navigation and inhomogeneous
gravity estimation around a small body. The available measurements are acquired
by an on-board camera able to track small body landmarks. The proposed solution
approach combines a dynamic model compensated unscented Kalman filter with
a least-squares gravity fitting through gradient descent. The filter fills a training
dataset with position and unmodeled acceleration estimates. Prior to the filter, the
measurements are processed to determine an initial estimate of the spacecraft po-
sition and its uncertainty. Both spherical harmonics and mascon gravity models
have been embedded within the proposed scheme. The numerical results demon-
strate that the mascon model does not diverge within the Brillouin sphere, as is the
case for spherical harmonics, while not loosing accuracy outside of it.

INTRODUCTION

Small bodies exploration enables a deeper understanding of the Solar System formation pro-
cesses1 and planetary protection techniques.2 Spacecraft dynamics, in the vicinity of small bodies,
is highly perturbed from Keplerian motion3 due to the strong effects of inhomogeneous gravity and
solar radiation pressure. These perturbations have to be taken into account in order to design safe
flight operations. However, in the early stage small body missions, only coarse information of the
body shape can be inferred through ground-based radar and telescope measurements before launch.
While this is not a concern for solar radiation pressure (as it does not depend on the small body
properties), it certainly is for the small body gravity field. Consequently, the inhomogeneous grav-
ity field can only be sensed while on the fly through in-situ observations. The classic approach for
small bodies gravity estimation largely relies on ground-based systems for radiometric measure-
ments and data processing.4 As communication with Earth-based mission control is required, the
whole process is slow due to signal delay and Deep Space Network accessibility. Consequently,
there is a need of on-board autonomy for the small body gravity field estimation.

Recently, several publications5–10 are proposing solutions to the autonomous gravity estima-
tion problem. References 5-6 consider satellites in close formation, namely swarm, for simul-
taneous navigation and gravity estimation. These works use landmark-based measurements and
inter-satellite ranging within a centralized unscented Kalman filter (UKF). The filter estimates the
spacecrafts state and spherical harmonics coefficients. Second-order degree gravity and solar sail re-
flectivity degradation are inferred in Ref. 7. These parameters are estimated via a sequential fitting of
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the observed perturbing acceleration. However, the simulations lack realism as perfect knowledge of
the spacecraft position is assumed. A gravity model learning-based predictive control is developed
in Ref. 8. The spherical harmonics coefficients are inferred by averaging individual estimates of a
satellite constellation, thus mitigating outliers and speeding the convergence. Each satellite embarks
its own UKF for simultaneous state and gravity estimation by acquiring landmarks-based measure-
ments. In Ref. 9, Hopfield neural networks are demonstrated to provide similar performance as
extended Kalman filtering (EKF) for the spherical harmonics coefficients estimation. A dynamical
compensated filter generating a dataset to train a physics-informed neural network gravity represen-
tation is proposed by Ref. 10. The authors of this paper utilize a similar approach by combining
a dynamical model compensated unscented Kalman filter (DMC-UKF) with a least-squares fit of
spherical harmonics coefficients.11

The literature review highlights a clear preference for the spherical harmonics model5–9, 11 (ex-
cept Ref 10). However, the spherical harmonics model is known to diverge within the Brillouin
sphere, thus being unfit for descent and landing operations. In the works with the higher fidelity
of measurements,5, 6, 8 the spherical harmonics may be preferred in order to maintain the filter di-
mensionality as low as possible (state and gravity are jointly estimated). Alternatively, if the filter
gravity coefficients are substituted by the unmodeled acceleration, the simultaneous navigation and
gravity estimation process may be more flexible. For example, there are gravity models with the
potential to avoid the Brillouin sphere divergence (such as mascon12 or physics informed neural
networks13) that may be of consideration. In particular, this manuscript uses mascon models by a
priori fixing the point masses randomly within the small body volume. Consequently, the decision
variables are the mascon standard gravity parameters.

The main contribution of this work is the development of a simultaneous navigation and gravity
estimation scheme that is flexible to models other than spherical harmonics. In particular, the mas-
con model has been implemented and the results demonstrate its superiority, in terms on the global
gravity accuracy, over spherical harmonics. The proposed strategy just relies on an on-board camera
able to track landmarks on the small body surface (the image processing that provides the landmarks
pixels is out of the scope of this work). By using the visible landmarks pixels, the satellite position
and associated uncertainty can be determined. This estimation is used as the measurement input to
the DMC-UKF which fills the position and unmodeled accelerations datasets. When the dataset is
full after a certain period of time, the gravity parameters are fitted using a momentum-based gradient
descent algorithm. This updates the filter gravity model and the process is sequentially repeated.

The structure of the manuscript is as follows. The dynamics around small bodies is firstly intro-
duced while making emphasis on gravity models. Secondly, the pinhole camera model, that maps
3D coordinates to pixels, is presented. Subsequently, the landmark-based position determination,
DMC-UKF and gravity estimation algorithms are described. Then, numerical simulations are shown
and discussed. Finally, the paper is finished with some conclusions and future work remarks.

DYNAMICS AROUND SMALL BODIES

A spacecraft orbiting in the proximity of a small body is perturbed by the inhomogeneous gravity
field, the Sun’s third body gravity and the solar radiation pressure such that

r̈ = −µr
r3

+ RN
Aagrav + a� + aSRP, (1)

where r is the spacecraft position expressed in an inertial frame, µ is the small body standard gravity
parameter and agrav is the inhomogeneous gravity acceleration (expressed in the small body rotating
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frame). The term RN
A is the direction cosine matrix from the rotating small body centred frame to

the inertial one. It is assumed that the small body rotates around its major inertia axis zA (as is the
usual case for small bodies), thus

RN
A =

cos (LST0 + ωAt) − sin (LST0 + ωAt) 0
sin (LST0 + ωAt) cos (LST0 + ωAt) 0

0 0 1

 , (2)

where LST0 is the small body initial local sidereal time and ωA its rotational velocity. The solar
perturbations, namely the third body gravity a� and solar radiation pressure aSRP, are described as

a� = −µ�
(

rA + r

‖rA + r‖32
− rA
r3
A

)
, aSRP =

CRSW⊕r2⊕
mc‖rA + r‖32

(rA + r), (3)

where rA is the small body relative position with respect to the Sun and µ⊕ = 1.3271244 ·
1020 m3/s2 is the Sun’s standard gravity parameter. The solar radiation pressure is described with
the cannonball model. The term m is the spacecraft mass, CR its reflection coefficient, S is the
exposed surface to the photons, W⊕ = 1366 W/m2 is the mean energy flux received from the Sun
at the mean orbital distance of r⊕ = 1 AU and c = 3 · 108 m/s2 is the speed of light.

Inhomogeneous gravity field

This section describes the inhomogeneous gravity models, that are being used throughout this
paper, characterizing the term agrav. These are the polyhedron, spherical harmonics and mascon
models respectively.

Polyhedron: the classic polyhedron gravity model, as described by Ref. 14, assumes the small
body has a constant density. The small body shape is approximated by a polyhedron which is defined
in terms of faces composed by vertexes. The inhomogeneous gravity acceleration is as follows

agrav =
µr

r3
− µ

V

 ∑
e∈edges

Ee · reLe −
∑

f∈faces

Ffrfwf

 , (4)

where V is the body volume, re is the relative position of the evaluation point with respect to the
edge origin, Ee is the dyad product resulting from the edge and face normals, Le is the potential of
the edge as a 1D wire, rf is the relative position of the evaluation point with respect to a vertex on a
face, Ff is the outer product of the face normal vector andwf is the solid angle of the face as viewed
from the evaluation point. The explicit details of these terms can be consulted in Ref. 14. Note that
the Keplerian term is added in order to be consistent with Eq. (1). As the polyhedron shape is
converged to the real one by augmenting the number of faces and vertexes, the exterior gravity field
also does (if the constant density assumption holds). However, the computational burden increases
steeply due to the summations over all edges and faces of Eq. (4). This precludes the use of this
model for real-time applications. In this work, the polyhedron gravity is used as ground truth model
for the simulations.

Spherical harmonics: the spherical harmonics representation is the solution to Laplace’s equa-
tion in a spherical domain.15 Its normalized version, truncated to ī degree, is as follows

agrav =

ī∑
i=2

i∑
j=0

µ

r2

(
Re

r

)i


−(i+ 1)P

(j)
i (Cij cos(jλ) + Sij sin(jλ))

j

cosφ
P

(j)
i (−Cij sin(jλ) + Sij cos(jλ))

cosφP
(j)′

i (Cij cos(jλ) + Sij sin(jλ))

 , (5)
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where (λ, φ) are the evaluation longitude and latitude, Re is a normalization radius, Cij and Sij are
the spherical harmonics coefficients characterizing the gravity field, P (j)

i and P (j)′

i are the normal-
ized Legendre function and its derivative. The spherical harmonics model is very popular within
the astrodynamics community as it encodes fundamental gravity features with few parameters (e.g.
a constant density ellipsoid is simply characterized by C20 and C22). On the other hand, since
it prescribes spherical functions, it diverges within the body shape circumscribing sphere (namely
Brillouin sphere). For the sake of brevity, Eq. (5) describes the spherical harmonics expression with
a singularity at φ = ±π/2. However, the non-singular Pines spherical harmonics model16 is used
in this paper.

Mascon: the mascon model was proposed in the 70s as an alternative to spherical harmonics in
order to fit sparse data. It is based on the idea that the gravity field could be represented by a finite
number of point masses (namely mascons) such that

agrav = −
nM∑
k=1

µk
r− rk
‖r− rk‖32

, (6)

where µk and rk are, respectively, the standard gravity parameter and position of each mascon.
The term nM is the number of mascons. In order to avoid singularities in the external gravity field
evaluation, the point masses shall be within the small body volume. This requires certain knowledge
of the body shape (e.g. polyhedron geometry).

PINHOLE CAMERA MODEL

Optical navigation is one of the most reliable methods to autonomously acquire relative mea-
surements with respect to a small body. Let assume a camera that is able to acquire small body
images. From a high-level navigation perspective, the imaging can be described with a pinhole
camera model that transforms 3D points to 2D features.17 The projection of a 3D point, expressed
in the camera reference frame, (x, y, z) to virtual image plane coordinates (u, v) is as follows[

u
v

]
=
f

z

[
x
y

]
, (7)

where f is the pinhole camera focal length. Since the image is digital, the 3D point will correspond
to a pixel (px, py) in the image plane as follows

px =

{
ceil(u/wp) if u > 0,

floor(u/wp) if u < 0,
py =

{
ceil(v/wp) if v > 0,

floor(v/wp) if v < 0,
(8)

where wp is the camera pixel width. The projection process is illustrated in Fig. 1. Note that 0C
is the camera aperture and zC denotes the optical axis. The frame C ≡ {OC ,xCyCzC} defines
the camera frame. The pixel width is determined by the camera sensor size and its resolution. An
important parameter of the camera configuration is the field of view (FOV) which refers to what is
visible through the lens. The field of view is characterized by horizontal and vertical angles that are
related to the focal length and sensor size as

FOV ≡ 2 arctan(npxwp/2f)× 2 arctan(npywp/2f), (9)

where npx and npy are, respectively, the horizontal and vertical number of pixels. Note that the
camera focal length is the variable parameter that drives how much area of the small body is visible.
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Figure 1. Illustration of the pinhole camera model.

SIMULTANEOUS NAVIGATION AND GRAVITY ESTIMATION

This section describes the simultaneous navigation and gravity estimation algorithms. These
comprise the landmarks-based position determination, the dynamical model compensated unscented
Kalman filter and the batch least-squares fitting of the gravity parameters.

Landmarks-based position determination

Landmarks are small body surface features (e.g. craters) that are mapped during high orbit phases
to enable accurate relative navigation. Consequently, in this work, the landmark locations rLj are
known to a certain extent. Moreover, by tracking them with the camera, the visible landmarks pixels
(pLxj

, pLyj ) are assumed to be the available measurements.

The visible landmark pixels and known locations could be directly used as inputs to the naviga-
tion filter.5, 8 Differently from that approach, in this work, the previous data is used for an initial
determination of the spacecraft position and its associated uncertainty. The output of this initial
determination is subsequently sent to the DMC-UKF. The landmarks-based position determination
algorithm exploits the relative geometry between the spacecraft and landmarks as follows. The
landmark-spacecraft lines should intersect in the camera aperture (from now on, it will be assumed
to coincide with the spacecraft center of mass for the sake of simplicity). This geometrical prop-
erty is illustrated in Fig. 1 for three landmarks. However, landmark locations will not be exactly
known and pixelation error will be present due to the use of a digital camera. As a consequence,
the intersection of all landmark-spacecraft lines is not unique due to the presence of errors. Due to
this fact, they would be denoted as landmark-spacecraft pseudolines. Nonetheless, the spacecraft
position (unique intersection point for the ideal case) could be approximately determined by finding
the nearest point with respect to all the spacecraft-landmark pseudolines (in the least-squares sense).
This algorithm is described below. Firstly, let detail how the landmark-spacecraft pseudoline can be
constructed from the landmark pixel:
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1. Center the landmark pixel:

p′xj
=

{
pLxj
− 0.5 if pLxj

> 0,

pLxj
+ 0.5 if pLxj

< 0,
p′yj =

{
pLyj − 0.5 if pLyj > 0,

pLyj + 0.5 if pLyj < 0.

2. Transform it to 2D image coordinates: (u′j , v
′
j) = wp(p

′
xj
, p′yj ).

3. Compute the line-of-sight vector wC
j of the landmark from the spacecraft:

wC
j =

1√
(u′j)

2 + (v′j)
2 + 1

u′jv′j
1

 .
4. Project the line-of-sight to the small body centred fixed frame: wA

j = RA
Cw

C .

5. Construct the parametric equation of the landmark-spacecraft pseudoline: swA
j = r′ − rLj .

Note that s is an independent variable and r′ is the set of points sweeping across the line. The
distance lj of an arbitrary point r to a spacecraft-landmark pseudoline can be computed as

lj = ‖(r− rLj )×wA
j ‖2. (10)

Let recall that wA
j is a unit vector. Then, the goal is to find the point r that minimizes the sum of

the squared distances Llmk for nL landmarks. The variable L can be expressed as

Llmk =

nL∑
j=1

l2j =

nL∑
j=1

[(r− rLj )×wA
j ]T [(r− rLj )×wA

j ]

=

nL∑
j=1

(r− rLj )T (r− rLj )− [(r− rLj ) ·wA
j ]T [(r− rLj ) ·wA

j ],

(11)

where the identity (a×b)T (a×b) = (aTa)(bTb)−(aTb)(bTa) has been used. The closest point
r∗ can be computed by taking the first order derivative of L with respect to r and equaling to zero

dLlmk

dr
=

nL∑
j=1

dl2j
dr

∣∣∣∣
r=r∗

=

nL∑
j=1

2(r∗ − rLj )− 2[(r∗ − rLj ) ·wA
j ]wA

j = 0, (12)

then, r∗ is determined bynLI− nL∑
j=1

wA
j (wA

j )T

 r∗ =

nL∑
j=1

rLj − (rLj ·wA
j )wA

j , (13)

which is a simple 3x3 system of linear equations where r∗ can be easily cleared by inverting the
left-side matrix. There are two cases where Eq. (13) is unsolvable. The first one is nL = 1 where it
is evident that at least another pseudoline is needed to have an intersection. The other case is when
all the pseudolines are parallel.

An estimation on the r∗ uncertainty, in terms of its covariance matrix ΣΣΣzz, can be obtained
through the reduced chi-squared statistic of the residuals χ2

ΣΣΣzz = χ2(JLJ
T
L)−1, χ2 =

Llmk(r∗)

3nL − 3
, JL = [(wA

1 )×, . . . , (wA
nL

)×], (14)

where (wA
j )× is the cross-product matrix of each line-of-sight vector.
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Dynamical model compensated unscented Kalman filter

The DMC-UKF has the double task of estimating the spacecraft state (position and velocity) and
the umodeled perturbing acceleration. The DMC approach relies on augmenting the filter state with
the unmodeled acceleration term18 which allows to recursively estimate the dynamics missing part.

The UKF19 has the distinctive capability to transform Gaussian distributions with non-linear func-
tions. Although, by applying a nonlinear transformation, the resulting distribution will not be Gaus-
sian, the UKF approximates the result with a higher degree of accuracy than a linearized EKF. To
this end, the UKF uses a particle-based approach, namely unscented transform (UT), which chooses
a reduced set of samples (namely sigma points χχχx) around the initial distribution mean as

χχχ
[j]
x = x̂ + sgn(j) ·

(√
(n+ λ)ΣΣΣxx

)
|j|
, j = −n . . . n, (15)

where x̂ is the distribution mean, ΣΣΣxx its covariance and n its dimension. Let use the UT to trans-
form the initial distribution, x ∼ Nn(x,ΣΣΣxx), to y = f(x). The UT works by applying the
function f to each sigma point and using the outcome samples to reconstruct the final distribution
y ∼ Nm(y,ΣΣΣyy) as

ŷ =

n∑
j=−n

w[j]
m f(χχχ

[j]
x ), ΣΣΣyy =

n∑
j=−n

w[j]
c (ŷ − f(χχχ

[j]
x )(ŷ − f(χχχ

[j]
x ))T . (16)

Process propagation: the DMC-UKF dynamics is modeled as

d

dt

rv
a

 =

 v

−µr/r3 + agrav(r) + a�(r) + aSRP(r) + a
0

 , (17)

where the small body standard gravity parameter µ, the Sun’s third-body gravity and solar radiation
pressure features are assumed to be known. Then, the unknown dynamics component corresponds
to the inhomogeneous gravity agrav which is compensated with the unmodeled acceleration a. For
the sake of simplicity (avoid tuning parameters), a zero order Gauss Markov process is assumed for
the unmodeled acceleration dynamics. Equation (17) is propagated using a simple forward Euler
integration as

xk = xk−1 + ẋk−1∆tint, (18)

where x = [rT ,vT ,aT ]T denotes the DMC-UKF state and ∆tint is the integration time step (which
could be smaller than the measurement sampling time to augment the integration accuracy).

State to measurements transformation: the map from state to incoming measurements is

r = RN
A r∗, (19)

where r∗ is the position, expressed in the rotating small body centred frame, determined in Eq. (13).

DMC-UKF algorithm: the implementation of the DMC-UKF is described in Algorithm 1. Let
start with the current DMC-UKF state x̂0 and covariance ΣΣΣxx0 . When measurements arrive after a
certain period of time, the state is updated as follows. The steps 2-3 generate an a-priori estimation
of the state x− and covariance ΣΣΣ−xx through the process (referred as f ) UT. The process covariance
ΣΣΣff is added in order to account for the mismatch between truth and process dynamics. The steps
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4-5 map (referred as g) the a-priori state distribution to measurement space which yields a Gaussian
with mean ẑ− and covariance ΣΣΣ−zz. The covariance ΣΣΣzz is added to account for the measurements
dispersion (that is the landmarks-based position determination uncertainty). The step 6 computes
the cross-correlation matrix Hxz between state and measurements. This matrix is used in step 7
to compute the Kalman gain K. Finally, by using the measurement z (landmarks-based position
determination), the Kalman linear equation is applied to the a-priori state and uncertainty in order
to yield the a-posteriori distribution mean x̂ and covariance ΣΣΣxx. Following,19 the weights are

Algorithm 1: DMC-UKF

1 begin
2 Apply the UT Eq. (15)-(16) to the process of Eq. (18): (x̂−,ΣΣΣ−xx) ≡ UT(x̂0,ΣΣΣxx0 , f);
3 Add the process uncertainty: ΣΣΣ−xx ← ΣΣΣ−xx + ΣΣΣff ;
4 Apply the UT Eq. (15)-(16) to transform from state to measurement space using

Eq. (19): (ẑ−,ΣΣΣ−zz) ≡ UT(x̂−,ΣΣΣ−xx,g);
5 Add the uncertainty of measurements from Eq. (14): ΣΣΣ−zz ← ΣΣΣ−zz + ΣΣΣzz;
6 Compute the cross-correlation matrix between state and measurements:

Hxz =
n∑

j=−n
w

[j]
c

(
χχχ

[j]
x − x̂−

)(
χχχ

[j]
z − ẑ−

)T
;

7 Compute the Kalman gain: K = Hxz′ΣΣΣ
−1
zz′ ;

8 Update the state with incoming measurements from Eq. (13):
x̂ = x̂− + K(z− ẑ−), ΣΣΣxx = ΣΣΣ−xx(I−HxzK

T );
9 end

defined as w[0]
m = λ/(λ+n), w[0]

c = w
[0]
m + 1−α2 + β and w[j]

m = w
[j]
c = 1/(2n+ 2λ). Therefore,

the DMC-UKF tuning parameters are the process noise covariance ΣΣΣff and the variables {α, β, λ}
controlling the sigma point spread (see Eq. (15)) and UT weights.

Batch least-squares gravity fitting

The DMC-UKF provides estimates of the spacecraft position and the unmodeled acceleration.
By stacking these during a certain period of time, a training dataset (rdata,adata) can be formed as

rdata =

 r̂0

...
r̂N

 , adata =

 agrav(r̂0) + â0

...
agrav(r̂N ) + âN

 . (20)

Using the previous dataset, a least-squares fitting of the unmodeled acceleration can be posed
through the following functional

Lgrav =
[afit(rdata)− adata]

T [afit(rdata)− adata]

N
, (21)

where afit is the predicted acceleration by the fitted gravity parameters. Both spherical harmonics
and mascon models are used. The specific details for each model is described below.

Spherical harmonics: as it can be derived from Eq. (5), the spherical harmonics coefficients are
linear with respect to the inhomogeneous gravity. These coefficients can be stacked as ySH and the

8



gravity Jacobian matrix JSH with respect to them, evaluated at the dataset, can be derived as

ySH =



C20

...
Cī̄i

S22

...
Sī̄i


, JSH =


∂agrav

∂C20

∣∣∣∣
r=r̂0

. . .
∂agrav

∂Sī̄i

∣∣∣∣
r=r̂0

...
. . .

...
∂agrav

∂C20

∣∣∣∣
r=r̂N

. . .
∂agrav

∂Sī̄i

∣∣∣∣
r=r̂N

 , (22)

where the second-order tesseral coefficients S21 and C21 vanish because it has been assumed that
the small body rotation axis is aligned with its principal inertia axis (thus, they are null). By using
the terms of Eq. (22), the following linear relation between data and fitting parameters holds afit =
ASH(rdata)ySH.

Mascon: the mascon model (see Eq. (6)) has two parameters for each point mass that are its
gravity parameter µk and its position rk. The mascon acceleration is linear with respect to the
gravity parameter but nonlinear with the position. In this work, the mascon locations are fixed to
avoid a costly non-linear optimization. Accordingly, the single decision variable is the standard
gravity of each point mass. Similarly to the spherical harmonics case, the point masses standard
gravity are stacked in yM and the corresponding Jacobian matrix JM is formed as

yM =

 µ1

...
µnM

 , JM = −


r̂0 − r1

‖r̂0 − r1‖32
. . .

r̂0 − rnM

‖r̂0 − rnM ‖32
...

. . .
...

r̂N − r1

‖r̂N − r1‖32
. . .

r̂N − rnM

‖r̂N − rnM ‖32

 , (23)

thus, the mascons predicted acceleration is afit = JM(rdata)yM. In order to generate a mascon
distribution consistent with the previous center of mass, the following linear constraint is considered

nM∑
k=1

µkrk = AMyM = 0, AM =
[
r1 . . . rnM

]
. (24)

Let recall that the mascon locations are fixed a-priori by assuming a coarse polyhedron shape is
available. In particular, the point masses are randomly distributed within the small body volume.
In order to distribute the mascons uniformly around the small body, a cuboid embedding the small
body is divided into eight octants with an equal number of point masses. For each octant, a random
location with equal probability produces a potential mascon. Then, by using the polyhedron shape,
this random location is assigned to a mascon or discarded by evaluating the normalized Laplacian.
If the point is discarded, another random sample is generated until the specified number of mascons
is reached. For a polyhedron, the normalized Laplacian is 0 for an exterior point and 4π for an
interior one.14 An example of a generated 100 mascons distribution is shown in Fig. 2. Another
aspect deserving a comment is that the mascon gravity parameters µk can take negative values. This
is allowed because the objective of this paper is just to generate an accurate representation of the
exterior inhomogeneous gravity field.
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Figure 2. Illustration of a mascon random distribution for nM = 100.

Momentum-based gradient descent: for both the spherical harmonics and mascon models (from
now on, their sub-indexes are omitted), the loss function of Eq. (21) can be expanded as

Lgrav =
yTJTJy + 2aTdataJy + aTdataadata

N
, (25)

which is the least-squares fitting of a linear model in parameters. The optimal solution of Eq. (25)
is known to be y∗ = (JTJ)−1JTadata. However, when the dataset is generated online it will be
possibly noisy and biased. This may cause the Jacobian matrix to be ill conditioned, specially
if models with a high number of parameters are fitted. Moreover, as the number of parameters
increase, the matrix inversion may be extremely costly from the computational perspective. For
these two reasons, a momentum-based gradient descent method is used for both models.

The momentum-based gradient descent implementation is detailed in Algorithm 2. The accelera-
tion dataset is adimensionalized with a standard scaler by substracting the mean and dividing by the
standard deviation of each component (see step 2). Since both the spherical harmonics and mascon
models are linear in parameters, the scaled Jacobian is computed outside the training loop (see step
3). Then, the fitting parameters and momentum are initialized in step 4. The fitting parameters are
initialized with their current knowledge (e.g. if a data batch has been fitted previously, the training of
the new data batch continues from that estimation). The gradient descent executes the loop of steps
5-13 until a maximum number of iterations is reached. In step 6, the scaled acceleration fit with the
current parameters is computed. This serves to compute the loss function gradient with respect to
the fitting parameters (see step 7). The momentum term is updated in step 8 and it is added to the
parameters update, which pushes faster towards the minimum, in step 9. The step 11 only applies
to the mascon model and guarantees the satisfaction of Eq. (24). It projects the unconstrained new
solution, as per step 9, to the nearest point within the feasible solution space. The tuning parameters
of the gradient descent are the learning rate κ and the momentum coefficient η ∈ [0, 1]. Note that
the decision variables have not been normalized, thus learning rate would differ between spherical
harmonics and mascon models.

Basilisk implementation

The simultaneous navigation and gravity estimation algorithms have been embedded within the
Basilisk (BSK) astrodynamics simulation framework.20 The BSK software is composed of Python
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Algorithm 2: Momentum-based gradient descent for gravity estimation

1 begin
2 Scale acceleration data: ādata ← (ai,data − âdata)/σσσdata;
3 Compute scaled Jacobian: J̄← J(rdata)/σσσdata;
4 Initialize the fitting parameters and momentum: y = y0, ∆y = 0;
5 for k ← 0 to maxiter do
6 Compute scaled fitting: āfit = J̄y − (ādata/σσσdata);
7 Compute gradient∇∇∇L̄grav = 2J̄T (āfit − ādata)/N ;
8 Compute momentum: ∆y← η∆y + κ∇∇∇L̄grav;
9 Do update step: y← y −∆y;

10 if model ≡ mascon then
11 Project to the feasible solution space of Eq. (24): y← (ATA)−1ATy
12 end
13 end
14 end

modules written in C/C++. This offers the user to setup the simulation with Python scripts while
having the execution speed of C/C++ compiled coding.

The BSK implementation is shown in Fig. 3. It is composed of the simulation and flight software
processes that are executed with different sampling rates (dynamics integration step and DMC-
UKF rate). The simulation process manages the system ground truth by computing the small body
gravity, Sun 3rd body gravity and solar radiation pressure to propagate the spacecraft state. The
flight software process comprises the aforementioned algorithms (landmarks-based position deter-
mination, DMC-UKF and gravity fitting). The first block, related to the pinhole camera, loads a
landmarks database and generates the visible pixels in the image. Then, the landmarks based posi-
tion determination algorithm computes the spacecraft position and covariance. These estimates are
used as input measurements to the DMC-UKF block that fills the spacecraft state and unmodeled
acceleration datasets. When these are full, the momentum-based gradient descent finds the gravity
parameters fitting, in the least-squares sense, the data. Then, the dataset is emptied and the filter
gravity parameters are updated with the fitted ones (thus, reducing system uncertainty). This process
is depicted in Fig. 4.

NUMERICAL RESULTS

This section aims to validate the simultaneous navigation and gravity estimation algorithms with
numerical simulations. The target small body is 433 Eros which has a standard gravity parameter
µ = 4.4627547 · 105 m3/s2 and a rotational period TA = 5.27 h. Its ground truth gravity field
is modelled using a Eros polyhedron shape with 7790 triangular faces1. Eros heliocentric orbital
parameters are {a = 1.4583 AU, e = 0.2227, i = 10.829◦,Ω = 304.4◦, ω = 178.9◦, ν0 = 246.9◦}
and its orientation is defined by {RA = 11.369◦, dec = 17.227◦,LST0 = 0◦}.

The spacecraft is placed in a stable orbit for the simulation duration which is of 10 initial orbital
periods (6.825 days in total). The initial orbital elements are {a0 = 34 km, e0 = 0.001, i0 =
45◦,Ω0 = 48.2◦, ω0 = 347.8◦, ν0 = 85.3◦}. The spacecraft mass is taken as m = 750 kg, its

1https://sbnarchive.psi.edu/pds3/near/NEAR_A_5_COLLECTED_MODELS_V1_0/data/msi/
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Figure 3. Diagram of simultaneous navigation and gravity estimation in the Basilisk
simulation framework.

Figure 4. Illustration of the gravity estimation process.
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Figure 5. Spacecraft trajectory for the simulations. Black squares ≡ landmarks.

reflection coefficient as CR = 1.2 and the solar radiation pressure exposed area as S = 1.1 m2.
The simulated navigation camera is characterized by a 4:3 aspect ratio with a 17.3× 13 mm sensor
size and a resolution of 2048 × 1536 px. Then, the pixel width is wp = 8.447 µm which is on the
order of magnitude of cameras used in small bodies navigation. During the entire simulation, the
camera is assumed to be always pointing towards Eros center of mass and generates measurements
with a sampling rate of 1 min. The available landmarks dataset is composed of 100 random points
(centers of the polyhedron facets) of Eros surface. The trajectory, expressed in the rotating small
body centred frame, and landmarks are shown in Fig. 5.

For the subsequent results, the DMC-UKF parameters are {α = 0, β = 2, λ = 10−3}. The
filter is initialized with the spacecraft state truth values and null unmodeled acceleration. The initial
DMC-UKF state covariance matrix and the process noise are

ΣΣΣxx(t0) =

(10)2I (m)2 03×3 03×3

03×3 (10)2I (mm/s)2 03×3

03×3 03×3 (1)2I (µm/s2)2

 ,
ΣΣΣff =

(0.1)2I (m)2 03×3 03×3

03×3 (1)2I (mm/s)2 03×3

03×3 03×3 (2)2I (µm/s2)2

 .
(26)

The gradient-descent maximum number of iterations is 10000, its momemtum coefficient is tuned
as η = 0.9 and the learning rate is κSH = 105 for spherical harmonics and κM = 10−6 for the
mascon model (let recall that the decision variables have not been adimensionalized).

Landmarks-based position determination

This paragraph aims to assess the landmarks-based position determination algorithm and choose
an optimal camera focal length. Since the goal is just to test the algorithm, no lighting constraints
are introduced and all landmarks that fall within the camera FOV are visible. Firstly, let vary
the diagonal field of view evenly between 94◦ and 23◦ which correspond to focal lengths of f ≡
{10, 12, 14, 17, 25, 40, 52}mm. The distribution of the position determination errors, by only taking
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into account pixelation error, is shown in Fig. 6 (left). It can be deduced that the optimal focal
length configuration lies between 17 and 40 mm (63◦-30◦ of diagonal FOV). There is a tradeoff
between pixel accuracy (which augments as the FOV is narrower) and a nonambiguous distribution
of visible landmarks (which is favored by a wider FOV). Since f = 25 mm seems the optimal
value, the impact of uncertainty in the landmarks locations is analyzed for this focal length. To this
end, the landmarks locations are perturbed with 1-σ Gaussian errors of {0, 5, 15, 30, 50} m. The
distribution of the position determination errors is shown in Fig. 6 (right). As expected, the errors
augment accordingly to the landmarks uncertainty. In particular, the average position errors are
{2.01, 4.83, 13, 26, 44} m respectively.

In the online gravity estimation paragraph (end of this section), the optimal focal length of f =
25 mm is used. In that case, the small body rear and top are seen as in Fig. 7 from a distance
r = 34 km (in the order of magnitude of the simulation).
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Figure 6. Distribution of position errors with respect to focal length (left) and land-
marks uncertainty (right).

Figure 7. Rear (left) and top (right) small body images from r = 34 km and f = 25 mm.

Offline fitting of gravity models

Let now assess both the gradient descent algorithm and the accuracy of the gravity determination
under a true position-acceleration dataset (values along the trajectory). The data sampling rate is
the same as the camera measurements (1 min). The data batch is composed of 982 points that
correspond to a duration of one initial orbital period. Then, 10 sequential fitting processess are
carried out. No initial knowledge is assumed on the gravity parameters, thus they are initialized with
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null values. The spherical harmonics maximum degree is ranged between 2 and 8 (3 to 75 variables).
The mascon models number of point masses is varied through nM = {40, 100, 200, 400}. Since the
mascons locations are generated randomly, 500 different samples are tested for each model in order
to provide accuracy bounds. The gravity acceleration error δa is quantified as follows

δa(r) =
‖agrav(r)− a

poly
grav(r)‖2

‖−µr/r3 + a
poly
grav(r)‖2

, (27)

where agrav is the inhomogeneous acceleration for the fitted model and a
poly
grav is the one from the

ground truth polyhedron. The Keplerian term (though being assumed as known) is added in the
denominator for the sake of relevance (it does not make sense to evaluate the error with respect
to the inhomogeneous component if its value is too small). The average global gravity errors, per
orbital range, of the fitted models are shown in Fig. 8. This is computed by evaluating the gravity
acceleration error on a 3D grid (64000 exterior points) around the small body. The error with a
simple Keplerian model (which is the initial guess) is also shown. Several trends can be derived. By
increasing the spherical harmonics degree, the accuracy improves outside of the Brillouin sphere
(with a radius of r = 17.68 km) but highly degrades within its interior (being more inaccurate than
the basic Keplerian model). Moreover, the accuracy outside Brillouin sphere improves little once
4th degree is reached. On the other hand, the mascons models (being the dots the mean of the 500
random realizations and the filled areas their variability), improves the basic Keplerian model for all
orbital ranges. The results variability is narrowed down as the number of point masses is increased
because since the distributions shall resemble more to each other.

Let compare the fitted models by taking the best spherical harmonics errors for each orbital range
({Surf.− 17.68, 17.68− 30, 30− 40, 40− 50} km), which are {50.60, 1.446, 0.268, 0.167}%, and
the worst realization of the nM = 400 mascon model that is {11.08, 0.573, 0.227, 0.165} %. It
can be easily derived that the mascon models have the superiority in the low altitude range around
the Brillouin sphere while not loosing accuracy medium to high altitudes (if there is an enough
number of point masses). This argument is further highlighted in Fig. 9 where 2D gravity error
maps are plotted on the xy, xz and yz planes for the spherical harmonics 4th degree model and
a mascon random realization with nM = 400. The spacecraft trajectory is also shown to provide
visual insight on the dataset spatial variations.

Simultaneous navigation and gravity estimation

This last paragraph is devoted to test the whole simultaneous navigation and gravity estimation
process. The measurements are provided with the camera focal length of f = 25 mm. The land-
marks locations are known uncertainly with a 1-σ Gaussian error of 5 m. In these online simula-
tions, the Sun’s lighting constraint is added for the sake of fidelity. Consequently, there are moments
where the spacecraft is in the small body dark side and there are no visible landmarks. In practice,
this creates measurements gaps that reduce the dataset by a 22% for the simulated orbit.

For a mascon random distribution of nM = 400, the filter position errors and inhomogeneous
gravity knowledge are shown in Fig. 10-11 respectively. In Fig. 10, the estimated position error
increase sharply when landmarks start vanishing or are being reacquired. Nonetheless, when the
interval with measurements is long enough, the error is usually kept below 5 m during interme-
diate periods. Figure 11 shows the filter is able to track the unmodeled acceleration (first orbital
period) and that the subsequent gravity training is efficient. It can also be observed that the tran-
sition lighting periods also produces sharp errors on a. However, the filter is always able to track
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Figure 9. Gravity error 2D maps with offline estimation. Black: projected trajectory.
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Figure 10. Filter position estimation error and uncertainty for a mascon random
distribution (nM = 400).

the remaining unmodeled acceleration after the measurements are available again. Note that Fig. 11
shows agrav + a, thus Fig. 10-11 is the dataset used for the gravity fitting. The final mascon distri-
bution can be seen in Fig. 12. The heavier masses tend to be placed at the lateral lobes while the
negative ones accumulate in the central region. It is not possible to deduce any explanation from
that other than it appears symmetrical to keep the center of mass coincident with the origin.

The same simulations that has been carried out for the offline estimation are reproduced with the
online configuration. The gravity error per orbital range is shown in Fig. 13 which yields similar
conclusions to the offline estimation (superiority of the mascon model over the spherical harmonics
one). Nonetheless, for this online case, augmenting the number of parameters does not necessarily
seem to increase the accuracy. It can be observed that the most accurate mascon model corresponds
to nM = 200 and the spherical harmonics one, ignoring the Brillouin sphere, seems to be the 4th
degree. For some of the models, the computational performance is reported in Table 1. The execu-
tion times are measured on a M1 Max processor running in single core. The mascon model is more
costly to execute due to its higher number of parameters compared to spherical harmonics. Although
being run in a high performance processor, these execution speeds (in the order of milliseconds for
the DMC-UKF) may highlight the potential applicability of the simultaneous navigation and gravity
estimation for on-board autonomy.

CONCLUSIONS

This paper has developed a simultaneous navigation and gravity estimation scheme around a
small body. The main components are a landmarks-based position determination algorithm, a dy-
namical model compensated unscented Kalman filter and a momentum-based gradient descent to
estimate the gravity parameters. The previous approach mainly relies on generating a dataset, with
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DMC-UKF step Gravity fitting

Model Mean [ms] Max. [ms] Mean [s] Max. [s]

Spher. harm. deg = 2 0.077 0.111 0.140 0.152
Spher. harm. deg = 4 0.096 0.174 0.359 0.388
Spher. harm. deg = 6 0.106 0.199 0.727 0.793
Spher. harm. deg = 8 0.133 0.217 1.265 1.383
Mascons nM = 100 0.283 0.391 1.016 1.095
Mascons nM = 400 1.035 1.116 4.084 4.430

Table 1. Computational times of simultaneous navigation and gravity estimation with each model.

the navigation filter, which serves to fit a gravity model. Then, the algorithm is flexible to models
other than spherical harmonics. In particular, a mascon model has been implemented. The numer-
ical results demonstrate the mascon model is able to overcome the spherical harmonics divergence
within the Brillouin sphere while not loosing accuracy outside of it. This has been validated for
both a true dataset and a noisy one, generated online, with data gaps due to lighting constraints. In
conclusion, the use of the mascon model, within the developed simultaneous navigation and gravity
estimation, could be of interest to plan subsequent autonomous descent and landing operations.

Future work may focus on improving certain characteristics of the mascon model. Specifically,
it is envisioned that the point masses locations will be included as decision variables. This will
make the mascon model to learn its optimal spatial distribution. Another line of work emerges
from the consideration of an interconnected multi-satellite configuration that can provide ranging
measurements. This may avoid the actual measurement gaps while producing a higher amount of
relevant data which could positively impact the gravity estimation accuracy.
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