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Abstract

Much attention has been paid to a double-gimbal variable-speed control moment gyro (DGVSCMG) as three-
dimensional torque generator. However, since this device typically operate at high wheel speeds, mass imbalances
within the wheels act as a primary source of angular jitter. An estimate of jitter amplitude may be found by modeling
imbalance torques as external disturbance forces and torques on the spacecraft. In this case, mass imbalances are
lumped into static and dynamic imbalance parameters, allowing jitter force and torque to be simply proportional to
wheel speed squared. A physically realistic dynamic model may be obtained by defining mass imbalances in terms of
a wheel center of mass location and inertia tensor. The fully-coupled dynamic model allows for momentum and energy
validation of the system. This paper presents a generalized approach to DGVSCMG imbalance modeling of a rigid
spacecraft hub with n DGVSCMGs. Through the numerical simulations, the effectiveness of the proposed dynamic

model is demonstrated.

1. Introduction

Momentum exchange devices (MEDs) are used for an at-
titude control of a spacecraft. Recently, much attention
has been paid to a double-gimbal variable-speed control
moment gyro (DGVSCMG)'~ as a new type of MED of
a spacecraft. A DGVSCMG has two gimbals attached to
one variable speed wheel and can generate large three di-
mensional torques if the RW motor torque is sized accord-
ingly. Implementing DGVSCMGs for attitude control can
reduce the number of actuators and the total weight of ac-
tuators, which leads to reduced mass and volume within
the spacecraft. On the other hand, a key source of point-
ing jitters are due to wheel or gimbals mass imbalance
about the wheel spin axis or gimbal rotation axes in a
DGVSCMG. Although these effects are often character-
ized through experimentation in order to validate require-
ments, it is of interest to include jitter in a computer sim-
ulation of the spacecraft in the early stages of spacecraft
development. An estimation of jitter amplitude may be
found by modeling wheel or gimbals imbalance torques
as an external disturbance on the spacecraft. A physi-
cally realistic dynamic model may be obtained by defin-
ing mass imbalances in terms of a wheel or gimbals cen-
ter of mass locations and inertia tensor. The fully-coupled
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dynamic model allows for momentum and energy valida-
tion of the system. This is often critical when modeling
additional complex dynamical behavior such as flexible
dynamics and fuel slosh. Furthermore, it is necessary to
use the fully-coupled model in instances where the rela-
tive mass properties of the spacecraft with respect to the
DGVSCMGs cause the simplified jitter model to be inac-
curate.

Previous DGVSCMG studies' assumed the balanced
DGVSCMG that ignored the mass imbalance of the gim-
bals or wheel and previous studies*® put emphasis on em-
pirical modeling of MED jitter and the effect of MED jit-
ter within context of spacecraft flexible dynamics. Ref-
erence 9 presents a fully-coupled derivation of RW im-
balance. It is demonstrated that the fully-coupled model
allows an imbalanced RW to be simulated while still us-
ing momentum and energy tools for validation of the dy-
namics. Reference 10 discuss a fully-coupled model of
single-gimbal CMG (SGCMG) imbalance, but present
the results without a full derivation and fail to pro-
vide the complete system equations of motion. Further-
more, Reference 11 develops a fully-coupled derivation of
single-gimbal variable-speed CMG (SGVSCMG) imbal-
ance. This prior work demonstrates that the fully-coupled
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Fig. 1: Spacecraft model.

model allows an imbalanced VSCMG to be simulated.
This paper presents a fully-coupled static and dynamic
imbalance model of a rigid spacecraft equipped with n
DGVSCMGs. This model is a generalized description of
a fully-coupled static and dynamic imbalance modeling
for a spacecraft with MEDs since the equation of motion
(EOM) of DGVSCMGs includes the EOM of all MEDs
such as RW, SGCMG or VSCMBG. lJitter is also produced
through the higher order structural resonances of the MED
attachment mechanism and the bending modes of the ro-
tors. The presented work, however, only considers the
classical static and dynamic imbalance behaviors. While
a general formulation of these imbalances, the resulting
DGVSCMG equations of motion are very complex to de-
velop and implement.

2. Problem Statement

The problem consists of modeling the static and dynamic
imbalance of DGVSCMGs’ assemblies attached to a rigid
spacecraft as in Fig. 1. In order to develop the equations
of motion in a general way, arbitrary locations, inertia ten-
sors, and center of mass locations are considered for the
spacecraft hub, inner/outer gimbals, and wheels. Addi-
tionally, the wheel center of mass is not assumed to lie on
the gimbal axis of the DGVSCMG, and the wheel frame
origin and gimbal frame origin are not assumed to coin-
cide. Figure 2 shows the frame and variable definitions
used for this problem.

2.1 Reference Frame Definitions

Figures 2 show the frame and variable definitions used
for this problem. The formulation involves a rigid hub
with its center of mass location labeled as point B, and N
DGVSCMGs with their center of mass in the outer gim-
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Fig. 2: j™ DGVSCMG frames and axes.

bals, inner gimbals and wheels. The jth DGVSCMG is
labeled as the outer gimbal frame G¢;, the inner gimbal
frame G! ; and the wheel frame W,;, respectively. The in-
ertial frame and the body frame is denoted A" and 5. The

basis vector of the body frame is defined as follows:

B: {B, B.’I:? i)yv 62}7 (1)
and
g; : {G.?v gwja '§ij ézj} 2
Gy G, Bujy B4y 95 )
Wj : {Wja '§:L’j7 ﬁ’ij wZJ} )

Note that the basis vectors at the motor frame M of the
j™ RW with the origin of coordinates W; is same direc-
tion towards the basis vectors at g;i but the origin of coor-
dinates is difference.

2.2 Variable Definitions

Parameters relating to the spacecraft hub are denoted with
a subscript text B. Parameters relating to the ;" in-
ner/outer gimbal and wheel are denoted with subscripts
text G;, G;? and W, respectively. The hub, inner/outer
gimbal, and wheel each are allowed center of mass off-
sets from their respective coordinate frame origins. The
spacecraft hub is the spacecraft structure without the
DGSCMGs. The hub’s center of mass location is labeled
as B.. This location is described with respect to the body
frame origin as rp_/p. The inner/outer gimbals are also
allowed a general center of mass offset from the gimbal

frame origins. This location are labeled as Géj, G¢; and
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are located with respect to the inner/outer gimbal frame
origins as TG /G and TGs,/Go- The wheel’s center of
mass location is labeled somewhat differently. The wheel
center of mass is assumed to lie on the w,; axis a length
d; from the wheel frame origin. Three-dimensional offset
vectors L7 = [LQJ,L;],LQJ-]T, L; = [L;J7 Ly, ng]T
are introduce between frames not to result in loss of gen-
erality. Since the inner/outer gimbal and wheel centers of
mass change with time, so does the overall spacecraft cen-
ter of mass. The time-varying center of mass of the entire
system is denoted c.

3. Equation of Motion
3.1 Translational Motion

The derivation of the translational EOMs begins with
Newton’s second law for the center of mass of the space-
craft as follows:

.. F
To/N = (6)
together with
N
Mse = Mp + Z (mae + me: + my,) @)
j=1

The force vector F' is the sum of the external forces on the
spacecraft which has the spacecraft mass m.. Ultimately,
the acceleration of the body frame or point B is desired,
which is expressed through

®)

The center of mass c is time variant and it expressed as

’I"B/N = TC/N — C.

1 N

c :m—sc(mBrBC/B + Zl(mG;?’l”GSj/B +meitai /B
]:
+mw,Tw.,;/B))- )
Find the second inertial derivative of point c.
c=cd"+twxct2wxcd+wx(wxec). (10)

Taking the second body frame time derivatives of ¢ results
in

" ol
&3 rGZ;‘/B + mG} rGlc_;‘/B

N
/! 1
= E(m
Mse

]:
+mw, Ty, /B) (11)
where
régj/B =(4;825) X Tgo jae + (*V;825) x r'ng/B
(12)
’I"gij/B :(0;)'/j§2j + l’.}./jéyj _ Z’-on'-ngmj) X Tsz/Gj_

+ (°9;825 + i")’jéyj) x T,c:ij/G;Z + (Lg;%9;

_L002) (Loo2

yi Vj)8 zj V5t LZjo;yj)gwj

13)
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r{ﬁVCj/B = ( (7150 ;i 'yJCQ +2Q,° %CG

+20;7 ¢y 80; + 209,18y b5 + O4s ety ;)

— LL(*45¢*y, +45) + Li ‘(O"in"YjSiVj = *%;¢';)
i 2

+ L, (958" ety + 9,¢hy; + 7))

2 . . [ ~
L2 33 + Ly (245,595 = °456;) ) By

+ (-

d~(""y?c6‘- + O"}'/jsiijGj + stej + Qjo"yjsi’yjcej)

Lz O’V]C v~ L;JO’Y? Li ‘(O%‘Si’)’j + Q. ) LOJO’Y]
—Ly;° 7j) 8yj + (d (°F8"y 005 — °3s 80,
— 4750, + Q00; + 204, ¢y o) — ijgjssz@j

- z’YJ) + LZ;‘ (O%‘Si%‘
C e g 2
+ QOVerYjCl’Yj) - LZ]( ’YJ + 073522’7] + ’YJQJS 7])
L° .94 2.1

230775+ Ly (8 +2°9,19,¢'5)) 925 (14)

i j0s20, i
—Q?sﬂj)—i—sz( j¢ ’Yjs 7

Noting that s = sin, ¢ = cos. Substituting Eq. (10) into
Eq. (8), it is given by

& — 2[@]e — [@][@]e. (15)

'FB/N = 'FC/N —c' + [é]

Substituting Eq. (11) into Eq. (15) and group second-order
terms to obtain the translational equations of motion.

(16)

where

+L5;8y5 + Lnga;j) + myy, ((—djcifyjcﬁj
(—djs"y,;80;
(djsi'yj(;@j

- Ly 'Ci7j)'§xj
L s*y]+L )8y +

Ny -Ci’yj
+Ly ety —
+Ly sy + L95,)925)

fij =ma (.éyj X T _/G;) +mw, ((djs6; + L;)845)

Fwj =mw, (—(d;s0; + L;)8y; + d;jct;g.;)
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and

F = ey (€50 70
+Mmgi (_(i’yjo'i/jng) XTGi Gt (Of'ngzj
+9845) X TG jar — (Lydy + L;jng)o%?)
+mw, (d;(29;";¢0; + 20,7 ;¢',50;
+20,-yji%si7jcej + OW?S%CW]‘S@) _ Lij(oﬁcm%‘
"JPVJQ) + L:iyj(o;yji;yjsi’y]') + Lij (O"yisifyjci’yj

022 2i

+Qj07jci7j) = L3 %y5¢ v + 2LZjO;in’7jSi7j) 8uj

(=5 (330, + 9,45 ,00) — L4

2\ 4 .2 9 ;.2

—L‘;jofy?) 8y + (dj(—o’yism'yjsﬁj — "y;80;

+ QOﬁji"yjci'yjcﬂj - QO&ijsiq/stj - Q?S@j)

+ lej(o'ﬁcl%sz%‘ - Wj) + QLLjO"sz'-YjCl%

— L (4, + O35y + %3, ys'y;) + LS04 0s™y;

+2L5,°%;'9,¢";) 92 a7
This equation represents 3 DOFs and contains all second
order states (7', w, °¥, ¥, Q). Removing wheel im-
balance terms and assuming a symmetrical DGVSCMG
(i.e. rng/G? =0, rGij/Gj' =0, ng =0, LZO”. =0,
LY =0, L;j =0, L;j =0, Lij =0, d; = 0) gives the
following equation.

M BN — Msc[€lw = F — 2m.[@]c
—me[@]%c (18)

where
N
.. . /

F = ’I‘C/N — Z ((O’YJSZ]) X TGZ;‘/B)

j=1
Thus, the balanced DGVSCMG translational equation of
motion does not certain any second order terms relating
to the wheel or inner/outer gimbal. The following section
shows the derivation of the rotational equations of motion.

19)

3.2 Rotational Motion

The derivation of rotational EOMs starts with the angular
momentum of the spacecraft about point B.

N

H.p=Hpp+ ) (Heop+ Hei g+ Hw, B)
j=1

(20)

The inertial time derivative of angular momentum when
the body fixed coordinate frame origin is not coincident
with the center of mass of the body is

H,.p = Lp +myipn xc, 1)
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where Lp is the vector sum of external torque acting
on the spacecraft. Differentiating Eq. (20), the inertial
derivative of the spacecraft angular momentum is ex-
pressed as

H,.p = Hgpp+
N

Z(HG?’B + HG;'.,B + HWJ,B) (22)
j=1

Thus, in order to use Eq. (21), each derivative on the right-
hand side of Eq. (22) needs to be evaluated.
3.2.1 Derivative of the Hub Angular Momentum

The first step is to derive the hub angular momentum
derivative Hp g. The hub angular momentum about point
B, is given by

Hg p. = [Ip,B. |ws/n- (23)

Angular momentum about point B, is related to point B
using the following equation.

Hg p = Hgp g, + mpTp. /B X TB./B (24)

Taking the inertial time derivative of the hub’s angular
momentum yields

I‘.IB,B = [IB,BC]‘;) + [&][IB,BC]W

+mprp, B X T, B (25)

Note that the body rate pseudovector wp, x is abbreviated
as w henceforth. Knowing thatr_,p is fixed with respect
to the body frame, the following is defined

T,/ =W XTp /p+wx (wxrp,/p) (26)
Substituting Eq. (26) into Eq. (25) yields
Hp p = [In,p,]w + [@][Is,5.]w
+mBrBC/B X (w X TBC/B)
+mprp, p % (wx (wxrp,/B)) 27)

Employing the Jacobi triple-product identity, a x (bx c) =
(axb) x c+bx(axc),on the right-hand side of Eq. (27)

Hgp p = [Ip,5.]w + [@][Is,5,]w
+mg[rp,sl[Fp., 5] @
+mp[@][7p,/B][75. /8] w (28)

The parallel axis theorem relates inertia about the hub cen-
ter of B, to the hub origin B.

[Is.5] = (Is.B.] + ms[7p,/5][Fs./8]" (29)
The hub angular momentum derivative simplifies to
Hg p = [I plw + [@][Ip,5lw. (30)
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3.2.2 Derivative of the outer gimbal angular momentum

The next step is to derive the outer gimbal angular mo-
mentum derivative H Go.B- The angular velocity of the
outer gimbal frame with respect to inertial is

Wge N = WB/N T Wges = W + ;82 (31

The outer gimbal angular momentum about point G¢; is
given by

Heoco, = [Has,ao, Jwge v
Angular momentum about point G
using the following equation.

o; 1s related to point B
Hgeyp = Haejge, + masrao /g X Tae - (33)

Taking the inertial derivative yields

Heop = [Ics,co, [(w + 79;825) + [Tas,co,1'wge v

+[w][Las,ao, lwge v +masrae /B X Tao 5 (34)
The outer gimbal inertia tensor about the outer gimbal
center of mass [Ige s, ] and its body frame derivative
[Lco,o,]" are defined. Expressed in the outer gimbal
frame,

go
IG{lle IG{ij IGII)SJ'

[IG;’,ng] = IG[{2J‘ IGSzj IG‘(Z):Sj (335)
IGsz IG’;sJ‘ IG%SJ’

By expressing this tensor in a frame independent form, the
body frame derivative is found to be,

g3
[ 2eg,  he o,
[Tcs,ce,] = %; 1o 2Ige,,  Iag,, | (36)
_IG"z’aj IG(fsj 0
where
Ly = Iag,, — lag,, (37)
The second inertial derivative of rGs,/B is given by
/i:sz/B = O’y] ['§Zj]rG°./G9 + ( ) [gzj]TGo /GU
+ [rGu /B] w+2x [rGO /B]T
+ [@][@]ree, 5 (38)

Note that 7., ° /B is given by Eq. (12). Substituting this
into Eq. (34) ylelds
Hag,p = [Tag,a,1(@ + °%;825) + [Tag,c, /' wge/n
+ [@llIes.qo Jwge v + mas[Te., 5]
[Oﬁj [ézj]rGﬁj/Gﬁ +°9; [gzj]r/(;gj/(;; + [ngj/B]Td’

207 5] w + [@)[@res m] (39)
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The parallel axis theorem relating the outer gimbal inertia
about point B to the outer gimbal inertia about point G¢;
is given by

[Lcs,B] =
Using Eq. (40), Eq. (39) simplifies to

[Tce,ce,] + mae [ngJ/B][ngj/B]T (40)

HG?vB = Hae,slw + [Las,2,177,825
+ [IGj,sz]'wg;/N-i- [@] [IG;?,B]QJ—F [@] [IG;')?ng]Oﬁ/jéZj
+ mag[Fan, ]| ;15211 as, j0s + (821t s
+ 2[550_/B]Tw] (41

Employing the body frame derivative of the parallel axis
theorem.

[Ice,B] =[Ias,co,] +mas [’F'ng/B][’Fng/B]T

+mas[Fae, /B][F6e 15]" (42)

Eq. (41) is further simplified using Eq. (42) to give the
outer gimbal angular momentum derivative.

B]w + [IG?7B]’w + [&][IG57B]w

+ [IG?’GSJ‘]O&J'ézj + [IG;?,Gg_j]IO’.Yjézj

Hee p = [Io,

(@) ag 02,1982 + mes[For, 8] | 3B lren o

03, [y I /G;] +mas[@Fay plre 5 43)

3.2.3 Derivative of the Inner Gimbal Angular Momentum

The next step is to derive the inner gimbal angular mo-
mentum derivative Hg: p. The angular velocity of the
5

inner gimbal frame with respect to inertial is
wge /N =WB/N + wge/B + wg;/g;
=w + 79,825 + iﬁjéyj. (44)
The inner gimbal angular momentum about point Gf:j is
given by
Hgici = Ucici lwgin
= [IG;)G(L:]](UJ + O’ﬁ/jézj + Z'ngy]) (45)

Angular momentum about point G
using the following equation.

is related to point B

HG;,B = HG;’vGij +mG;rGij/B X TGQJ/B (46)
Take the inertial derivative.
HGébB :[IGé,Gij](d’ + %9825 + 98y — °V5" Y9x5

NS ~ o .
+ [IG;,G;j] wgi/n T+ [w][IG;,G;j]Wg;/N

+ mG§ rGij/B X fcij/B (47)
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The inner gimbal inertia tensor about the gimbal center of
mass [Iq: o | and its body frame derivative [Iqi i |

JjrT e JrTed
are defined. Expressed in the inner gimbal frame,

Gi[ I . .
J IGilJ IG7i2j IGl

135
[IGE,GQJ-] = IG%QJ Gby; IGéij (48)
oy, oy, oy,

By expressing this tensor in a frame independent form, the
body frame derivative is found to be,

Girog . T T
ey, oy, oy,
R T , . .
Hcic,I'= | la, 2ai,, oy, (49)
lay,, oy, 2lay,
together with the principal axes of inertia
7o i 7 . og i
Ic;glj = Ic;;aj Y Ic;;zj Y5 €08 ;5
T _ . o: [ oz sd
IG;% = IGizj v €OS “; IG%sj 7 sinty;
F o L 0% ginis — L A
IGggj = IGégj 7 sin *; IGigj Vj
and the products of inertia
T _ o [  or soi
IGizj _IG’ilj 7y, €os *; IG’isj ¥ sinty;
N [P N
_ Iqu,zj y;cos 'y + IG§3j Y, (50)
[ S 0% i ia
IG’{S]' _IG7ilj ’Vj + IGizj ’yj S
.oz Gn, . N
_IGégj 7; cos'; +IG§3j Y, Sh
P SR o4 i
IG;M = Iquj Y5 +IGisj 7y, €os ' ;

+ IGégj °Y; sini'yj — IGég,j °Y; sini'yj. (52)
The second inertial derivative of TGi. /B is given by
TGi./B =r’(’;ij/B +wXrgipt+wX T,Gij/B
+w x f'ng/B
:(O;j/jgzj + i"?jgyj - i’yjo’ngrj) X TG /Gl
+ (“15825 + 5805) X T e + (L3,

TN
= L3;°95)8y5 — (

;joﬁ + LZjo%).@xj
+[Far,p] @+ 2 x [ jp]"w
+[@ll@lre: /5 (53)
Note that Tgij /B is given by Eq. (13). Substituting this
into Eq. (47) yields

HG}B = [ai i 1@ + 9,825 + 9,8y

+ i"yjoﬁj cos "y g.; + i"yj"f'yj sin "y G5

+ g, ci N wgin + [l i Jwgn
1"d

+mai[Tei /Bl ["“Z;gj/g +[rGi Bl"w

20 )" w + [@][@]re: 5] (54)
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The parallel axis theorem relating the outer gimbal inertia
about point B to the outer gimbal inertia about point G
is given by

[Ia: 5] = e ai 1 +meil[Fai pllFe: sl (59)
Using Eq. (54), Eq. (55) simplifies to
Hei g = [Tai g o+ o @i 107,82 + 9,845
+ i"yjo"yj coS i’ngzj —+ i"yjo"yj siningzj) + [‘L’][IG;Z,B]W
+1@] a6 Jwgiw + Hai o, ' wgin
+meslFer 5] [Tl 5 + 207 6] @] (56)

Employing the body frame derivative of the parallel axis
theorem.

[IG;’.,B]/ = [IG;Z,ng]I +mgi [flc;;]/B][ngj/B]T
+mei [P pllfG 517 67)
Eq. (56) is further simplified using Eq. (57) to give the
outer gimbal angular momentum derivative.
HG_';,B = [IG_';.,B]‘U + [IG_';,B]'UJ + [@] [IG_;,B]W
+ [IG;,G};J](O%ézj + i"?jigyj
+ i"YjO"YjCi’ngzj + i"YjO"YjSi’Yjsz)
+ g gi I'wg. s + (@]l 6i lwg,s
+mai [fcgj/B]Tzzij/B +mgi[w] [’FGf:j/B]rlgij/B (58)
3.2.4 Derivative of the Wheel Angular Momentum

The next step is to derive the wheel angular momentum
derivative Hvy; p. The angular velocity of the wheel with
respect to inertial is
Wy IN ZWBIN T Wag /i + Waiige + W6
=w + %y;8:; + if'yjiéyj +Q;"8,; (59)
The wheel angular momentum about point W; is given
by
Hy,w., = [IWj’Wcj]ij/N
= Hw, wl(@ + 79825 + 9845 + 25825)  (60)
Angular momentum about point W; is related to point B

using the following equation.
Hyw,/p = Hw,jw., + mw,;Tw., /B X Tw,, /B (61)

Taking the inertial derivative yields
HG;'-,B = [IG;,GQJ](W + O;}./jgzj + l;}./jgyj + Q]@zj
+ 9939825 X Byj + 92825 X 8a
+ l"Yijéyj X éz]) + [ijuwcj]lij/N

+ @] Lw; we, lww, v + mw,Tw,, 8 X Tw,, s (62)
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The wheel inertia tensor about the wheel center of mass
[Iw;,w.,] and its body frame derivative [Iw, w,,] need
to be defined. For this general RW model, the inertia ma-
trix of the RW in the WV; frame is defined as

Wi
’ Jllj J12j J13j
Uw, w.;] = Jigj  Jaz; Jasg (63)
Jigj  Jozj I3z

By expressing this tensor in a frame independent form, the
body frame derivative is found to be,

W .

’ 2=jllj j}2j J:13j
[Tw, w.,] = Jizj  2Ja2;  Jas; (64)
Jiz;  Jaz;  2J335

together with the principal axes of inertia

Jllj _J12j( 7]50 C ’yJCQ ) + J13]( C 7]80
+ ’ch‘gj)
Jggj =J12j(0"yjci7jc0j — W]«sﬂj) + Jggj(o’.)/jsi’yj + Qj)

j33j =— J13j(oﬁj0i7j89j + i"yjcé?j)
+ J23j(0")’j517j +9;)
and the products of inertia

Ji2; =J117‘(0%C1"7j09‘ —;805) — Jas; (%%

+ JQQ] 7]50

58" ‘v + Q)
y,¢ ‘e,
+ Ja23;(%7;¢’ ;80 + fyjcf)

+ J23J 17]59
+ J335(%7;¢’ ’yjsﬂj + 'yjcﬂ

(" )
( )
jlgj = — Ju;(°y,¢ 7359 + ’}/]CG )
( €'5¢05)
( )
+ J1g; (P sin "y + Q)
;505
— J1gj (“¢" 805 + ' c0;)
+ Jaoj (%985 + Q) — Jaz; (O8" + Q)
=0, Jag; = J335,

Jasj =13 ("¢ —

Furthermore, by assuming Jy2; = Ja3;

Ji3 = 0 and 0; = 0 (since the wheel frame does not
rotate), the equation above simplifies to
Wi 02 i iz
0 Jo®y¢" —Jai'y;
[Tw; w,1'= [JaiY;¢™ 0 0 (65)
where
Joj = J11j — Ja2; (66)

The second inertial derivative of 7y, /g is needed. Define
the body frame derivative and first inertial derivative of
Tqi_ /B, noting that W; is fixed with respect to point B.

cj

(67)
(68)

TWes/B =TGL, 65 Y Tai/6y Y TG/B

. .
TWe;/B =Tw.; /B T @ X Tw,/B

IAC-17,C1,1,11,x39153

The second inertial derivative of 7¢: ,p is given by
cj

’I.':WCJ./B ='I°{5VCJ,/B + w X TWcj/B + w X r{/ch/B
+ w X chj/B
~ T. ~ T
:r/vlvcj/B + [Pw.,/B]" w +2 x [r{/ch/B] w

The second body frame derivative of 7y, /p is defined in
Eq. (14). Substituting Eq. (69) into Eq. (62) results in

Hw,.5 =[Iw, w., (@ + %5825 + 5,8, + Qbay
+ OFY]ZFYJézj X §y] + O'Y]Q_jézj X SATj
+ i"ijjéyj X éx]) + [IWj,Wcj]lij/N
+ [GJ] [IWj7Wcj]ij/N + ij [TNWC]/B]
[T{;ch/B + [chj/B]Tw +2x [~IWC,-/B]Tw

+@][@lrw,, /5] (70)

The parallel axis theorem relating the wheel inertia about
point B to the wheel inertia about point W, is given by

[Lw,.8] = [Tw, w,] + mw, [Fw,,8l[Fw, 8] (1)

Using Eq. (70), Eq. (71) simplifies to

Hy, 5 = [Iw,.5)@ + [T, w., ] (%825 + 9,84
+ Q805 + 07825 X Sys + 07 Q825 X 8ay
+19,Q8y5 x 8a5) + [@][Tw,.Blw
+ [©C][Tw, w.; lww,/8 + [Tw, w.; ] ww,/n

+ mw, [P, ] [P, + 20, 5] 7w 2)

Employing the body frame derivative of the parallel axis
theorem.

[Lw,.8] =[Tw, w1 +mw, 7w, sllFw.,s]"

+ mw; [ch,-/B][":{/VCj/B]T (73)

Eq. (72) is further simplified using Eq. (73) to give the
outer gimbal angular momentum derivative.

Hyw, p =[Iw, 5l& + [Iw, pl'w + [@][Iw, 5w
+ [Tw,,we,; 179825 + styj + 08,
+ O;)/ji;)/jézj X 8y + ;5825 X 845
+ 19,8y % 825) + [Tw, w, ' ww, /8

+ [@][Iw,,w., Jwwss + mw, [Fw., /BT, 5

+mw, [©][Fw,,/BlTw., /B (74)
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We may now formulate the rotational equation of motion.
Euler’s equation is rearranged as

mse[€]Tp/N + Hg 5
N
+ Z(HG;,B +Hgip+ Hy, g)=Lp (75

Jj=1

The rotational equations of motion are formulated by sub-
stituting Eqs. (30), (43), (58) and (74) into Eq. (75) and
the total spacecraft inertia about point B is given by

[Lse,B] = [IB,B]

N
+ Z ([IG;’B] + [IG§,B] + [ij73]) (76)
j=1

This equation represents the general form of a space-
craft with balance/imbalance momentum exchange de-
vices such as DGVSCMG, DGCMG, VSCMG, SGCMG
and RW.

3.3 Motor Torque Equations
3.3.1 Outer Gimbal Torque Equation

The outer gimbal torque equation is used to relate the
body rate derivative wp/xc and the outer gimbal deriva-
tive °4;. The outer gimbal moter torque u.; is the 3;
component of gimbal torque about point G7. The torque
acting on a DGVSCMG at the joint between the motor
and the inner/outer gimbal assembly is given by

Lg; = an

The transverse toorque acting on the gimbal °7,; and °7;
are structural torques and do not contribute to the equa-
tion. Torque about point G7 is related to torque about the
DGVSCMG center of mass D.; using the following equa-
tion.

Lg; = Lp; +7p_;jce x mp.;Tp., v (78)
Euler’s equation applies as follows.
Lp, = Hay,p,; + Hai p,, + Hw,,p.,  (79)

The outer gimbal motor torque is the 5,; component of
the right-hand side of Eq. (78). This is found in a frame
independent format as

7 U o .
Uyj = SszG;? = szj(HG;?,ch +HG},DC]- +ij7ch

+TD,;/Gg X MD; 'Fch/N) (80)

IAC-17,C1,1,11,x39153

where the outer/inner gimbal and wheel angular momen-
tum derivatives about point D.; are related to point G¢;
using the following equation.

Hgep,; = Haeco, + masTas /p.; X Tae,/p.; (81)
HG']",DCJ- = HG;:Gij +mG§TGij/ch XTai /D, (82)

HWchj = HijWcj +mw,;Tw,;/D.;* cha/ch (83)

The inertial derivatives of the wheel and inner/outer gim-
bal angular momentum about their respective centers of
mass were found in the previous section and are reprinted
here for the reader’s convenience.

Heo o, =[Ias.co,1(w + 79;825) + Has,co, 1 'wge v
+ [@]lTas.ao, Jwge v (84)
Hgi i, =[lcici (@ + 9825 + 7,8y
+ 7959825 % 8y5) + Lo a1 J'wgiyw
+@llai i, lwgijn (85)
HWLWCJ' :[IWj,Wcj](w + 0;5/j'§zj + i;)‘/jéyj + Qj-§zj
+ O".)/ji".}/jgzj X '§yj + o’.}/ijézj X §Tj
+ 1998y % 825) + [Lw, w, ] 'ww,/n
+ [@)[Tw; w.; lww, v (86)

Next the Fggj/ch term in Eq. (81) is defined as
o ' . ’
TG2/De; = TGoy Doy T W X TGE /Doy + 2w x T'Ge;/De;
+w x (wx rng/ch) (87)
The vector ;i /p_ in Eq. (82) is expressed as
cj
. ol . ) ’
TGi /Doy = erj/ch +w X TG, /D, + 2w X T'ng/ch
+w x (w x TGij/ch) (88)

The DGVSCMG center of mass location with respect to
point G7 and its body frame derivatives are given by

1
T'Dej/Ge, T mp. (mG;’rng/G; tMmaiTar, 6
J
o+ v Tw ) (89)
- _o rl + i !
De;/Gy; = PagTay 6 T PaTal /Gy
o /
+"ow, w, w; (90)
" _o " i ol )
"Des/Gy T PGTGy 65t PGTGL Gl
o n
+PowTww; OD
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where the mass ratios are abbreviated as

m
G

°Dao = 92
PGj mae + mG; + mw; 92)
ipgt = s (93)
pG; va? + mG; + mVV]‘
mw.
“pw, = : (94)

mae + mG; + mwy;,
Next the term 7'/ is evaluated

Tp.,/N =TD,,/B +TB/N 95)

Finally the second inertial derivative of rp_,/p is found
1 / _ /! n" _ n
noting that Tbe/Ge = TDoy/B and They/Ge = TDe;/B"

7:'DCJ/B :TIDCJ-/B +w X ’I"DCJ./B (96)

.. o . ,
TD.;/B =TD.,/B +wxrp, B+ 2w X TD.,/B

+w x (W xTp,/B) 97)

3.3.2 Inner Gimbal Torque Equation

The inner gimbal torque equation is used to relate body
rate derivative wp - and the inner gimbal derivative .
The inner gimbal moter torque u,; is the 8,; component
of gimbal torque about point G; The torque acting on
a DGVSCMBG at the joint between the motor and the in-
ner/outer gimbal assembly is given by

girs
J TI]

Lg: = (98)

The transverse toorque acting on the gimbal “7,; and *7;
are structural torques and do not contribute to the equa-
tion. Torque about point Gj is related to torque about the
DGVSCMG center of mass D.; using the following equa-
tion.

IJG3 = ij + ’I"ch/G;'_ X mVCj ’i':ch/N (99)
Euler’s equation applies as follows.
Ly, = Hg; v, + Hw, v, (100)

The inner gimbal motor torque is the iéyj component of
the right-hand side of Eq. (99). This is found in a frame
independent format as

_ T o _ a7 T $
uyj = 8y;Lai = 8y, (HG}VCJ' +Hw, v,
v e X My, /N) (101)

where the outer/inner gimbal and wheel angular momen-
tum derivatives about point V; are related to point G

IAC-17,C1,1,11,x39153

using the following equation.
HGj'vaj = HG;’GZJ + mcj 'r‘Gij/VCj X erj/ch (102)
Hy, v.; = Hw, w., +mw,Tw,; /v, % Tw,; /v, (103)

The inertial derivatives of the wheel and inner/outer gim-
bal angular momentum about their respective centers of
mass were found in the previous section and are reprinted
here for the reader’s convenience.

Hes g1, =[Tai ai, (@ + 9,825 + 5,84
+ 99,5825 X 8y5) + [La:.c:, V' wgi/n
+ [@] [IG§,ng]wg;//\/ (104)
Hy,w., =[Tw, w., 1@ + 9,825 + 55845 + Q80
+ 0 825 X By + V825 X B
+4:058,5 % 805) + [Tw, ., ) @w,
+ [@]w; w.; lwow,/n (105)

The acceleration vector 7'gi v, . is expressed as
cjl "¢l

. o . ) /-
TGi Ve = erj/ch 4+ w X TG Ve + 2w x rGZJ/ch
+w x (wx TGij/ch) (106)

while the acceleration 7y, v, ; is defined as

. o . ’
TWUj/VCj - chj/ch tw X TWCJ/VCJ + 2(0 X chj/ch

+wx (wxrw,v,) (107)

The DGVSCMG center of mass location with respect to
point G; and its body frame derivatives are given by

1
TV.;/G, :m(mGj TG jGo +mwTw, i) (108)
J
Ve, = PTG et W T Gy (109)
" _1 !l ) i " _
Tvlci, T PGiTarar + PW;Tw. G (110)
where
"o =——L— 111
Pe; = G+ mw, (11D
. mw.
W g+ mw, (112
Gi w;
Evaluating 7'y, /v yields
Tv.,/N =Tv.,;/B +TB/N (113)

Finally the second inertial derivative of 7y, p is found

noting that 7/ ;=7 andr”. ., =717 .
g Vei /G T Ve /B Vei/GE T T Vei/B

'I:‘VCJ,/B =’l"(/cj/B +w X TV.;/B (114)
Py.,/B =TV, 5+ W X Ty, B +2wxTy 5

+w x (wx7ry,/B) (115)
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3.3.3 Wheel Torque Equation

The wheel torque equation is used to relate body rate
derivative wp, - and the wheel speed derivative Q ;. The
wheel moter torque u,; is the 8;; component of wheel
torque about point W;. The torque acting on a RW at the
joint between the RW motor and the RW rotor is given by

(116)

The transverse toorque acting on the gimbal *“7,; and
“T,; are structural torques and do not contribute to the
equation. Torque about point W is related to torque about
the center of mass W_; using the following equation.

Lw, = Lw.; +Tw.;/w; X mw,Tw,; /N (117)
Euler’s equation applies as follows.
Lw,, = Hw,w., (118)

The motor torque is the ¢3,; component of the right-hand
side of Eq. (117). This is found in a frame independent
format as

_ a7 _aT 3
uxj = ijij = ij(Hw]v’WCj

FrW Wy X MW, T, N) (119)

The inertial derivatives of the wheel and inner/outer gim-
bal angular momentum about their respective centers of
mass were found in the previous section and are reprinted
here for the reader’s convenience.

Hw-,wcj =[Lw, w., J(w + °5;825 + 4,8y; + Q8.
0985855 X Sy + 07 Q825 X 8y
+ 19,258y % 825) + [Tw, w., ] ww,
+ [@][Tw;,w.; lww,; v (120)

The acceleration vector Ty, /v is defined as

’i':WCj/N = T{;VC]_/B + [fWC]-/B]T‘;) + Q[F{VCJ/B]TUJ
+ [@][@]rw., /B + 75Ny (121)

4. Numerical Simulations

The simulation results show the angular velocity of the
spacecraft as in Fig. (3) and the inertial position of the
spacecraft as in Fig. (4). The fully-coupled model pa-
rameters in Table 1 closely parallel those used in Refs.
9 and 11. The scenario used to demonstrate the fully-
coupled imbalanced DGVSCMG EOM involves a rigid
spacecraft hub and N = 1 DGVSCMG. The lumped man-
ufacturer imbalance parameters are related to the param-
eters used within this derivation using the imbalance pa-
rameter adaptation formulation given in Ref. 9. The static

IAC-17,C1,1,11,x39153

W [rad/s]
<> N
X ‘

[6)) d/!
y[ra s]
th o
i I

w, [rad/s]
=Y |

Time [s]

Fig. 3: Angular velocity of the spacecraft.
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2 0.011 : 1
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0 0.5 1 1.5 2
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Fig. 4: Inertial position of the spacecraft.

imbalance is given by

g = o

Myw;

(122)

where Uy; is the wheel static imbalance parameter. The
dynamic imbalance parameter is given by the following

constraint:
Ugj = 4/ J123j + J122j>

Some combination of .Ji2; and Jy3; must be selected for
each wheel such that Eq. (123) is satisfied. Since the
dynamic imbalanced parameter is determined by the arbi-
trary vector, the following definitions are chosen

(123)

J13j =Uyj
J12j =Jog; = 0.

(124)
(125)

From Figs. (3) and (4), the magnitude of the imbalance

vibration effect on the spacecraft velocity or the spacecraft
position can be estimated.
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Table 1: Simulation parameters.

Parameters | Value [ Units
N 1 —
Mse 862 kg
mp 810 kg
My 4 kg
Mmei 24 kg
mgo 24 kg
5roo0  4.15 2.93
[Thub. B, ] 4.15 800 2.75 kg - m?
2.93 2.75 600
TB./B B1-0.02 0.01 10] cm
Us 32 g-cm
Uy 154 g - m?
d 8.0 mm
9r 02 0 0.0154
[Iwy[/c] 0 0.1 0 kg . Hl2
0.0154 0 0.1
9 081 0.24
Ugigi] 0.81 11 0.93 kg - m?
024 093 5
9r 9 081 0.24
[IG",G"’,] 0.81 11 0.93 kg - m2
‘ 024 093 5
TGo/p 530 0 0]" cm
BN N o 0" m
vp/N Mo o 0" m/s
o/ o o o -
Wi/ 514.85 0.57 0]" deg/s
&’é 500 rpm
0 0 deg
y 0 deg/s
'y 0 deg
o4 0 deg/s
%y 0 deg
Uy 250 mN - m
Uy 100 mN - m
U, 100 mN - m

5. Conclusion/Future Work

Most previous work related to modeling static and dy-
namic imbalances of momentum exchange device (MED)
models the effect as an external force and torque on the
spacecraft. In reality, this effect is an internal force
and torque on the spacecraft and thus requires a differ-
ent formulation. The work presented in this paper de-
velops the general fully-coupled model of double-gimbal
variable-speed control moment gyros (DGVSCMGs) im-
balances. This developed model is generalized descrip-
tion of a fully-coupled dynamical jitter model for a space-
craft with MEDs since the equation of motion (EOM) of
DGVSCMGs includes the EOM of all MEDs such as re-
action wheel (RW), single-gimbal CMG or VSCMG.

As future works, the energy or energy rate of a fully-
coupled model of multiple-DGVSCMGs will be investi-
gated. By using this fully-couple model, a high-precision
attitude control or fault detection method will be consid-

IAC-17,C1,1,11,x39153
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