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Abstract
Much attention has been paid to a double-gimbal variable-speed control moment gyro (DGVSCMG) as three-

dimensional torque generator. However, since this device typically operate at high wheel speeds, mass imbalances
within the wheels act as a primary source of angular jitter. An estimate of jitter amplitude may be found by modeling
imbalance torques as external disturbance forces and torques on the spacecraft. In this case, mass imbalances are
lumped into static and dynamic imbalance parameters, allowing jitter force and torque to be simply proportional to
wheel speed squared. A physically realistic dynamic model may be obtained by defining mass imbalances in terms of
a wheel center of mass location and inertia tensor. The fully-coupled dynamic model allows for momentum and energy
validation of the system. This paper presents a generalized approach to DGVSCMG imbalance modeling of a rigid
spacecraft hub with n DGVSCMGs. Through the numerical simulations, the effectiveness of the proposed dynamic
model is demonstrated.

1. Introduction

Momentum exchange devices (MEDs) are used for an at-
titude control of a spacecraft. Recently, much attention
has been paid to a double-gimbal variable-speed control
moment gyro (DGVSCMG)1–3 as a new type of MED of
a spacecraft. A DGVSCMG has two gimbals attached to
one variable speed wheel and can generate large three di-
mensional torques if the RW motor torque is sized accord-
ingly. Implementing DGVSCMGs for attitude control can
reduce the number of actuators and the total weight of ac-
tuators, which leads to reduced mass and volume within
the spacecraft. On the other hand, a key source of point-
ing jitters are due to wheel or gimbals mass imbalance
about the wheel spin axis or gimbal rotation axes in a
DGVSCMG. Although these effects are often character-
ized through experimentation in order to validate require-
ments, it is of interest to include jitter in a computer sim-
ulation of the spacecraft in the early stages of spacecraft
development. An estimation of jitter amplitude may be
found by modeling wheel or gimbals imbalance torques
as an external disturbance on the spacecraft. A physi-
cally realistic dynamic model may be obtained by defin-
ing mass imbalances in terms of a wheel or gimbals cen-
ter of mass locations and inertia tensor. The fully-coupled

dynamic model allows for momentum and energy valida-
tion of the system. This is often critical when modeling
additional complex dynamical behavior such as flexible
dynamics and fuel slosh. Furthermore, it is necessary to
use the fully-coupled model in instances where the rela-
tive mass properties of the spacecraft with respect to the
DGVSCMGs cause the simplified jitter model to be inac-
curate.

Previous DGVSCMG studies1–3 assumed the balanced
DGVSCMG that ignored the mass imbalance of the gim-
bals or wheel and previous studies4–8 put emphasis on em-
pirical modeling of MED jitter and the effect of MED jit-
ter within context of spacecraft flexible dynamics. Ref-
erence 9 presents a fully-coupled derivation of RW im-
balance. It is demonstrated that the fully-coupled model
allows an imbalanced RW to be simulated while still us-
ing momentum and energy tools for validation of the dy-
namics. Reference 10 discuss a fully-coupled model of
single-gimbal CMG (SGCMG) imbalance, but present
the results without a full derivation and fail to pro-
vide the complete system equations of motion. Further-
more, Reference 11 develops a fully-coupled derivation of
single-gimbal variable-speed CMG (SGVSCMG) imbal-
ance. This prior work demonstrates that the fully-coupled
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Fig. 1: Spacecraft model.

Fig. 2: j th DGVSCMG frames and axes.

model allows an imbalanced VSCMG to be simulated.
This paper presents a fully-coupled static and dynamic
imbalance model of a rigid spacecraft equipped with n
DGVSCMGs. This model is a generalized description of
a fully-coupled static and dynamic imbalance modeling
for a spacecraft with MEDs since the equation of motion
(EOM) of DGVSCMGs includes the EOM of all MEDs
such as RW, SGCMG or VSCMG. Jitter is also produced
through the higher order structural resonances of the MED
attachment mechanism and the bending modes of the ro-
tors. The presented work, however, only considers the
classical static and dynamic imbalance behaviors. While
a general formulation of these imbalances, the resulting
DGVSCMG equations of motion are very complex to de-
velop and implement.

2. Problem Statement

The problem consists of modeling the static and dynamic
imbalance of DGVSCMGs’ assemblies attached to a rigid
spacecraft as in Fig. 1. In order to develop the equations
of motion in a general way, arbitrary locations, inertia ten-
sors, and center of mass locations are considered for the
spacecraft hub, inner/outer gimbals, and wheels. Addi-
tionally, the wheel center of mass is not assumed to lie on
the gimbal axis of the DGVSCMG, and the wheel frame
origin and gimbal frame origin are not assumed to coin-
cide. Figure 2 shows the frame and variable definitions
used for this problem.

2.1 Reference Frame Definitions

Figures 2 show the frame and variable definitions used
for this problem. The formulation involves a rigid hub
with its center of mass location labeled as point Bc and N
DGVSCMGs with their center of mass in the outer gim-

bals, inner gimbals and wheels. The jth DGVSCMG is
labeled as the outer gimbal frame Go

cj , the inner gimbal
frame Gi

cj and the wheel frame Wcj , respectively. The in-
ertial frame and the body frame is denoted N and B. The
basis vector of the body frame is defined as follows:

B : tB, b̂x, b̂y, b̂zu, (1)

and

Go
j : tGo

j , ĝxj , ŝyj , ŝzju (2)

Gi
j : tG

i
j , ŝxj , ŝyj , ĝzju (3)

Wj : tWj , ŝxj , ŵyj , ŵzju (4)
Mj : tWj , ŝxj , ŝyj , ĝzju. (5)

Note that the basis vectors at the motor frame Mj of the
jth RW with the origin of coordinates Wj is same direc-
tion towards the basis vectors at Gi

j but the origin of coor-
dinates is difference.

2.2 Variable Definitions

Parameters relating to the spacecraft hub are denoted with
a subscript text B. Parameters relating to the jth in-
ner/outer gimbal and wheel are denoted with subscripts
text Gi

j , Go
j and Wj , respectively. The hub, inner/outer

gimbal, and wheel each are allowed center of mass off-
sets from their respective coordinate frame origins. The
spacecraft hub is the spacecraft structure without the
DGSCMGs. The hub’s center of mass location is labeled
as Bc. This location is described with respect to the body
frame origin as rBc{B . The inner/outer gimbals are also
allowed a general center of mass offset from the gimbal
frame origins. This location are labeled as Gi

cj , Go
cj and
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are located with respect to the inner/outer gimbal frame
origins as rGi

cj{G
i
j

and rGo
cj{G

o
j
. The wheel’s center of

mass location is labeled somewhat differently. The wheel
center of mass is assumed to lie on the ŵyj axis a length
dj from the wheel frame origin. Three-dimensional offset
vectors Li

j � rLi
xj , L

i
yj , L

i
zjs

T , Lo
j � rLo

xj , L
o
yj , L

o
zjs

T

are introduce between frames not to result in loss of gen-
erality. Since the inner/outer gimbal and wheel centers of
mass change with time, so does the overall spacecraft cen-
ter of mass. The time-varying center of mass of the entire
system is denoted c.

3. Equation of Motion

3.1 Translational Motion

The derivation of the translational EOMs begins with
Newton’s second law for the center of mass of the space-
craft as follows:

:rC{N �
F

msc
(6)

together with

msc � mB �
Ņ

j�1

pmGo
j
�mGi

j
�mWj

q (7)

The force vector F is the sum of the external forces on the
spacecraft which has the spacecraft mass msc. Ultimately,
the acceleration of the body frame or point B is desired,
which is expressed through

:rB{N � :rC{N � :c. (8)

The center of mass c is time variant and it expressed as

c �
1

msc
pmBrBc{B �

Ņ

j�1

pmGo
j
rGo

cj{B
�mGi

j
rGi

cj{B

�mWjrWcj{Bqq. (9)

Find the second inertial derivative of point c.

:c � c2 � 9ω � c� 2ω � c1 � ω � pω � cq. (10)

Taking the second body frame time derivatives of c results
in

c2 �
1

msc

Ņ

j�1

pmGo
j
r2Go

cj{B
�mGi

j
r2Gi

cj{B

�mWj
r2Wcj{B

q (11)

where

r2Go
cj{B

�po:γj ŝzjq � rGo
cj{G

o
j
� po 9γj ŝzjq � r1Go

cj{B

(12)

r2Gi
cj{B

�po:γj ŝzj �
i
:γj ŝyj �

i
9γj

o
9γj ĝxjq � rGi

cj{G
i
j

� po 9γj ŝzj �
i
9γj ŝyjq � r1Gi

cj{G
i
j
� pLo

xj
o
:γj

� Lo
yj

o
9γ2
j qŝyj � pLo

xj
o
9γ2
j � Lo

yj
o
:γjqĝxj

(13)

r2Wcj{B
�
�
djp

i
:γjsθj �

o
:γjc

iγjcθj � 2Ωj
i
9γjcθj

�2Ωj
o
9γjc

iγjsθj � 2o 9γj
i
9γjs

iγjcθj �
o
9γ2
js

iγjc
iγjsθjq

� Li
xjp

o
9γ2
jc

2iγj �
i
9γ
2

j q � Li
yjp

o
9γj

i
9γjs

iγj �
o
:γjc

iγjq

� Li
zjp

o
9γ2
js

iγjc
iγj � Ωj

o
9γjc

iγj �
i
:γjq

�Lo
xj

o
9γ2
jc

2iγj � Lo
yjp2

o
9γj

i
9γjs

iγj �
o
:γjc

iγjq
	
ŝxj

�
�
�djp

o
9γ2
jcθj �

o
:γjs

iγjsθj � 9Ωjsθj � Ωj
o
9γjs

iγjcθjq

� Li
xj

o
:γjc

iγj � Li
yj

o
9γ2
j � Li

zjp
o
:γjs

iγj � 9Ωjq � Lo
xj

o
:γj

�Lo
yj

o
9γ2
j

	
ŝyj �

�
djp

o
:γjs

iγjcθj �
o
9γ2
js

2iγjsθj

� i
9γ
2

jsθj �
9Ωjcθj � 2o 9γj

i
9γjc

iγjcθj � 2o 9γjΩjs
iγjsθj

� Ω2
jsθjq � Li

xjp
o
9γ2
jc

iγjs
iγj �

i
:γjq � Li

yjp
o
:γjs

iγj

� 2o 9γj
i
9γjc

iγjq � Li
zjp

i
9γ
2

j �
o
9γ2
js

2iγj �
o
9γjΩjs

iγjq

� Lo
xj

o
9γ2
js

iγj�Lo
yjp

o
:γjs

iγj�2o 9γj
i
9γjc

iγjq
�
ĝzj (14)

Noting that s � sin, c � cos. Substituting Eq. (10) into
Eq. (8), it is given by

:rB{N � :rC{N � c2 � rc̃s 9ω � 2rω̃sc1 � rω̃srω̃sc. (15)

Substituting Eq. (11) into Eq. (15) and group second-order
terms to obtain the translational equations of motion.

:rB{N � rc̃s 9ω �
1

msc

Ņ

j�1

�
foj

o
:γj � fij

i
:γj � fwj

9Ωj

	

� :rC{N � 2rω̃sc1 � rω̃srω̃sc�
1

msc

Ņ

j�1

�
f̃j

	
(16)

where

foj �mGo
j

�
ŝzj � rGo

cj{G
o
j

	
�mGi

j

�
ŝzj � rGi

cj{G
i
j

�Lo
xj ŝyj � Lo

yj ĝxj
�
�mWj

�
p�djc

iγjcθj

�Li
yjc

iγj � Lo
yjc

iγjqŝxj � p�djs
iγjsθj

�Li
xjc

iγj � Li
zjs

iγj � Lo
xjqŝyj � pdjs

iγjcθj

�Li
yjs

iγj � Lo
yjs

iγjqĝzj
�

fij �mGi
j

�
ŝyj � rGi

cj{G
i
j

	
�mWj

�
pdjsθj � Li

zjqŝxj
�

fwj �mWj

�
�pdjsθj � Li

zjqŝyj � djcθj ĝzj
�
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and

f̃j � mGo
j

�
po 9γj ŝzjq � r1Go

cj{B

	
�mGi

j

�
�pi 9γj

o
9γj ĝxjq � rGi

cj{G
i
j
� po 9γj ŝzj

�i
9γj ŝyjq � r1Gi

cj{G
i
j
� pLo

yj ŝyj � Lo
xj ĝxjq

o
9γ2
j

	
�mWj

�
djp2Ωj

i
9γjcθj � 2Ωj

o
9γjc

iγjsθj

�2o 9γj
i
9γjs

iγjcθj �
o
9γ2
js

iγjc
iγjsθjq � Li

xjp
o
9γ2
jc

2iγj

�i
9γ
2

j q � Li
yjp

o
9γj

i
9γjs

iγjq � Li
zjp

o
9γ2
js

iγjc
iγj

�Ωj
o
9γjc

iγjq � Lo
xj

o
9γ2
jc

2iγj � 2Lo
yj

o
9γj

i
9γjs

iγj

	
ŝxj

�
�
�djp

o
9γ2
jcθj � Ωj

o
9γjs

iγjcθjq � Li
yj

o
9γ2
j

�Lo
yj

o
9γ2
j

	
ŝyj �

�
djp�

o
9γ2
js

2iγjsθj �
i
9γ
2

jsθj

� 2o 9γj
i
9γjc

iγjcθj � 2o 9γjΩjs
iγjsθj � Ω2

jsθjq

� Li
xjp

o
9γ2
jc

iγjs
iγj �

i
:γjq � 2Li

yj
o
9γj

i
9γjc

iγj

� Li
zjp

i
9γ
2

j �
o
9γ2
js

2iγj �
o
9γjΩjs

iγjq � Lo
xj

o
9γ2
js

iγj

�2Lo
yj

o
9γj

i
9γjc

iγj

�
ĝzj (17)

This equation represents 3 DOFs and contains all second
order states (:rB{N , 9ω, o

:γ, i
:γ, 9Ω). Removing wheel im-

balance terms and assuming a symmetrical DGVSCMG
(i.e. rGo

cj{G
o
j
� 0, rGi

cj{G
i
j
� 0, Lo

xj � 0, Lo
yj � 0,

Lo
zj � 0, Li

xj � 0, Li
yj � 0, Li

zj � 0, dj � 0) gives the
following equation.

msc:rB{N �mscrc̃s 9ω � F � 2mscrω̃sc
1

�mscrω̃s
2c (18)

where

F � :rC{N �
Ņ

j�1

�
po 9γj ŝzjq � r1Go

cj{B

	
(19)

Thus, the balanced DGVSCMG translational equation of
motion does not certain any second order terms relating
to the wheel or inner/outer gimbal. The following section
shows the derivation of the rotational equations of motion.

3.2 Rotational Motion

The derivation of rotational EOMs starts with the angular
momentum of the spacecraft about point B.

Hsc,B � HB,B �
Ņ

j�1

pHGo
j ,B

�HGi
j ,B

�HWj ,Bq

(20)

The inertial time derivative of angular momentum when
the body fixed coordinate frame origin is not coincident
with the center of mass of the body is

9Hsc,B � LB �msc:rB{N � c, (21)

where LB is the vector sum of external torque acting
on the spacecraft. Differentiating Eq. (20), the inertial
derivative of the spacecraft angular momentum is ex-
pressed as

9Hsc,B � 9HB,B�

Ņ

j�1

p 9HGo
j ,B

� 9HGi
j ,B

� 9HWj ,Bq (22)

Thus, in order to use Eq. (21), each derivative on the right-
hand side of Eq. (22) needs to be evaluated.

3.2.1 Derivative of the Hub Angular Momentum

The first step is to derive the hub angular momentum
derivative 9HB,B . The hub angular momentum about point
Bc is given by

HB,Bc
� rIB,Bc

sωB{N . (23)

Angular momentum about point Bc is related to point B
using the following equation.

HB,B � HB,Bc
�mBrBc{B � 9rBc{B (24)

Taking the inertial time derivative of the hub’s angular
momentum yields

9HB,B � rIB,Bc
s 9ω � rω̃srIB,Bc

sω

�mBrBc{B � :rBc{B (25)

Note that the body rate pseudovector ωB{N is abbreviated
as ω henceforth. Knowing that rBc{B is fixed with respect
to the body frame, the following is defined

:rBc{B � 9ω � rBc{B � ω � pω � rBc{Bq (26)

Substituting Eq. (26) into Eq. (25) yields

9HB,B � rIB,Bc
s 9ω � rω̃srIB,Bc

sω

�mBrBc{B � p 9ω � rBc{Bq

�mBrBc{B � pω � pω � rBc{Bqq (27)

Employing the Jacobi triple-product identity, a�pb�cq �
pa�bq�c�b�pa�cq, on the right-hand side of Eq. (27)

9HB,B � rIB,Bcs 9ω � rω̃srIB,Bcsω

�mBrr̃Bc{Bsrr̃Bc{Bs
T

9ω

�mBrω̃srr̃Bc{Bsrr̃Bc{Bs
Tω (28)

The parallel axis theorem relates inertia about the hub cen-
ter of Bc to the hub origin B.

rIB,Bs � rIB,Bc
s �mBrr̃Bc{Bsrr̃Bc{Bs

T (29)

The hub angular momentum derivative simplifies to

9HB,B � rIB,Bs 9ω � rω̃srIB,Bsω. (30)
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3.2.2 Derivative of the outer gimbal angular momentum

The next step is to derive the outer gimbal angular mo-
mentum derivative 9HGo

j ,B
. The angular velocity of the

outer gimbal frame with respect to inertial is

ωGo
j {N � ωB{N � ωGo

j {B � ω � o
9γj ŝzj (31)

The outer gimbal angular momentum about point Go
cj is

given by

HGo
j {G

o
cj
� rIGo

j ,G
o
cj
sωGo

j {N

� rIGo
j ,G

o
cj
spω � o

9γj ŝzjq. (32)

Angular momentum about point Go
cj is related to point B

using the following equation.

HGo
j {B

� HGo
j {G

o
cj
�mGo

j
rGo

cj{B
� 9rGo

cj{B
(33)

Taking the inertial derivative yields

9HGo
j ,B

� rIGo
j ,G

o
cj
sp 9ω � o

:γj ŝzjq � rIGo
j ,G

o
cj
s1ωGo

j {N

� rω̃srIGo
j ,G

o
cj
sωGo

j {N �mGo
j
rGo

cj{B
� :rGo

cj{B
(34)

The outer gimbal inertia tensor about the outer gimbal
center of mass rIGo

j ,G
o
cj
s and its body frame derivative

rIGo
j ,G

o
cj
s1 are defined. Expressed in the outer gimbal

frame,

rIGo
j ,G

o
cj
s �

Go
j
�
�IGo

11j
IGo

12j
IGo

13j

IGo
12j

IGo
22j

IGo
23j

IGo
13j

IGo
23j

IGo
33j

�
� (35)

By expressing this tensor in a frame independent form, the
body frame derivative is found to be,

rIGo
j ,G

o
cj
s1 � o

9γj

Go
j
�
��2IGo

12j
I12 �IGo

23j

I12 2IGo
12j

IGo
13j

�IGo
23j

IGo
13j

0

�
� (36)

where
I12 � IGo

11j
� IGo

22j
(37)

The second inertial derivative of rGo
cj{B

is given by

:rGo
cj{B

� o
:γjr

˜̂szjsrGo
cj{G

o
j
� po 9γjr

˜̂szjsr
1
Go

cj{G
o
j

� rr̃Go
cj{B

sT 9ω � 2� rr̃1Go
cj{B

sTω

� rω̃srω̃srGo
cj{B

(38)

Note that r2Go
cj{B

is given by Eq. (12). Substituting this
into Eq. (34) yields

9HGo
j ,B

� rIGo
j ,G

o
cj
sp 9ω � o

:γj ŝzjq � rIGo
j ,G

o
cj
s1ωGo

j {N

� rω̃srIGo
j ,G

o
cj
sωGo

j {N �mGo
j
rr̃Gcj{Bs�

o
:γjr

˜̂szjsrGo
cj{G

o
j
� o

9γjr
˜̂szjsr

1
Go

cj{G
o
j
� rr̃Go

cj{B
sT 9ω

�2rr̃1Go
cj{B

sTω � rω̃srω̃srGo
cj{B

�
(39)

The parallel axis theorem relating the outer gimbal inertia
about point B to the outer gimbal inertia about point Go

cj

is given by

rIGo
j ,B

s � rIGo
j ,G

o
cj
s �mGo

j
rr̃Go

cj{B
srr̃Go

cj{B
sT (40)

Using Eq. (40), Eq. (39) simplifies to

9HGo
j ,B

� rIGo
j ,B

s 9ω � rIGo
j ,G

o
cj
so:γj ŝzj

�rIGo
j ,G

o
cj
s1ωGo

j {N �rω̃srIGo
j ,B

sω�rω̃srIGo
j ,G

o
cj
so 9γj ŝzj

�mGo
j
rr̃Go

cj{B
s
�
o
:γjr

˜̂szjsrGo
cj{G

o
j
� o

9γjr
˜̂szjsr

1
Go

cj{G
o
j

� 2rr̃1Go
cj{B

sTω
�

(41)

Employing the body frame derivative of the parallel axis
theorem.

rIGo
j ,B

s1 �rIGo
j ,G

o
cj
s1 �mGo

j
rr̃1Go

cj{B
srr̃Go

cj{B
sT

�mGo
j
rr̃Go

cj{B
srr̃1Go

cj{B
sT (42)

Eq. (41) is further simplified using Eq. (42) to give the
outer gimbal angular momentum derivative.

9HGo
j ,B

� rIGo
j ,B

s 9ω � rIGo
j ,B

s1ω � rω̃srIGo
j ,B

sω

� rIGo
j ,G

o
cj
so:γj ŝzj � rIGo

j ,G
o
cj
s1o 9γj ŝzj

� rω̃srIGo
j ,G

o
cj
so 9γj ŝzj �mGo

j
rr̃Go

cj{B
s
�
o
:γjr

˜̂szjsrGo
cj{G

o
j

�o
9γjr

˜̂szjsr
1
Go

cj{G
o
j

�
�mGo

j
rω̃srr̃Go

cj{B
sr1Go

cj{B
(43)

3.2.3 Derivative of the Inner Gimbal Angular Momentum

The next step is to derive the inner gimbal angular mo-
mentum derivative 9HGi

j ,B
. The angular velocity of the

inner gimbal frame with respect to inertial is

ωGo
j {N �ωB{N � ωGo

j {B � ωGi
j{Go

j

�ω � o
9γj ŝzj �

i
9γj ŝyj . (44)

The inner gimbal angular momentum about point Gi
cj is

given by

HGi
j ,G

i
cj
� rIGi

j ,G
i
cj
sωGi

j{N

� rIGi
j ,G

i
cj
spω � o

9γj ŝzj �
i
9γj ŝyjq. (45)

Angular momentum about point Gi
cj is related to point B

using the following equation.

HGi
j ,B

� HGi
j ,G

i
cj
�mGi

j
rGi

cj{B
� 9rGi

cj{B
. (46)

Take the inertial derivative.

9HGi
j ,B

�rIGi
j ,G

i
cj
sp 9ω � o

:γj ŝzj �
i
:γj ŝyj �

o
9γj

i
9γj ĝxjq

� rIGi
j ,G

i
cj
s1ωGi

j{N � rω̃srIGi
j ,G

i
cj
sωGi

j{N

�mGi
j
rGi

cj{B
� :rGi

cj{B
(47)
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The inner gimbal inertia tensor about the gimbal center of
mass rIGi

j ,G
i
cj
s and its body frame derivative rIGi

j ,G
i
cj
s1

are defined. Expressed in the inner gimbal frame,

rIGi
j ,G

i
cj
s �

Gi
j

�
��
IGi

11j
IGi

12j
IGi

13j

IGi
12j

IGi
22j

IGi
23j

IGi
13j

IGi
23j

IGi
33j

�
�� (48)

By expressing this tensor in a frame independent form, the
body frame derivative is found to be,

rIGi
j ,G

i
cj
s1 �

Gi
j

�
��
2ĨGi

11j
ĨGi

12j
ĨGi

13j

ĨGi
12j

2ĨGi
22j

ĨGi
23j

ĨGi
13j

ĨGi
23j

2ĨGi
33j

�
�� (49)

together with the principal axes of inertia

ĨGi
11j

� IGi
13j

i
9γj � IGi

12j

o
9γj cos

iγj

ĨGi
22j

� IGi
12j

o
9γj cos

iγj � IGi
23j

o
9γj sin

iγj

ĨGi
33j

� IGi
23j

o
9γj sin

iγj � IGi
13j

i
9γj

and the products of inertia

ĨGi
12j

�IGi
11j

o
9γj cos

iγj � IGi
13j

o
9γj sin

iγj

� IGi
22j

o
9γj cos

iγj � IGi
23j

i
9γj (50)

ĨGi
13j

�IGi
11j

i
9γj � IGi

12j

o
9γj sin

iγj

� IGi
23j

o
9γj cos

iγj � IGi
33j

i
9γj (51)

ĨGi
23j

�� IGi
12j

i
9γj � IGi

13j

o
9γj cos

iγj

� IGi
22j

o
9γj sin

iγj � IGi
33j

o
9γj sin

iγj . (52)

The second inertial derivative of rGi
cj{B

is given by

:rGi
cj{B

�r2Gi
cj{B

� 9ω � rGi
cj{B

� ω � r1Gi
cj{B

� ω � 9rGi
cj{B

�po:γj ŝzj �
i
:γj ŝyj �

i
9γj

o
9γj ĝxjq � rGi

cj{G
i
j

� po 9γj ŝzj �
i
9γj ŝyjq � r1Gi

cj{G
i
j
� pLo

xj
o
:γj

� Lo
yj

o
9γ2
j qŝyj � pLo

xj
o
9γ2
j � Lo

yj
o
:γjqĝxj

� rr̃Gi
cj{B

sT 9ω � 2� rr̃1Gi
cj{B

sTω

� rω̃srω̃srGi
cj{B

(53)

Note that r2
Gi

cj{B
is given by Eq. (13). Substituting this

into Eq. (47) yields

9HGi
j ,B

� rIGi
j ,G

i
cj
sp 9ω � o

:γj ŝzj �
i
:γj ŝyj

� i
9γj

o
9γj cos

iγj ĝzj �
i
9γj

o
9γj sin

iγj ĝxjq

� rIGj ,Gi
cj
s1ωGi

j{N � rω̃srIGi
j ,G

i
cj
sωGi

j{N

�mGi
j
rr̃Gi

cj{B
s
�
r2Gi

cj{B
� rr̃Gi

cj{B
sT 9ω

�2rr̃1Gi
cj{B

sTω � rω̃srω̃srGi
cj{B

�
(54)

The parallel axis theorem relating the outer gimbal inertia
about point B to the outer gimbal inertia about point Gi

cj

is given by

rIGi
j ,B

s � rIGi
j ,G

i
cj
s �mGi

j
rr̃Gi

cj{B
srr̃Gi

cj{B
sT (55)

Using Eq. (54), Eq. (55) simplifies to

9HGi
j ,B

� rIGi
j ,G

i
cj
s 9ω � rIGi

j ,G
i
cj
spo:γj ŝzj �

i
:γj ŝyj

� i
9γj

o
9γj cos

iγj ĝzj �
i
9γj

o
9γj sin

iγj ĝxjq � rω̃srIGi
j ,B

sω

� rω̃srIGi
j ,G

i
cj
sωGi

j{N � rIGi
j ,G

i
cj
s1ωGi

j{N

�mGi
j
rr̃Gi

cj{B
s
�
r2Gi

cj{B
� 2rr̃1Gi

cj{B
sTω

�
(56)

Employing the body frame derivative of the parallel axis
theorem.

rIGi
j ,B

s1 � rIGi
j ,G

i
cj
s1 �mGi

j
rr̃1Gi

cj{B
srr̃Gi

cj{B
sT

�mGi
j
rr̃Gi

cj{B
srr̃1Gi

cj{B
sT (57)

Eq. (56) is further simplified using Eq. (57) to give the
outer gimbal angular momentum derivative.

9HGi
j ,B

� rIGi
j ,B

s 9ω � rIGi
j ,B

s1ω � rω̃srIGi
j ,B

sω

� rIGi
j ,G

i
cj
spo:γj ŝzj �

i
:γj

iŝyj

� i
9γj

o
9γjc

iγj ĝzj �
i
9γj

o
9γjs

iγj ĝxjq

� rIGi
j ,G

i
cj
s1ωGi{B � rω̃srIGi

j ,G
i
cj
sωGi{B

�mGi
j
rr̃Gi

cj{B
sr2Gi

cj{B
�mGi

j
rω̃srr̃Gi

cj{B
sr1Gi

cj{B
(58)

3.2.4 Derivative of the Wheel Angular Momentum

The next step is to derive the wheel angular momentum
derivative 9HWj ,B . The angular velocity of the wheel with
respect to inertial is

ωWj{N �ωB{N � ωGo
j {B � ωGi

j{Go
j
� ωWj{Gi

j

�ω � o
9γj ŝzj �

i
9γj

iŝyj � Ωj
wŝxj (59)

The wheel angular momentum about point Wcj is given
by

HWj{Wcj
� rIWj ,Wcj

sωWj{N

� rIWj ,Wcj
spω � o

9γj ŝzj �
i
9γj ŝyj � Ωj ŝxjq (60)

Angular momentum about point Wcj is related to point B
using the following equation.

HWj{B � HWj{Wcj
�mWjrWcj{B � 9rWcj{B (61)

Taking the inertial derivative yields

9HGi
j ,B

� rIGi
j ,G

i
cj
sp 9ω � o

:γj ŝzj �
i
:γj ŝyj � 9Ωj ŝxj

� o
9γj

i
9γj ŝzj � ŝyj �

o
9γjΩj ŝzj � ŝxj

� i
9γjΩj ŝyj � ŝxjq � rIWj ,Wcj

s1ωWj{N

� rω̃srIWj ,Wcj
sωWj{N �mWj

rWcj{B � :rWcj{B (62)
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The wheel inertia tensor about the wheel center of mass
rIWj ,Wcj s and its body frame derivative rIWj ,Wcj s

1 need
to be defined. For this general RW model, the inertia ma-
trix of the RW in the Wj frame is defined as

rIWj ,Wcj
s �

Wj
�
�J11j J12j J13j
J12j J22j J23j
J13j J23j J33j

�
� (63)

By expressing this tensor in a frame independent form, the
body frame derivative is found to be,

rIWj ,Wcj
s1 �

Wj
�
�2J̃11j J̃12j J̃13j
J̃12j 2J̃22j J̃23j
J̃13j J̃23j 2J̃33j

�
� (64)

together with the principal axes of inertia

J̃11j �J12jp
i
9γjsθj �

o
9γjc

iγjcθjq � J13jp
o
9γjc

iγjsθj

� i
9γjcθjq

J̃22j �J12jp
o
9γjc

iγjcθj �
i
9γjsθjq � J23jp

o
9γjs

iγj � Ωjq

J̃33j �� J13jp
o
9γjc

iγjsθj �
i
9γjcθjq

� J23jp
o
9γjs

iγj � Ωjq

and the products of inertia

J̃12j �J11jp
o
9γjc

iγjcθj �
i
9γjsθjq � J13jp

o
9γjs

iγj � Ωjq

� J22jp
i
9γjsθj �

o
9γjc

iγjcθjq

� J23jp
o
9γjc

iγjsθj �
i
9γjcθjq

J̃13j �� J11jp
o
9γjc

iγjsθj �
i
9γjcθjq

� J23jp
i
9γjsθj �

o
9γjc

iγjcθjq

� J33jp
o
9γjc

iγjsθj �
i
9γjcθjq

� J12jp
o
9γj sin

iγj � Ωjq

J̃23j �J13jp
o
9γjc

iγjcθj �
i
9γjsθjq

� J12jp
o
9γjc

iγjsθj �
i
9γjcθjq

� J22jp
o
9γjs

iγj � Ωjq � J33jp
o
9γjs

iγj � Ωjq

Furthermore, by assuming J12j � J23j � 0, J22j � J33j ,
J13 � 0 and θj � 0 (since the wheel frame does not
rotate), the equation above simplifies to

rIWj ,Wcj
s1�

Wj
�
� 0 Jaj

o
9γjc

iγj �Jaj
i
9γj

Jaj
o
9γjc

iγj 0 0
�Jaj

i
9γj 0 0

�
� (65)

where
Jaj � J11j � J22j (66)

The second inertial derivative of rWcj{B is needed. Define
the body frame derivative and first inertial derivative of
rGi

cj{B
, noting that Wj is fixed with respect to point B.

rWcj{B �rGi
cj{G

i
j
� rGi

j{G
o
j
� rGo

j {B
(67)

9rWcj{B �r1Wcj{B
� ω � rWcj{B (68)

The second inertial derivative of rGi
cj{B

is given by

:rWcj{B �r2Wcj{B
� 9ω � rWcj{B � ω � r1Wcj{B

� ω � 9rWcj{B

�r2Wcj{B
� rr̃Wcj{Bs

T
9ω � 2� rr̃1Wcj{B

sTω

� rω̃srω̃srWcj{B . (69)

The second body frame derivative of rWcj{B is defined in
Eq. (14). Substituting Eq. (69) into Eq. (62) results in

9HWj ,B �rIWj ,Wcj
sp 9ω � o

:γj ŝzj �
i
:γj ŝyj � 9Ωj ŝxj

� o
9γj

i
9γj ŝzj � ŝyj �

o
9γjΩj ŝzj � ŝxj

� i
9γjΩj ŝyj � ŝxjq � rIWj ,Wcj

s1ωWj{N

� rω̃srIWj ,Wcj
sωWj{N �mWj

rr̃Wcj{Bs�
r2Wcj{B

� rr̃Wcj{Bs
T 9ω � 2� r˜1Wcj{B

sTωr

�rω̃srω̃srWcj{B

�
(70)

The parallel axis theorem relating the wheel inertia about
point B to the wheel inertia about point Wcj is given by

rIWj ,Bs � rIWj ,Wcj
s �mWj

rr̃Wcj{Bsrr̃Wcj{Bs
T (71)

Using Eq. (70), Eq. (71) simplifies to

9HWj ,B � rIWj ,Bs 9ω � rIWj ,Wcj
spo:γj ŝzj �

i
:γj ŝyj

� 9Ωj ŝxj �
o
9γj

i
9γj ŝzj � ŝyj �

o
9γjΩj ŝzj � ŝxj

� i
9γjΩj ŝyj � ŝxjq � rω̃srIWj ,Bsω

� rω̃srIWj ,Wcj sωWj{B � rIWj ,Wcj s
1ωWj{N

�mWj
rr̃Wcj{Bs

�
r2Wcj{B

� 2rr̃1Wcj{B
sTω

�
(72)

Employing the body frame derivative of the parallel axis
theorem.

rIWj ,Bs
1 �rIWj ,Wcj

s1 �mWj
rr̃1Wcj{B

srr̃Wcj{Bs
T

�mWj rr̃Wcj{Bsrr̃
1
Wcj{B

sT (73)

Eq. (72) is further simplified using Eq. (73) to give the
outer gimbal angular momentum derivative.

9HWj ,B �rIWj ,Bs 9ω � rIWj ,Bs
1ω � rω̃srIWj ,Bsω

� rIWj ,Wcj
spo:γj ŝzj �

i
:γj ŝyj � 9Ωj ŝxj

� o
9γj

i
9γj ŝzj � ŝyj �

o
9γjΩj ŝzj � ŝxj

� i
9γjΩj ŝyj � ŝxjq � rIWj ,Wcj

s1ωWj{B

� rω̃srIWj ,Wcj sωW{B �mWj rr̃Wcj{Bsr
2
Wcj{B

�mWj rω̃srr̃Wcj{Bsr
1
Wcj{B

. (74)
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We may now formulate the rotational equation of motion.
Euler’s equation is rearranged as

mscrc̃s:rB{N � 9HB,B

�
Ņ

j�1

p 9HGo
j ,B

� 9HGi
j ,B

� 9HWj ,Bq � LB (75)

The rotational equations of motion are formulated by sub-
stituting Eqs. (30), (43), (58) and (74) into Eq. (75) and
the total spacecraft inertia about point B is given by

rIsc,Bs � rIB,Bs

�
Ņ

j�1

�
rIGo

j ,B
s � rIGi

j ,B
s � rIWj ,Bs

	
(76)

This equation represents the general form of a space-
craft with balance/imbalance momentum exchange de-
vices such as DGVSCMG, DGCMG, VSCMG, SGCMG
and RW.

3.3 Motor Torque Equations

3.3.1 Outer Gimbal Torque Equation

The outer gimbal torque equation is used to relate the
body rate derivative 9ωB{N and the outer gimbal deriva-
tive o

:γj . The outer gimbal moter torque uzj is the ŝzj
component of gimbal torque about point Go

j . The torque
acting on a DGVSCMG at the joint between the motor
and the inner/outer gimbal assembly is given by

LGo
j
�

Go
j
�
�oτxj

oτyj
uzj

�
� (77)

The transverse toorque acting on the gimbal oτxj and oτyj
are structural torques and do not contribute to the equa-
tion. Torque about point Go

j is related to torque about the
DGVSCMG center of mass Dcj using the following equa-
tion.

LGo
j
� LDj

� rDcj{Go
j
�mDcj

:rDcj{N (78)

Euler’s equation applies as follows.

LDj
� 9HGo

j ,Dcj
� 9HGi

j ,Dcj
� 9HWj ,Dcj

(79)

The outer gimbal motor torque is the ŝzj component of
the right-hand side of Eq. (78). This is found in a frame
independent format as

uzj � ŝTzjLGo
j
� ŝTzjp

9HGo
j ,Dcj �

9HGi
j ,Dcj

� 9HWj ,Dcj

� rDcj{Go
j
�mDcj

:rDcj{N q (80)

where the outer/inner gimbal and wheel angular momen-
tum derivatives about point Dcj are related to point Go

cj

using the following equation.

9HGo
j ,Dcj �

9HGo
j ,G

o
cj
�mGo

j
rGo

cj{Dcj
� :rGo

cj{Dcj
(81)

9HGi
j ,Dcj

� 9HGi
j ,G

i
cj
�mGi

j
rGi

cj{Dcj
� :rGi

cj{Dcj
(82)

9HWj ,Dcj �
9HWj ,Wcj�mWjrWcj{Dcj

� :rWcj{Dcj
(83)

The inertial derivatives of the wheel and inner/outer gim-
bal angular momentum about their respective centers of
mass were found in the previous section and are reprinted
here for the reader’s convenience.

9HGo
j ,G

o
cj
�rIGo

j ,G
o
cj
sp 9ω � o

:γj ŝzjq � rIGo
j ,G

o
cj
s1ωGo

j {N

� rω̃srIGo
j ,G

o
cj
sωGo

j {N (84)

9HGi
j ,G

i
cj
�rIGi

j ,G
i
cj
sp 9ω � o

:γj ŝzj �
i
:γj ŝyj

� o
9γj

i
9γj ŝzj � ŝyjq � rIGi

j ,G
i
cj
s1ωGi

j{N

� rω̃srIGi
j ,G

i
cj
sωGi

j{N (85)

9HWj ,Wcj
�rIWj ,Wcj

sp 9ω � o
:γj ŝzj �

i
:γj ŝyj � 9Ωj ŝxj

� o
9γj

i
9γj ŝzj � ŝyj �

o
9γjΩj ŝzj � ŝxj

� i
9γjΩj ŝyj � ŝxjq � rIWj ,Wcj

s1ωWj{N

� rω̃srIWj ,Wcj
sωWj{N (86)

Next the :rGo
cj{Dcj

term in Eq. (81) is defined as

:rGo
cj{Dcj

� r2Go
cj{Dcj

� 9ω�rGo
cj{Dcj

� 2ω�r1Go
cj{Dcj

� ω � pω � rGo
cj{Dcj

q (87)

The vector :rGi
cj{Dcj

in Eq. (82) is expressed as

:rGi
cj{Dcj

� r2Gi
cj{Dcj

� 9ω�rGi
cj{Dcj

� 2ω�r1Gi
cj{Dcj

� ω � pω � rGi
cj{Dcj

q (88)

The DGVSCMG center of mass location with respect to
point Go

j and its body frame derivatives are given by

rDcj{Go
cj
�

1

mDj

�
mGo

j
rGo

cj{G
o
j
�mGi

j
rGi

cj{G
o
j

�mWj
rWcj{Go

j

	
(89)

r1Dcj{Go
cj
�oρGo

j
r1Go

cj{G
o
j
� iρGi

j
r1Gi

cj{G
i
j

� oρWj
r1Wcj{Wj

(90)

r2Dcj{Go
cj
�oρGo

j
r2Go

cj{G
o
j
� iρGi

j
r2Gi

cj{G
i
j

� oρWj
r2Wcj{Wj

(91)
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where the mass ratios are abbreviated as

oρGo
j
�

mGo
j

mGo
j
�mGi

j
�mWj

(92)

iρGi
j
�

mGi
j

mGo
j
�mGi

j
�mWj

(93)

wρWj
�

mWj

mGo
j
�mGi

j
�mWj

(94)

Next the term :rDcj{N is evaluated

:rDcj{N � :rDcj{B � :rB{N (95)

Finally the second inertial derivative of rDcj{B is found
noting that r1Dcj{Go

j
� r1Dcj{B

and r2Dcj{Go
j
� r2Dcj{B

.

9rDcj{B �r1Dcj{B
� ω � rDcj{B (96)

:rDcj{B �r2Dcj{B
� 9ω � rDcj{B � 2ω � r1Dcj{B

� ω � pω � rDcj{Bq. (97)

3.3.2 Inner Gimbal Torque Equation

The inner gimbal torque equation is used to relate body
rate derivative 9ωB{N and the inner gimbal derivative i

:γj .
The inner gimbal moter torque uyj is the ŝyj component
of gimbal torque about point Gi

j . The torque acting on
a DGVSCMG at the joint between the motor and the in-
ner/outer gimbal assembly is given by

LGi
j
�

Gi
j
�
�iτxj
uyj
iτzj

�
� (98)

The transverse toorque acting on the gimbal iτxj and iτzj
are structural torques and do not contribute to the equa-
tion. Torque about point Gi

j is related to torque about the
DGVSCMG center of mass Dcj using the following equa-
tion.

LGi
j
� LVj � rVcj{Gi

j
�mVcj

:rDcj{N (99)

Euler’s equation applies as follows.

LVj
� 9HGi

j ,Vcj
� 9HWj ,Vcj

(100)

The inner gimbal motor torque is the iŝyj component of
the right-hand side of Eq. (99). This is found in a frame
independent format as

uyj � ŝTyjLGi
j
� ŝTyj

�
9HGi

j ,Vcj
� 9HWj ,Vcj

� rVcj{Gi
j
�mVcj

:rVcj{N

	
(101)

where the outer/inner gimbal and wheel angular momen-
tum derivatives about point Vcj are related to point Gi

cj

using the following equation.

9HGi
j ,Vcj

� 9HGi
j ,G

i
cj
�mGi

j
rGi

cj{Vcj
� :rGi

cj{Vcj
(102)

9HWj ,Vcj
� 9HWj ,Wcj

�mWj
rWcj{Vcj

� :rWcj{Vcj
(103)

The inertial derivatives of the wheel and inner/outer gim-
bal angular momentum about their respective centers of
mass were found in the previous section and are reprinted
here for the reader’s convenience.

9HGi
j ,G

i
cj
�rIGi

j ,G
i
cj
sp 9ω � o

:γj ŝzj �
i
:γj ŝyj

� o
9γj

i
9γj ŝzj � ŝyjq � rIGi

j ,G
i
cj
s1ωGi

j{N

� rω̃srIGi
j ,G

i
cj
sωGi

j{N (104)

9HWj ,Wcj
�rIWj ,Wcj

sp 9ω � o
:γj ŝzj �

i
:γj ŝyj � 9Ωj ŝxj

� o
9γj

i
9γj ŝzj � ŝyj �

o
9γjΩj ŝzj � ŝxj

� i
9γjΩj ŝyj � ŝxjq � rIWj ,Wcj

s1ωWj{N

� rω̃srIWj ,Wcj
sωWj{N (105)

The acceleration vector :rGi
cj{Vcj

is expressed as

:rGi
cj{Vcj

� r2Gi
cj{Vcj

� 9ω � rGi
cj{Vcj

� 2ω � r1Gi
cj{Vcj

� ω � pω � rGi
cj{Vcj

q (106)

while the acceleration :rWcj{Vcj
is defined as

:rWcj{Vcj
� r2Wcj{Vcj

� 9ω� rWcj{Vcj
� 2ω� r1Wcj{Vcj

� ω � pω � rWcj{Vcj
q (107)

The DGVSCMG center of mass location with respect to
point Gi

j and its body frame derivatives are given by

rVcj{Gi
cj
�

1

mVj

pmGi
j
rGi

cj{G
o
j
�mWj

rWcj{Gi
j
q (108)

r1Vcj{Gi
cj
�iρGi

j
r1Gi

cj{G
i
j
� iρWjr

1
Wcj{Gi

j
(109)

r2Vcj{Gi
cj
�iρGi

j
r2Gi

cj{G
i
j
� iρWj

r2Wcj{Gi
j

(110)

where

iρGi
j
�

mGi
j

mGi
j
�mWj

(111)

iρWj �
mWj

mGi
j
�mWj

(112)

Evaluating :rVcj{N yields

:rVcj{N � :rVcj{B � :rB{N (113)

Finally the second inertial derivative of rVcj{B is found
noting that r1

Vcj{Gi
j
� r1Vcj{B

and r2
Vcj{Gi

j
� r2Vcj{B

.

9rVcj{B �r1Vcj{B
� ω � rVcj{B (114)

:rVcj{B �r2Vcj{B
� 9ω � rVcj{B � 2ω � r1Vcj{B

� ω � pω � rVcj{Bq (115)
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3.3.3 Wheel Torque Equation

The wheel torque equation is used to relate body rate
derivative 9ωB{N and the wheel speed derivative 9Ωj . The
wheel moter torque uxj is the ŝxj component of wheel
torque about point Wj . The torque acting on a RW at the
joint between the RW motor and the RW rotor is given by

LWj �

Wj
�
� uxj

wτyj
wτzj

�
� (116)

The transverse toorque acting on the gimbal wτyj and
wτzj are structural torques and do not contribute to the
equation. Torque about point Wj is related to torque about
the center of mass Wcj using the following equation.

LWj � LWcj � rWcj{Wj
�mWj

:rWcj{N (117)

Euler’s equation applies as follows.

LWcj
� 9HWj ,Wcj

(118)

The motor torque is the iŝxj component of the right-hand
side of Eq. (117). This is found in a frame independent
format as

uxj � ŝTxjLWj
� ŝTxjp

9HWj ,Wcj

�rWcj{Wj
�mWj

:rWcj{N q (119)

The inertial derivatives of the wheel and inner/outer gim-
bal angular momentum about their respective centers of
mass were found in the previous section and are reprinted
here for the reader’s convenience.

9HWj ,Wcj
�rIWj ,Wcj

sp 9ω � o
:γj ŝzj �

i
:γj ŝyj � 9Ωj ŝxj

� o
9γj

i
9γj ŝzj � ŝyj �

o
9γjΩj ŝzj � ŝxj

� i
9γjΩj ŝyj � ŝxjq � rIWj ,Wcj

s1ωWj{N

� rω̃srIWj ,Wcj
sωWj{N (120)

The acceleration vector :rWcj{N is defined as

:rWcj{N � r2Wcj{B
� rr̃Wcj{Bs

T
9ω � 2rr̃1Wcj{B

sTω

� rω̃srω̃srWcj{B � :rB{N (121)

4. Numerical Simulations

The simulation results show the angular velocity of the
spacecraft as in Fig. (3) and the inertial position of the
spacecraft as in Fig. (4). The fully-coupled model pa-
rameters in Table 1 closely parallel those used in Refs.
9 and 11. The scenario used to demonstrate the fully-
coupled imbalanced DGVSCMG EOM involves a rigid
spacecraft hub and N = 1 DGVSCMG. The lumped man-
ufacturer imbalance parameters are related to the param-
eters used within this derivation using the imbalance pa-
rameter adaptation formulation given in Ref. 9. The static
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Fig. 3: Angular velocity of the spacecraft.
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Fig. 4: Inertial position of the spacecraft.

imbalance is given by

di �
Usj

mrwj
, (122)

where Usj is the wheel static imbalance parameter. The
dynamic imbalance parameter is given by the following
constraint:

Udj �
b
J2
13j � J2

12j , (123)

Some combination of J12j and J13j must be selected for
each wheel such that Eq. (123) is satisfied. Since the
dynamic imbalanced parameter is determined by the arbi-
trary vector, the following definitions are chosen

J13j �Udj (124)
J12j �J23j � 0. (125)

From Figs. (3) and (4), the magnitude of the imbalance
vibration effect on the spacecraft velocity or the spacecraft
position can be estimated.
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Table 1: Simulation parameters.

Parameters Value Units
N 1 �
msc 862 kg
mB 810 kg
mw 4 kg
mGi 24 kg
mGo 24 kg

rIhub,Bc
s

B�900 4.15 2.93
4.15 800 2.75
2.93 2.75 600

�
kg �m2

rBc{B
B r�0.02 0.01 10s

T
cm

Us 32 g � cm
Ud 15.4 g �m2

d 8.0 mm

rIW,Wc
s

Gi
�

0.2 0 0.0154
0 0.1 0

0.0154 0 0.1

�
kg �m2

rIGi,Gi
c
s

Gi
�

9 0.81 0.24
0.81 11 0.93
0.24 0.93 5

�
kg �m2

rIGo,Go
c
s

Go
�

9 0.81 0.24
0.81 11 0.93
0.24 0.93 5

�
kg �m2

rGo{B
B r30 0 0s

T
cm

rB{N
N r0 0 0s

T
m

vB{N
N r0 0 0s

T
m{s

σB{N r0 0 0s
T

�

ωB{N
B r4.85 0.57 0s

T
deg{s

Ω 500 rpm
θ 0 deg
i
9γ 0 deg{s

iγ 0 deg
o
9γ 0 deg{s

oγ 0 deg
ux 250 mN �m
uy 100 mN �m
uz 100 mN �m

5. Conclusion/Future Work

Most previous work related to modeling static and dy-
namic imbalances of momentum exchange device (MED)
models the effect as an external force and torque on the
spacecraft. In reality, this effect is an internal force
and torque on the spacecraft and thus requires a differ-
ent formulation. The work presented in this paper de-
velops the general fully-coupled model of double-gimbal
variable-speed control moment gyros (DGVSCMGs) im-
balances. This developed model is generalized descrip-
tion of a fully-coupled dynamical jitter model for a space-
craft with MEDs since the equation of motion (EOM) of
DGVSCMGs includes the EOM of all MEDs such as re-
action wheel (RW), single-gimbal CMG or VSCMG.

As future works, the energy or energy rate of a fully-
coupled model of multiple-DGVSCMGs will be investi-
gated. By using this fully-couple model, a high-precision
attitude control or fault detection method will be consid-

ered.
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