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OPTIMAL TARGET SEQUENCING IN THE AGILE
EARTH-OBSERVING SATELLITE SCHEDULING PROBLEM USING

LEARNED DYNAMICS

Mark Stephenson* and Hanspeter Schaub†

The target sequencing problem is an important aspect of agile Earth-observing
satellite scheduling. The objective of the problem is to find a feasible imaging se-
quence that maximizes the summed value of heterogeneously-valued targets. Two
main challenges are encountered: 1) transitions between targets are time depen-
dent and are expressed by complex dynamics, and 2) the size of the solution space
is combinatorial with respect to the number of targets. To find time-dependent
transition times that accurately reflect the system dynamics, a neural network is
trained on simulated slew data. Next, feasible slews between targets are expressed
in a graph. Mixed-integer programs are formulated to traverse the graphs that are
two orders of magnitude faster than a naive solution, making this approach com-
petitive with other methods that account for time-dependent transition times. The
solutions are guaranteed to be optimal up to the quality of the transition time esti-
mator and a time discretization, with one formulation supporting time-dependent
imaging rewards. Finally, the solutions are verified in a full-fidelity satellite simu-
lation, showing that the solutions are valid when deployed to a lifelike system.

INTRODUCTION

The agile Earth-observing satellite (AEOS) scheduling problem aims to maximize the quantity
and value of ground targets imaged by an orbiting satellite while managing resources [1]. As com-
pared to a standard EOS which can only slew side-to-side to capture off-track targets, “Agile” in-
dicates that the satellite has three axes of control, giving the satellite a larger observation area by
allowing targets forward and backwards along-track to be imaged. The transition time between two
targets is thus both target and time dependent, as the satellite’s initial and target attitude depends
on when and where it is imaging. The reward obtained from imaging can also be time dependent,
if factors such as time of day and squint angle strongly impact image quality. Particularly in envi-
ronments with a high density of targets, finding an optimal target sequence is both challenging and
rewarding.

Earth-observing satellites are used to collect many types of data, for example: water and soil com-
position (NASA’s Earth Observer 1 [2]), wildfire and flood monitoring (ESA’s Sentinel-2 [3]), and
on-demand image requests from commercial, scientific, and defense customers (CNES’s Pleiades
[4] and Planet’s Dove constellation [5]). In all of these cases, optimally scheduling observations im-
proves the data throughput of the satellite. In cases where some observations may be more critical,
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Figure 1: An agile satellite imaging a sequence of ground targets.

such as for a resource like Pleiades shared between multiple stakeholders or when rare or important
phenomena are observable, scheduling that optimizes for request priority is important.

PRIOR WORK

Graph-based representations of the AEOS scheduling problem, in which imaging actions are rep-
resented by vertices and feasible slews between targets are represented by edges, are common in the
literature. Gabrel [6] offers an early graph-based treatment of the problem. Augenstein [7] lever-
ages the directed acyclic properties of graphs representing this problem. Augenstein’s formulation
treats each imaging event as a single vertex (as opposed to multiple vertices, each representing a
different imaging time within an opportunity window); Eddy’s [8] exploration of efficient planning
for constellations takes a similar approach to request representation. Peng [9] briefly considers a
graph-based method that uses multiple vertices per observation window; this introduces challenges
that prevent the use of simpler dynamic programming solutions for path maximization such as those
used by Augenstein.

Iterative local search algorithms are good at solving highly combinatorial problems such as the
AEOS scheduling problem. Lemaître [10] offers one of the first local search approaches to the
problem. More recently, Verbeeck’s [11] advances in local search for time-dependent orienteering
problems (a class which includes the AEOS scheduling problem) have led to the development of
performant AEOS solvers by Liu [12] and Peng [9]. These papers consider both time-dependent
transition times and time dependent rewards, planning in environments with hundreds of targets
over a day-long period in tens to hundreds of seconds.

Mixed-integer program (MIP) solutions to the AEOS scheduling problem offer an alternative
method that quantifies solution optimality. Peng [9] formulates the single satellite problem as a
MIP to have an optimal comparison for their local search algorithm that considers time dependent
transitions and rewards, but finds that the formulation is unable to find a solution in a reasonable
amount of time or without running out of memory for anything but small instances. Cho [13], Kim
[14], and Wang [15] use MIP formulations for constellation-wide image and downlink schedul-
ing under various constraints, each using heuristics to initialize the solver for improved speed as
multisatellite problems can quickly become intractably large.

The treatment of transition times in existing literature tends to be simplified compared to the
realities of spacecraft dynamics when transitioning from tracking one target to another. The most
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accurate but most expensive approach is to execute a dynamics model to test each transition, as
proposed by [7]. One approach is to use a low-order linear model that considers only the difference
in roll angle [13, 14] or the total angle change [12, 9]; while these methods are convenient for plan-
ning problems, they do not fully capture the nonlinear nature of attitude transitions. Nag [16] uses
a discretized model of transitions between various attitudes; this captures more of the dimensions
that impact transition dynamics, but is still a lower-order model.

In this paper, novel developments are made in accurately representing and efficiently solving the
AEOS target sequencing problem. First, time-dependent transition times between imaging actions
are modeled using a neural network function approximator, a significant improvement in accurately
expressing dynamics over the low-order models for transition times used in other literature. The
structure of the problem is represented as a graph that accounts for different imaging times for each
request. Finally, more efficient MIP formulations are developed for solving the problem with op-
timality guarantees — up to a time discretization — that remain tractable even for relatively large
instances of the problem. Formulations for time-independent and a time-dependent rewards are
given, allowing for the best performance for a specific problem’s restrictions. Because transition
times used in planning are meant to be representative of a highly nonlinear physical system, solu-
tions to the planning problem are validated in a full-fidelity spacecraft simulator.

PROBLEM FORMULATION

The goal of the AEOS target sequencing problem is to determine a feasible sequence of imaging
actions for an orbiting satellite on a fixed orbit rs(t) that maximizes the sum of imaging rewards
of the requests satisfied. Because of the agile nature of the satellite, each target has opportunity
windows where imaging is possible. The times and durations of these windows are determined by
the satisfaction of multiple constraints, including but not limited to: satellite elevation angle relative
to the target ϕ, target-satellite range, time of day, or other predetermined restrictions depending on
the sensor type (e.g. radar, optical, etc.). In some formulations, the value of the target is constant re-
gardless of imaging time; in others, the target has a time-dependent reward due image quality being
affected by those factors. A target may only be imaged during one of its respective windows, and
transitions between image-taking actions for different targets must be feasible; that is, the satellite
must be able to reach and image a target before the target’s window has closed. These transition
dynamics are highly nonlinear, as the satellite must control the pointing direction of its instrument
in two dimensions to capture a target that has a position that is moving relative to the satellite, thus
exhibiting time-dependent transition times.

Optimization Objective

The objective of the problem can be stated as follows: Find the sequence of imaging actions
S = v1, ...vi that maximizes the sum of imaging rewards∑

vi=(ρi,ti)∈S

ri(ti) (1)

and satisfies a slew feasibility constraint

ti +∆ts(vi, ρi+1) ≤ ti+1 ∀ vi, vi+1 ∈ S (2)

That is, maximize the sum of rewards for imaged targets while ensuring that there is enough time to
transition between each imaging action.

3



Target Request Model

Models for imaging actions can be broadly classified into two categories: continuous imaging,
where the satellite continuously scans a strip of land in the direction the sensor is pointed; and point-
based imaging, where the satellite aims at a target and takes a single, instantaneous picture. Imaging
request models can be likewise classified: area requests, where the operator desires for images of a
region of land to be collected; and point requests, where individual targets are identified. The latter
distinction is less consequential as Eddy [8] describes how area requests can be decomposed into
point targets. Thus for a point-based imaging model, only point requests must be considered. .

In this paper, the problem is considered for point-based requesting and imaging model. Targets
requests ρ ∈ the set of requests R take the form of a tuple ρi = (rn, rn(t)), expressing the target’s
planet-fixed location rn and the target reward as a function of time rn(t). Each target has imaging
windows [τ o, τ c] = w ∈ Wn expressed as time intervals from τ o to τ c during which imaging con-
straints are met. For targets with time-independent rewards, reward is constant rn during windows
and zero otherwise:

rn(t) =

{
rn if t ∈ w ∈Wn

0 else
(3)

For time-dependent rewards,

rn(t) =

{
rn(f(t)) if t ∈ w ∈Wn

0 else
(4)

where rn is a function of time-dependent parameters f(t) such as time of day or elevation angle ϕ.

Imaging actions can be uniquely identified as a combination of a target and a time at which it is
imaged v = (ρn, t), which yields reward rn(t) if successful. However, in many applications it is
undesirable to repeatedly fulfill the same request. Thus, requests are categorized as unfulfilled U or
fulfilled F . All requests start in unfulfilled, R = U . Once an imaging action v has been successfully
completed, ρn is moved from U to F . The reward function is then wrapped with logic to reward
uniquely satisfied requests:

rn(t) =

{
rn(t) if ρn ∈ U

0 if ρn ∈ F
(5)

Imaging and Transition Dynamics

To successfully complete an imaging action v = (rn, t), the satellite must transition from its
current dynamic state at time t0 to one that satisfies imaging requirements for rn at t. For imaging
to be successful, the sensor boresight direction ĉ must point at the target

ĉref(t) =
rn − rs(t)

|rn − rs(t)|
(6)

typically within some threshold δθ, and the sensor must be settled such that the angular rate of the
boresight relative to the target is minimal, typically expressed as a rate threshold δω. The target
boresight frame C rate relative to the planet-fixed frame P is

ωref
C/P(t) =

P d
dtrs(t)× ĉref(t)

|rn − rs(t)|
(7)
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assuming zero about-boresight rotation, ωC/P · ĉ = 0. The two thresholds must be met after a
slew of duration ∆ts ≤ t − t0 to successfully image at the desired imaging time. It is reasonably
assumed that satellite is always capable of tracking the target once it has settled on the target, so
arriving before the imaging time means that the satellite can simply track the target in a settled state
until it is the chosen imaging time.

A pertinent question for find optimal target sequences then follows: How long will it take a satel-
lite in a given state to transition to imaging another target? Mathematically, it is desired to find the
slew transition time ∆ts to settle pointing at rn given the current pointing direction ĉ0 and upcoming
orbital trajectory rs(t ∈ [t0, t0 +∆t]): Symbolically, an expression for ∆ts(ĉ0,ωC/P,0, rs(t), rn)
is desired. This function is challenging — if not impossible — to analytically construct due to the
time-varying reference state and is highly dependent on the control law used. However, this function
does exists if the controller satisfies two assumptions:

1. The controller is deterministic.

2. The controller performs identically regardless of rotation about the boresight axis (e.g. an
inertia-compensated controller that slews in an axis-agnostic manner) or the controller main-
tains a fixed about-boresight rotation relative to the trajectory (e.g. a controller that maintains
zero yaw in the Hill frame).

This parameterization of the slew duration function is purposeful: there is an bijective mapping
between the combination of an imaging action v0 and upcoming target ρn and the slew transition
time function inputs

(v0, ρn)→ (r0, t0, rn)↔ (ĉ0,ωC/P,0, rs(t), rn) (8)

using Equation 6 and 7. Restated, the slew duration function with the chosen parameterization
can be uniquely evaluated from any imaging action to any target while utilizing all information
about the dynamic state. This property will prove useful when constructing graphs of feasible slews
in the next sections. This form for transition times allows for the use of high-fidelity dynamics
models when planning, compared to current literature that use simplified linear models to describe
the highly nonlinear system.

METHODS

Supervised Learning of Transition Dynamics

It is desired to express the slew transition time function accurately and computationally inexpen-
sively. A neural network function approximator is selected for this task with a multi-layer perceptron
(MLP) architecture, leading to a slew duration function with network parameterization θ:

∆t̂s = ∆ts(ĉ0,ωC/P,0, rs(t), rn;θ) (9)

With access to a simulation of the spacecraft’s dynamics, many slews from arbitrary initial states to
random targets can be simulated and timed. This data can then be regressed over to learn the com-
plex, nonlinear dynamics of dynamic-to-dynamic slews. The complete architecture is diagrammed
in Figure 2.

Notice that function being approximated requires the upcoming trajectory as an input. Since it
nontrivial to pass a function or a dataseries to a neural network, knowledge of orbital mechanics is
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Figure 2: Slew transition time estimation network.

used to simplify the input parameterization. Under the assumption that no orbital maneuvers will
be made, the satellite’s current state and future motion under the influence of Earth’s gravity can
be uniquely identified by its current position rs and velocity d

dtrs. The input vector for the MLP is
thus {ĉ,ωC/P , rs,

d
dtrs, rn}.

Knowledge of the system’s operation can be leveraged in the network design. For a control
system with typical angle and rate thresholds for imaging, those errors can be explicitly computed
from the input state using

δθ = ∠(ĉ, ĉref) (10)

δω = |ωC/P − ωref
C/P | (11)

and then be added as inputs to the MLP, as shown in the "Error Calc." block of Figure 2. While
the network would eventually infer these thresholds with enough training, explicitly providing them
improves training by exposing the direct cause of the challenging discontinuity in the training data
(i.e. ts = 0 if thresholds met, ts > 0 otherwise). This performance improvement is confirmed by a
hyperparameter search.

Once trained, the network is almost ready to be used in a planning context. The final limitation
stems from the fact that the network’s predictions have errors equally distributed on either side of
zero (for most loss functions). This can be an issue in the planning context, as a slight duration
underprediction could result in the extra time needed to actually complete the slew exceeding the
available time. To overcome this, a margin tm is added to predictions, increasing the percentage of
slews are completable within their predicted duration.

Planning Over Feasibility Graphs

With a method of evaluating the feasibility of transitioning between two imaging actions, plan-
ning across all possible imaging actions can be considered abstractly. Methods of constructing
graphs representing all possible transitions are considered. These are designed to capture the time-
dependence of transition times and rewards without generating graphs that are prohibitively large
to search over. With tractably-sized graphs, mixed-integer programs can be formulated to find an
optimal path across the graph, thus computing an optimal sequence of imaging actions.

Graph Abstraction The problem is formulated using a directed weighted graph. Directed weighted
graphs are defined by a set of vertices v ∈ V connected by edges ei,j = (vi → vj) ∈ E, where
each edge ei,j has a scalar weight wi,j associated with it. In this problem, each vertex represents an
imaging action which has a target and a time associated with it. Edges represent a feasible transi-
tion between two imaging actions in which the transition time is less than the difference in imaging
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Figure 3: Slew feasibility graph construction using Algorithm 1. a) One iteration. b) Two iterations.
c) Many iterations.

times; for an edge to exist between vi = (ρi, ti) and vj ,

∆ts(vi, rj) ≤ tj − ti (12)

must be satisfied. The weight wi,j of an edge is the reward of the imaging action at the incoming
vertex vj . The resulting graph is acyclic because transition times are always positive, so no cycles
are ever constructed. Evaluating the slew transition time function from an arbitrary vertex of the
graph is only possible because of the carefully chosen parameterization. This allows the graph to be
constructed to an arbitrary depth from an arbitrary vertex without the need to record and propagate
states that evolve across many vertices; if a quantity such as about-boresight roll was added to the
state at each vertex, the dimensionality of the graph would increase and the problem would become
intractably large.

The most basic approach to slew feasibility graph construction with time dependence is to create
vertices at some discretization ∆t of each observation window of every target. Then, for each
pair of vertices (vi, vj), check if Equation 12 is satisfied; if so, add (vi → vj) to E with weight
wi,j = rj(tj). This method produces intractably large graphs, as noted by [9].

In the case of time-independent rewards, a reduction can be made to the size of the graph by
leveraging that there is no advantage in arriving at a target later if it is possible to arrive earlier.
Algorithm 1 describes the reduced process, which is shown in Figure 3. Starting with a vertex v0
representing the current state of the satellite, the feasibility of slews to all targets with upcoming
windows are evaluated. If feasible, a vertex is added at the arrival time, which is ceilinged to the
next nearest time discretization ∆t and clamped to be restricted to the valid imaging window w.
This process is repeated until expansion has been performed from all vertices. The discretization
is important for maintaining a compact graph by forcing arrival times that are approximately the
same to be condensed to a single vertex. Since each vertex connects to up to the total number
of windows, the number of edges is O(|R|3), making this process produce large graphs for long
planning horizons.

In implementation, two details can greatly improve performance. If a function approximator is
being used for slew estimation, ∆ts is relatively expensive to evaluate one-at-a-time. One can lever-
age batchwise performance improvements offered by most neural network frameworks by evaluat-
ing ∆ts for all elements in A × R only when there are no elements in A for which ∆ts has not
been computed. To further reduce evaluations of ∆ts, a maximum slew duration ∆ts,max can be
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Algorithm 1 Dense slew graph construction.

1: V ← {v0}
2: A← {v0}
3: E ← {}
4: W ← {}
5: for vi ∈ A do
6: for ρn ∈ R where ∃ w ∈Wn s.t. τ c > ti and ∆ts(vi, rn) < τ c − ti do
7: tj ← clamp(ceil(ti +∆ts(vi, rn),∆t), w)
8: vj ← (ρn, tj)
9: if vj /∈ V then

10: V ← V ∪ {vj}
11: A← A ∪ {vj}
12: end if
13: E ← E ∪ {(vi → vj)}
14: W ←W ∪ {rj}
15: end for
16: A← A \ {v}
17: end for

Dense Graph Sparse Graph

Removable Edge

Alternate Path

Figure 4: Comparison between the dense graph with one removable edge highlighted and the sparse
graph.

identified from the function approximator’s training data. If the soonest upcoming window opening
τ o > ti + ∆ts,max, the slew is known to be possible with an arrival time of τ o without evaluating
∆ts.

Minimal Graph Construction Many of the edges in the graph produced by Algorithm 1 are un-
necessary as they can be expressed as the composition of other edges. Consider a graph with the
edges vi → vj → vk and vi → vk. In the context of this problem, the latter can be deleted from
the graph: At best, the three-vertex path is more valuable with the inclusion of an extra request and
at worst, the middle request has already been completed and is worth nothing. By removing any
edge that is expressible as the composition of other edges, a majority of edges can be eliminated
thus greatly decreasing the size of the planning space; the only consideration this introduces is that
the optimal path through the graph may encounter one request multiple times, but should only be
rewarded for it once. A diagram showing removable edges is given in Figure 4.
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Algorithm 2 Time-dependent reward graph construction, inserted after line 5 of Algorithm 1.

1: for t ∈ ti : ∆t : τ c do
2: if ri(t) > ri(ti) then
3: vj ← (ρi, t)
4: if vj /∈ V then
5: V ← V ∪ {vj}
6: A← A ∪ {vj}
7: end if
8: E ← E ∪ {(vi → vj)}
9: W ←W ∪ {ri(t)}

10: break
11: end if
12: end for

time

re
w
ar
d

initial
checked
added

imaging window

Figure 5: Additional vertices added for time-dependent rewards.

In practice, there is a faster way to construct a sparse graph than constructing the dense graph and
removing unnecessary edges. It is known that there is some ∆ts,max, the longest duration to slew
from any reasonable dynamic state to settled target pointing. When adding edges and vertices from
some vertex vi, slews need only to be added from the arrival time of the shortest feasible slew tj,min
to tj,min+∆ts,max; any requests with windows beyond the latter time are know to be reachable by vi
via vj,min. This restriction can be added in line 6 of Algorithm 1. The result may contain some edges
that are the composition of other edges if multiple slews in a row are shorter than ∆ts,max. Despite
this, the goal of a sparser graph is achieved since at every vertex slews are only added for requests
within a fixed duration, so the total number of edges is quadratic complexity O(|R|2) instead of
cubic complexity O(|R|3) as is the case for the fully-connected graph.

Time-Dependent Reward Construction In cases with time-dependent rewards, a denser graph
must be constructed that includes additional vertices at points subsequent to existing vertices that
yield a greater reward. Algorithm 2 describes the process: In short, for each active vertex it is
checked if there is a time (discretized by ∆t) in the current window that yields a greater reward
than the current vertex’s time. If so, a new vertex is added and connected to the graph and marked
as active. Figure 5 illustrates how an imaging window with time-dependent rewards would have
additional vertices added to the graph to make higher-valued times accessible.

Mixed-Integer Program-Based Path Maximization

The MIP formulation of graph traversal is based on formulations of the traveling salesman prob-
lem [17]. For each edge between vertices vi and vj , a binary variable xi,j is created, where xi,j = 1
represents including the transition between the two vertices in the final sequence and xi,j = 0 repre-
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Table 1: Comparison of MIP formulation complexities.

Graph |V | Graph |E| Binary Variables Optimal Time-Dep. Rewards
MIP-1 O(|R|) O(|R|3) |E| ∈ O(|R|3) ✓ expensive
MIP-2 O(|R|) O(|R|2) |R|+ |E| ∈ O(|R|2) ✓
MIP-3 O(|R|) O(|R|2) 2|E| ∈ O(|R|2) ✓ ✓

sents exclusion. If the graph does not contain the edge (i, j) /∈ E, xi,j can be set to a constant zero,
reducing the number of variables in the optimization space. Vertices are partitioned into pn ∈ P by
target request, where

pn = {vi | vi = (ρi, ti) ∈ V, ρi = ρn} (13)

These partitions allow for non-repetition constraints to be added, allowing for fulfilledness status
(F vs. U ) to be respected when computing rewards.

Three formulations of the MIP are proposed. Table 1 summarizes and compares the different
methods in terms of complexity and capabilities.

MIP-1: Fully Connected with Partitions The first formulation is a naïve approach that searches
over all possible transitions (i.e. the dense graph). To enforce non-repetition, a valid sequence may
only visit each partition once. Formally,

maximize
∑
i,j

wi,jxi,j (14)

subject to
∑
h

xh,i + bi ≥
∑
j

xi,j ∀ i (15)

∑
j∈pn

∑
i

xi,j ≤ 1 ∀ n (16)

where

bi =

{
1 if i = istart

0 else
(17)

The objective function, Equation 14, aims to maximize the sum of rewards for traveled edges, recall-
ing that the weight wi,j of edge (vi → vj) is equal to the reward for visiting vj . The first constraint,
Equation 15, is the in-out constraint. For each vertex, the number of outgoing connections must
be less than (at the end of the sequence) or equal (at all other points) to the number of incoming
connections. The one exception is at the initial vertex, where the bi term is set to one to seed the
graph. Since the graph is acyclic, the summation on the LHS must be zero, reducing the constraint
to

1 ≥
∑
j

xistart,j (18)

As a consequence, all other vertices are restricted to one incoming and one outgoing edge selected,
producing a feasible sequence. The second constraint, Equation 16, enforces at most single visita-
tion of each partition, meaning each request is fulfilled at most once.

While it would be possible to account time dependence with this formulation by applying the
previously described method to the graph, this would lead to optimization problems of an unac-
ceptable size. Peng [9] uses an even denser method as an optimal benchmark for time-dependent
instances with small target sets, but notes that it becomes too large for the computer’s memory in
larger instances.
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MIP-2: Minimally Connected with Partitions The second formulation makes use of the minimal
form of the graph, where edges are not included if an alternate path exists. While this significantly
reduces the number of variables, it introduces a problem in which the optimal sequence may have
to pass through an already-visited partition to reach further areas of the graph. To handle this, an
additional binary optimization variable yn is added for each partition pn, which represents receiving
reward for visiting the partition at least once. In this formulation, only time-independent rewards
are possible.

maximize
∑
n

rnyn (19)

subject to
∑
h

xh,i + bi ≥
∑
j

xi,j ∀ i (20)

yn ≤
∑
j∈pn

∑
i

xi,j ∀ n (21)

The objective function, Equation 19, maximizes the sum of rewards for each partition visited. The
first constraint, Equation 20, is the same in-out constraint as in the previous formulation. Instead
of limiting the sequence to visiting each partition once, Equation 21 enforces that the rewarding
variable yn is allowed to be 1 only if the partition pn is visited at least once. Solutions produced by
this method are equivalent to those from the naïve method.

As listed in Table 1, MIP-2 is in theory significantly better than MIP-1 because the size of the
graph and thus the number of binary optimization variables varies with the number of requests
squares instead of cubed. Because of this, it is expected that MIP-2 should be more scalable to large
target sets than MIP-1.

MIP-3: Minimally Connected with Time-Dependent Rewards The third formulation allows for
optimizing over the minimal graph, and if the graph is modified as previously described, allows for
optimization with time-dependent rewards. An additional binary optimization variable yi,j is added
for each xi,j . While xi,j represents passing through a vertex, yi,j represents being rewarded for the
imaging action at vj .

maximize
∑
i,j

wi,jyi,j (22)

subject to
∑
h

xh,i + bi ≥
∑
j

xi,j ∀ i (23)

yi,j ≤ xi,j ∀ i, j (24)∑
j∈pn

∑
i

yi,j ≤ 1 ∀ n (25)

The objective function, Equation 22, maximizes the sum of rewards for visited imaging actions.
Time-dependent rewards are supported because rewards are computed on a per-action basis, so the
best imaging time can be selected. Equation 23 is the familiar in-out constraint. Equation 24 restricts
imaging actions to edges that are being visited. Finally, the constraint in Equation 25 only allows
for one imaging action per partition.

While this formulation is more capable than MIP-2, it uses nearly double the binary variables.
As per Table 1, the number of variables vary with |R|2 like MIP-2 as opposed to |R|3 like MIP-1,
so MIP-3 is still expected to be scalable to large target sets.
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RESULTS

First, the configurations of the satellite, environment, and simulation used for results in this paper
are reviewed, noting where greater generality could be applied. Then, the accuracy of the slew
transition time estimator is reviewed for three control laws to show general applicability. Next, the
performance of the three formulations of the MIP solver are compared, showing competitiveness
with other approaches to the problem. Finally, the optimal solutions are verified in the high-fidelity
simulation environment, proving that this method is performant under realistic conditions.

Scenario Simulation

The scenario described in the problem formulation is modeled using Basilisk* [18], a high per-
formance spacecraft simulation framework written in C++ and Python. The LEO environment and
satellite flight software and dynamics are integrated at 2 Hz. Of particular relevance to this work,
attitude dynamics are modeled to full fidelity, with flight-proven control software driving reaction
wheel models that control the spacecraft attitude. The complete simulation environment is available
in the Basilisk RL repository†.

Satellite Configuration In this paper, the satellite is modeled as having an instrument with a
boresight pointed in a body-fixed Bĉ direction. The satellite must be pointing the boresight at the
target within some angle threshold δθ and have a body rate relative to the target less than some δω
before imaging. Three control schemes are considered:

• MRP Steering: An exponentially stable controller that generates and tracks a trajectory in
modified Rodrigues parameter (MRP) space [19] is primarily used for this paper. Since the
trajectory planner prescribes body rates, maneuvers about any axis are identical, thus satisfy-
ing the requirement of being kinematically the same for any rotation about the boresight.

• MRP Feedback: A PD feedback controller in MRP space [20] that is compensated for mo-
ments of inertia (thus satisfying the about-boresight identicality requirement) is implemented
to show the methods in this paper working for multiple controller types.

• MRP Steering (Saturated): The steering controller is again implemented, but with reaction
wheels that torque-saturate at umax = 0.3 Nm, or about 5% of the time during typical ma-
neuvers. With this controller, the assumption that control is identical for any about-boresight
rotation is broken when saturation occurs on one axis. This case allows the performance of
assumption-breaking systems to be considered.

The satellite’s orbit is circular, set with a fixed inclination and altitude and randomized true
anomaly and ascending node. At most one day of planning (15 orbits) is considered, as is typi-
cally considered to be the practical limit for non-adaptive preplanning. This work could be applied
to all orbits about a given body as long as the slew estimator is trained over the entire domain of
orbits. In practice, most satellites will only operate over a subset of orbits, as implemented here.
Important satellite parameters are given in Table 2.

*hanspeterschaub.info/basilisk
†github.com/AVSLab/bsk_rl
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Table 2: Satellite and orbit parameters.

Parameter Value(s)
Horizon O ≤ 1 day (15 orbits)
Inclination 45◦

Altitude 500 km
Controller {steering, feedback, steering (saturated)}

δθ 0.01 MRP norm (2.29◦)
δω 0.01 rad/s (0.57◦/s)
umax 1.0 N · m
m, I 330 kg, [82.1, 98.4, 121.0] kg · m2

Table 3: Target parameters.

Parameter Value(s)
ϕmin 45◦ minimum elevation angle
r [0, 1] request value
|R| [0, 10000] number of requests

Distribution {uniform, cities}

Target Distributions Representative sets of target requests are generated for experiments. Two
distributions of target locations across various total target counts are considered, as show in Figure 6:
a uniform distribution around the globe, and a clustered distribution in which city locations‡ In the
latter case, the satellite can travel for half an orbit without encountering any targets, then have
hundreds available in a few minutes over very populous areas.

For this study, imaging requests are created with relatively simple constraints for visibility. Only
a minimum elevation angle constraint ϕmin between the target and satellite must be satisfied, mean-
ing that imaging windows are determined by a view cone about the satellite nadir. Since request
limitations only impact the preprocessing step of window generation, more exotic apriori constraints
could be applied without significantly impacting the performance of this work.

Target request rewards are randomized over a uniform distribution r ∈ [0, 1]. When time-
dependent rewards are considered, the value is penalized as a function of elevation angle:

rn(ϕ) = rn
ϕ

π/2
(26)

A complete listing of target request parameters is given in Table 3.

Slew Transition Time Estimation

Network Creation For each controller, N training points are generated. To produce them, an
instance of the simulation environment is instantiated. Random upcoming requests are tasked. The
satellite’s state {ĉ,ωC/P , rs,

d
dtrs} is recorded at 10 second intervals; once a request is satisfied

(considering only pointing and rate requirements and neglecting opportunity window validity), the
time-to-imaging from each previous state is computed, and each tuple of state and remaining slew
time is added as a training data point.

‡City location data from simplemaps.com serve as a proxy for image request frequency, inspired by Eddy [8]., CC
BY 4.0.
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Figure 6: (Left) Examples of uniformly distributed imaging requests with the satellite field of
view highlighted for one orbit. (Right) Imaging requests distributed across the world’s 43,000 most
populous cities.

Table 4: Slew estimation network hyperparameters.

Parameter Search Range Value
width [20, 120] 120
depth [1, 15] 7

batch size [1× 104, 1× 105] 1× 105

learning rate [0.0001, 0.01] 0.01
loss {MSE,MSLE,% error} MSE

activation {relu, gelu, tanh} relu
use errors {true, false} true

A hyperparameter search is performed over the values given in Table 4 to determine a suitable
network architecture for the slew transition time estimator. The hyperparameter space is searched
using a Gaussian process, generating an estimation of each parameter’s impact on the model quality.
To increase the speed of the search, training in the hyperparameters search was performed on a
randomly selected 10% segment of the training data for the unsaturated steering controller. The
search confirmed that the precomputation of angle and rate errors within the network is necessary
for good performance, but the network is otherwise robust to a range of hyperparameters as long as
it is sufficiently large. When training networks, the learning rate is decreased by 0.9× if validation
loss improves by less than ∆L over 50 epochs. Training is terminated if an improvement of ∆L
is not seen over 500 epochs, and the best network weights are returned. Since each loss function
scales differently, ∆L is 0.1 for MSE, 0.005 for MSLE, and 1.0 for percent error.

The training data for each controller is regressed over using the network architecture described in
Table 4, resulting in the performance given in Table 5. The two controllers that adhere to the nec-
essary assumptions on about-boresight rotation agnosticism – steering and feedback – successfully
learn to predict slew times with 99th percentile errors on the order of seconds. The saturated steering
controller largely performs well because the assumptions are only occasionally violated; however,
the model is unable to properly estimate the minority of slews where torque saturation makes the
maneuver take significantly longer than without saturation. Presumably, giving the estimator full
attitude instead of just pointing direction would alleviate this issue as it could learn which axes lead
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Table 5: Slew estimation network performance for each controller. Percentile errors are computed
for the absolute value of the difference between the predicted and actual slew duration over valida-
tion data (20% of N ).

Training Data Percentile Error [s]
Contoller ∆ts,max N 50% 90% 99% 99.9% Max

Steering 77.5 1.18× 105 0.93 2.72 4.87 7.44 14.76
Feedback 91.0 1.15× 105 0.89 4.57 10.60 20.46 26.46

Steering (saturated) 142.0 1.17× 105 0.84 3.03 14.42 46.76 107.84

to highly-saturated maneuvers, but the addition of complete attitude information is incompatable
with the graph construction algorithm.

Network Deployment The performance of the slew estimator is validated in the simulation envi-
ronment. To do so, a greedy policy is defined that selects the next action to be the closest upcoming
request which the slew estimator predicts to be reachable before the observation window closes:

a = argmin
ρ∈U

τ c s.t. t+∆ts(x, ρ) < τ c (27)

The satellite attempts to fulfill the selected request until it is successful or the observation window
closes. This greedy policy is selected as a stress test for performance because it encourages the
satellite to aggressively attempt short slews that are beneficial in a planning context but can be risky
without a good estimator.

This experiment also serves to find the margin tm (i.e. the amount of time to add on top of
the estimator’s predictions) that is best for performance. Intuitively, too small of a margin will
lead to some unsuccessful imaging attempts where in which the actual transition time is slightly
underestimated. On the other hand, too large of a margin will be overconservative and cause the
satellite to not attempt some shorter feasible slews, reducing performance. For this experiment,
margins are tested at the percentile error values in Table 5.

The policy is deployed in a uniformly distributed 10000 request environment for one day of
simulation. Figure 7 displays the results as a function of percentile error used for the margin and
the actual margin duration. The upper plots show the percent of imaging attempts that succeed; the
lower plots show the relative count of attempted and successful actions, normalized by the count
of zero-margin attempts for each controlled. The data follows the predicted trends: lower margins
lead to many attempts with reduced success rates, while higher margins result in perfect success
rates but fewer targets imaged. For the steering controller, the 90th percentile error (2.72 seconds)
maximizes the number of successes while minimizing failures. In general, some margin is necessary
to optimize performance, but it varies from case to case.

Optimal Sequencing

The graph construction algorithm is implemented in Julia [21], and the MIP formulations are
solved using Gurobi [22]. First, the sensitivity of the solutions to the time discretization is investi-
gated. Then, the relative performance of the MIP formulations are compared, showing that MIP-2
is the superior formulation for fixed-value targets. MIP-2 is then benchmarked over a range of pa-
rameters, with solutions validated in the simulation environment to demonstrate the performance of
the entire toolchain. Finally, time-dependent reward cases are solved with MIP-3.
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Figure 7: Greedy policy performance using the slew duration estimator for each controller. For
purposes of comparison, counts are normalized against each controller’s number of attempts with
zero margin.

Table 6: Total execution time and reward as a function of target density and time discretization
∆t, with marginal reward loss for increased ∆t reported as a percentage. Three orbits, uniform
distribution.

Time [s] Reward Σρ
|R| ∆t = 1 5 10 30 1 ∆% 5 ∆% 10 ∆% 30
100 1.2 1.1 1.1 1.1 10.0 0 10.0 0 10.0 0 10.0
500 2.8 2.6 2.5 2.5 45.9 -0.7 45.6 0 45.6 -1.5 44.9
1000 6.4 5.0 4.7 4.3 86.3 0 86.3 -0.3 86.0 -0.4 85.6
3000 972.5 39.7 19.8 9.8 170.2 -1.6 167.4 -2.3 163.5 -7.5 151.3

10000 > 104 21422.0 502.0 81.2 - - 262.8 -3.3 254.0 -7.2 235.6
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Table 7: Graph construction and MIP solver times for each MIP formulation, with associated data
structure sizes. Three orbits, uniform distribution.

Graph Time [s] Vertices |V | Edges |E|
|R| MIP-1 MIP-2 MIP-3 MIP-1 MIP-2 MIP-3 MIP-1 MIP-2 MIP-3
100 0.9 1.2 6.3 42 17 17 279 16 16
500 1.5 2.6 3.6 315 293 293 16279 567 657

1000 1.8 4.2 4.1 690 662 662 69395 1379 1379
3000 24.1 14.4 16.3 6218 6196 6196 1.8× 106 39697 39697

MIP Time [s] Binary Variables
100 0.019 0.003 0.014 279 57 32
500 0.63 0.019 0.033 16279 675 1134

1000 4.2 0.059 0.088 69395 1563 2758
3000 322.5 5.7 9.5 1.8× 106 40232 79394

Discretization Sensitivity The impact of the granularity of the time discretization ∆t on execu-
tion time and solution quality is explored in Table 6. Over a range of uniform request counts |R|,
the execution time and total reward for each parameter set are reported, as well as ∆%, the percent
loss of reward due to changing the timestep to a courser value. Smaller discretizations are found to
produce marginally better solutions at the expense of exponentially longer solution times.

Ultimately, ∆t = 10 seconds is selected for all further experiments; this yields solution times on
the order of seconds that are less than a percent worse than finer discretizations for |R| ≤ 1000, and
solution times on the order of hundreds of seconds for dense uniform distributions for |R| = 10000
with only a few percent loss of reward, noting that the finer discretizations become prohibitively
expensive at these densities.

Formulation Comparison The performance of the three MIP formulations are compared in Ta-
ble 7, with each cases planning for three orbits over |R| uniformly distributed targets. The time to
construct the graph for each method, as well as the number of edges and vertices in the resulting
graph are listed. The time to solve the MIP is given alongside the number of variables in the MIP.
It is seen that MIP-2 is one to two orders of magnitude faster than the naïve approach of MIP 1 in
all cases, which is directly correlated with smaller graphs and sets of decision variables. MIP-2 is
also faster than MIP-3, indicating that MIP-3 should only be used when it is necessary in cases with
time-dependent rewards.

Time-Independent Reward Benchmarks With MIP-2, established as the most performant method
for time-independent rewards, it is benchmarked across a range of target densities, distributions, and
planning horizons to demonstrate its performance and limitations. The time discretization is set to
∆t = 10 seconds, and the target optimality gap for the solver is set to 1% with an alternative
1000 second timeout. Each solution is then validated in the simulation environment, reporting the
percentage of requests in the planned solution that the system was able to successfully complete in
the full-fidelity simulation.

Figure 8 gives results for uniformly distributed targets, averaged over multiple trials. The size of
the problem is determined by the number of requests |R| and planning horizon in orbits O; a subset
of these requests |Rtrack| are accessible from the orbital track and yielding some number of imaging
opportunity windows |W |. These problem size parameters are given in the upper left subplot. Since
the results produced by this method are optimal up to the time discretization, the solutions statistics
follow intuitive trends. In the lower left subplot, the fulfillment rate F% = |F |/|Rtrack| is given,
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Figure 8: Planning results using MIP-2 over uniformly distributed targets.
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Figure 10: Planning results using MIP-2 over the city-based target distribution.

which expresses the percent of possible requests fulfilled. Fulfillment rates are highest for sparse
targets over a long planning horizon, as there are many opportunity windows to collect relatively
few targets. The upper right subplot gives the orbit-normalized number of requests fulfilled |F |/O
and the orbit-normalized reward Σr/O. These values intuitively increase with denser target sets;
however, longer planning horizons lead to lower fulfillment numbers per orbit as the options for
targets become exhausted. The same effect is observed in average reward per fulfilled request
Σr/|F |: at low densities or long planning horizons, the planner is less able to be selective about
choosing only high-value targets, so the average target reward is closer to the mean value of 0.5.

In the upper row of Figure 9, the total execution time for each plan is decomposed into the time
taken to construct the graph and the time used by the MIP solver. For uniform distributions, the
solver can compute day-long plans for ≤ 3000 targets and up to a 3 orbit long plans for denser
target sets within the 1000 second timeout. Because the solver terminates if the 1% optimality gap
is not reached before the timeout, the gap at solver timeout is also given. For the largest instances,
the solution is up to 20% suboptimal at timeout (though the actual suboptimality could be lower).
Alternative to accepting a wider optimality gap, long-duration planning for high target densities
could instead be decomposed into a suboptimal sequential planning problem where every few orbits
are solved as an independent problem without attempting to optimize across segments.

A similar experiment is conducted for requests with a city-based distribution, with results given
in Figure 10. Due to the highly non-uniform target distribution, the same initial orbit conditions
are selected for every simulation so that it is guaranteed to cover high density areas. The trajec-
tory passes over Columbia, Europe, India, and New South Wales over the course of the first orbit.
Request locations are still randomized for each trial. The city-based distribution makes for a very
challenging planning environment. Requests occur in only 10-20% of satellite view area, resulting
in an effective 5−10×multiplier of target density for the same |R| between uniform and city-based
distributions in areas with targets. Thus in the minority of the time when targets are available, there
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tend to be many choices. This means that the the average reward per target Σr/|F | is higher for
the city-based distribution than for the uniform distribution when considering the same number of
requests. While satisfying higher-quality requests is easier due to the greater selection when targets
are present, this also leads to a lower fulfillment rate F%. Thus, the fulfillment rate acts as a proxy
for the amount of decisions the solver must make between conflicting targets. This proxy behavior
is evident when comparing the fulfillment rates of the uniform and city distributions: the city rates
decay 5− 10× faster with respect to |R|, similar to the effective target density factor.

The lower row of Figure 9 shows that the execution times for the city distribution depend on |R|
and the planning horizon more strongly than for the uniform case, with the higher effective density
leading to longer planning times. The practical limit for request count and planning horizon are
reduced relative to uniform requests by a factor similar to the difference in effective target density
and fulfillment rate: It is reasonable to optimally plan for |R| = 1000 for a one-day horizon for
cities, while for a uniform distribution |R| = 5000 takes a comparable time. The large region of
problem configurations with a MIP optimality gap > 1% (i.e. where the solver timed out) explains
the decrease in average request reward Σr/|F | for higher request counts in the lower right subplot
Figure 10; if the solver was allowed more time to approach optimality, the expected increasing trend
of average target value with respect to request count would be continued. Since graph construction
remains relatively cheap even for the city-based distribution, other methods of solving the graph
could be considered for larger instances.

To verify solutions, plans produced by the MIP solver are tasked in the full-fidelity spacecraft
simulator. For uniformly distributed targets, 99.9% of planned requests are completed successfully;
this is in line with expectations from the greedy policy success rate evaluations. For the city-based
distribution, a similarly high success rate of 98.7% is observed; this rate is slightly lower because
more challenging slews are attempted in dense areas. Thus, it is shown the abstract planning frame-
work is applicable to a lifelike scenario.

Time-Dependent Reward Benchmarks Planning is demonstrated using MIP-3 for requests with
elevation angle-based time dependent rewards as defined by Equation 26. Results are given in Fig-
ure 11 for a uniform target distribution. The number of requests fulfilled is comparable to that for
uniformly distributed targets with time-independent rewards. However, the reward achieved is sig-
nificantly lower, which is expected as the maximum request reward is only possible when imaging a
target that is directly nadir. For longer planning horizons with few requests this impact is minimized,
as each target is likely to have multiple opportunity windows so the one with the most advantageous
imaging angle may be selected. However, as the number of requests increases the typical trend of
shorter horizons capturing — on average — more valuable targets returns as the potential for greed-
ier behavior on a short horizon again dominates. Planning with time-dependent rewards is slower,
by virtue of both larger graphs and more decision variables in the MIP formulation.

CONCLUSION

This paper presents two novel developments for the AEOS scheduling problem: 1) a framework
for representing the problem with more accurate transition dynamics, which uses a neural network
function approximator to accurately represent transition times; and 2) more compact and efficient
MIP formulations to make the problem tractable even for relatively large instances. These devel-
opments address the challenges of complex transition dynamics and combinatorially large solution
spaces present in the problem.
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Figure 11: Planning results for MIP-3 over uniform targets with time-dependent rewards. Contour
scaling same as previous plots.

These methods are implemented, the sensitivity to parameters is explored, and benchmarks are
performed across a range of problem sizes. Primarily, the method is tested for up to day-long
planning horizons, up to 10000 imaging requests, and for uniform and highly clustered distributions
of requests. The size at which the problem becomes intractable for the methods presented is found to
dependent on target distribution and other factors, and the limiting sizes are clearly given. Finally,
the optimal sequences are validated by successfully executing them in a high-fidelity spacecraft
simulation, showing that methods are applicable for real-world use. Because of the optimality
guarantee (up to a time discretization, transition estimator quality, and optimality tolerance) of the
MIP solver, the methods presented can serve as a baseline for comparison for other algorithms, such
as iterative local search or various reinforcement learning (RL) approaches. In particular, this work
can be used to benchmark RL-based schedulers for the AEOS problem similar to those demonstrated
by Herrmann in [23] and [24].

Beyond being used as an optimality benchmark for other methods, areas for future work include
finding heuristic solutions to “warm start” the MIP solver and developing methods to adaptively set
the time discretization points to minimize optimality loss.
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