CCAR

Current Developments in Three-Dimensional Electrostatic Detumble of Axi-Symmetric GEO Debris

Hanspeter Schaub

Alfred T. and Betty E. Look Professor of Engineering Trevor Bennett and Joseph Hughes Graduate Research Assistants

4th International Workshop on Space Debris Modeling and Remediation CNES, Paris, France, June 6-8, 2016

Motivation

Spacecraft Charging

Coulomb Formation Flying

Lorentz Augmented Orbits

Concept Discussion

Uncontrolled Spinning Satellite Modulated Electrostatic Tractor

E-Force

Stationkeeping Thrusters Servicing Spacecraft

Outline

- E-Tractor Performance
- MSM E-Force/Torque
 Modeling
- 3D Detumbling of a Cylinder
- Exploring Relative Orbital Motion
- Conclusions

Voltage and Force Model

$$\frac{\mathrm{d}q}{\mathrm{d}t} = I_b(t) + \sum I_{env}(\phi)$$

= $I_e(\phi, A) + I_i(\phi, A) + I_p(V, A) + I_{SEE}(\phi_{eff}) + I_{beam}(\phi, t)$

$$\begin{bmatrix} \phi_T \\ \phi_D \end{bmatrix} = \frac{1}{4\pi\epsilon_0} \begin{bmatrix} 1/R_T & 1/\rho \\ 1/\rho & 1/R_D \end{bmatrix} \begin{bmatrix} q_T \\ q_D \end{bmatrix}$$

$$\boldsymbol{F} = \frac{q_d \, q_t}{4\pi\epsilon_0 \rho^2} \hat{\boldsymbol{\rho}}$$

Pulsed Beaming Simulation

Force Analysis

J. Hughes and H. Schaub, "Monte-Carlo Analysis Of The Pulsed Electrostatic Tractor Strength," Spacecraft Charging Technologies Conference, Space Research and Technology Centre of the European Space Agency (ESA/ESTEC), Holland, April 4–8, 2016.

Duty Cycle Analysis

4th International Workshop on Space Debris Modeling and Remediation, CNES, Paris, France, June 6-8, 2016

 $V_b = rac{V_{b_0}}{\gamma\sqrt{d}}$

⁼orce (mN)

Multi-Sphere Method (MSM)

Multi-Sphere Method (MSM)

4th International Workshop on Space Debris Modeling and Remediation, CNES, Paris, France, June 6-8, 2016

3D Detumble Kinematics

New Attitude Equations of Motion

$$I_{a}\dot{\omega}_{1} = 0 \qquad \eta \equiv -\omega_{2}(\hat{\mathbf{r}} \cdot \hat{\mathbf{b}}_{2}) - \omega_{3}(\hat{\mathbf{r}} \cdot \hat{\mathbf{b}}_{3})$$
$$I_{t}\dot{\eta} - I_{a}\omega_{1}\dot{\Phi}\sin\Phi = 0 \qquad \dot{\Phi}\sin\Phi = -\omega_{2}(\hat{\mathbf{r}} \cdot \hat{\mathbf{b}}_{3}) + \omega_{3}(\hat{\mathbf{r}} \cdot \hat{\mathbf{b}}_{2})$$
$$I_{t}\left(\ddot{\Phi}\sin\Phi - \eta^{2}\frac{\cos\Phi}{\sin^{2}\Phi}\right) + I_{a}\omega_{1}\eta = L \qquad \mathbf{L} = -L\hat{\mathbf{e}}_{L} = -f\left(\phi\right)\sum_{m=1}^{n}\gamma_{m}g_{m}\left(\Phi\right)\hat{\mathbf{e}}_{L}$$

T. Bennett and H. Schaub, "Touchless Electrostatic Detumbling While Tugging Large Axi-Symmetric GEO Debris," AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, VA, January 11–15, 2015.

Detumble Performance

T. Bennett and H. Schaub, "Touchless Electrostatic Detumbling While Tugging Large Axi-Symmetric GEO Debris," AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, VA, January 11–15, 2015.

Relative Orbit Optimization Approach

Desire: Relative orbit that will improve detumble performance from lead-follower the angular momentum.

T. Bennett and H. Schaub, "Capitalizing on Relative Motion in Electrostatic Detumble of Axi-Symmetric GEO Objects," 6th International Conference on Astrodynamics Tools and Techniques (ICATT), ESOC, Darmstadt, Germany, March 14–17, 2016.

LROEs provide improved relative orbit guidance for electrostatic detumble mission applications.

Detumble Performance

4th International Workshop on Space Debris Modeling and Remediation, CNES, Paris, France, June 6-8, 2016

16

Conclusions

- Pulsed charging can yield strong E-Tractor forces for a given power level, and provides windows to apply inertial thrusting.
- The MSM E-force and torque modeling method is providing very fast numerical solutions with percent level loss in accuracy.
- Modulated E-Tractors can detumble an object with predictable convergence properties
- The relative orbital motion can be exploited to improve the detumble performance.

Questions?

http://hanspeterschaub.info

17