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Recent research has demonstrated that deep reinforcement learning is effective for onboard
tasking of Earth-observing satellites. In Earth-observing satellite scheduling problems, an
important consideration is balancing mission operations with safety-critical tasks, such as
reaction wheel desaturation and maintaining battery charge. While critical to mission success,
safety actions are relatively uncommon, leading to relatively sparse training data in important
regimes. This work introduces various enhancements to the training environment that induce
dangerous edge cases more frequently so that safety-critical regimes can be learned. The policies
resulting from enhanced training are deployed in the nominal environment for long durations,
showing safer and improved performance than policies trained in the standard environment.
The robustness of the enhanced policies to uncertain environments is also shown to be superior
to that of the standard policies.

I. Introduction
Effective scheduling of a satellite’s objectives and resource management tasks is critical for a mission’s success.

While activity planning has traditionally been completed as an offline, ground-based process guided by operators,
advancements in autonomy have made onboard autonomous tasking an increasingly appealing option. Autonomous
policies for tasking are flexible to changing environments, unlike brittle preplanned task sequences, and require less
input from operators, which is increasingly necessary as the sizes of satellite constellations increase. A commonly
considered class of spacecraft are Earth-observing satellites (EOSs), which have an Earth-data collection mission
objective and — like any satellite — must also maintain vehicle safety [1]. For such satellites, planning is often posed
as a mode-based problem, where tasking takes the form of deciding what mission objective to work towards or what
resource management action (e.g. charging, reaction wheel desaturation, etc.) to take for the next period of time, as
opposed to lower-level direct control of actuators.

Variations of the EOS scheduling problem and other spacecraft tasking problems have been formulated as Markov
decision processes (MDPs), with early examples in [2–4] allowing the use of reinforcement learning (RL) to find
autonomous tasking policies. A variety of algorithms have been explored, ranging from problem-specific architectures
[5] to off-the-shelf algorithms including 𝑄-learning [6, 7] and proximal policy optimization (PPO) [8, 9]. In some
papers, optimal scheduling of complex mission objectives is considered as an alternative to computationally expensive,
offline methods like linear programming [10, 11] or iterative local search [12, 13]. These include Wei et al., which
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uses RL with transfer learning to optimize for timeliness and success rate of observation tasks [14], and Herrmann et
al.’s work which considers online RL-based planning in various spacecraft domains [9, 15]. Ensuring safe resource
management while optimizing completion of a task is another important aspect of spacecraft operations considered
by various RL-based approaches to scheduling. In some solutions, resource management is learned by the policy by
directly penalizing failures so that the policy avoids them [4, 8, 9]. In others, a shield (i.e. an expert-designed policy of
responses to safety-critical states [16]) is deployed during or after learning to guarantee the safety of the satellite during
operations [8, 17].

In this work, methods of enhancing the training environment for an EOS are considered to increase the robustness
of the satellite when deployed for long-term operations. Under nominal operating conditions, resource management
tasks occur relatively infrequently for most satellites (especially for cube- and small- satellites that cannot multitask, as
considered in this paper); because of this sparsity of safety-marginal data, training over relatively short horizons and
reasonable domains of initial conditions results in policies derived from little exposure to unsafe states. This paper
proposes the use of artificially wide training domains and artificially difficult ("augmented") scenarios to increase
the incidence of safety interactions when training, so that long-term deployment is more successful. The impacts of
lengthening training episodes are also considered.

By demonstrating these techniques, results from prior papers are generalized by validating the assumption that the
performance seen in enhanced EOS environments translates to realistic, long-term mission scenarios. Prior work features
enhancements to create a more challenging learning environment in various single-agent [2, 9, 18] and multiagent
[19] EOS scenarios. In these papers by Harris et al. and Herrmann et al., augmented satellite parameters and external
torque were used in both the training and evaluation environment without considering performance on a more realistic
set of simulation parameters; in comparison, this work explores how enhanced policies generalize to more realistic
environments, and if they provide the hypothesized performance benefits.

In section II, the nadir scanning EOS simulation environment is described and formalized as a MDP. Section
III summarizes the PPO training algorithm and explains the rationale behind three enhancements to the training
environments. Finally, section IV studies the behavior of the RL algorithms and uses of long-duration mission
simulations (both with a nominal satellite and with degradation) to compare the performance of policies trained in
enhanced environments to those trained in the standard environment. The limitations of enhancement are also explored.

II. Problem Statement
A nadir-pointing EOS scheduling problem is posed as an environment to demonstrate enhanced training methods.

In the environment, the satellite collects data by scanning nadir with an imaging sensor. The satellite must manage the
momentum of the ADCS subsystem and remain power positive. First, the problem objectives and underlying simulation
models are described in detail. Then, the environment is formalized as a partially-observable Markov decision process
(POMDP) for learning with RL.

A. Nadir Scanning Environment
In the nadir-scanning EOS scheduling problem, a satellite in a low-Earth orbit operates in the four modes depicted in

Figure 1: nadir-scanning data collection, charging, reaction wheel desaturation, and a data downlink. The mission
objective is to maximize the amount of data collected. To collect data, the scanning mode must be active, the instrument
within some angle 𝜃 ≤ 𝜃scan of nadir, and space must be available in the data buffer. While these conditions are met, the
instrument continously images, filling the buffer at a constant rate. This objective must be balanced against resource
management modes, which are necessary to prevent failure but take time away from data collection.

The satellite is required to stay powered over the course of operations, maintaining a positive battery charge 𝑧 out of
a capacity 𝑧cap. The battery is always subject to a baseline power draw ¤𝑧base and reaction wheel power draw ¤𝑧𝑤 (𝛀) as a
function of reaction wheel speeds when requesting torques. When the scanning mode is active, there is an additional
instrument power draw ¤𝑧inst; when downlinking, a transmitter power draw ¤𝑧down; and when desaturating reaction wheels,
a thruster power draw ¤𝑧thr. To generate power, the satellite has solar panels with a power generation model ¤𝑧sun (𝜙, 𝑒)
that accounts for solar incidence angle 𝜃 and eclipse 𝑒; the charging mode points the body-fixed solar arrays at the sun.

The satellite must not allow the attitude control system’s reaction wheels to speed saturate, maintaining ∥𝛀∥∞ < Ωmax.
The reaction wheels are modeled on a pyramid of Honeywell HR 16 devices. The wheels gain speed via attitude
maneuvers and by counteracting a external torques 𝝉ext. To desaturate the wheel speeds, the satellite is equipped with
RCS thrusters to dump momentum. The wheel model is coupled to power management because higher wheel speeds
lead to a greater ¤𝑧𝑤 , so wheel desaturation helps reduce long-term wheel power draw, at the cost of pausing science
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Fig. 1 Action modes in the nadir scanning EOS problem.

operations and drawing power to operate the thrusters.
Finally, the satellite has a data buffer that must have available space to collect data while scanning, satisfying

𝑏 < 𝑏cap. This is not a strict constraint: Attempting to collect data with a full buffer does not lead to mission failure, but
it does inhibit the mission objective. If the buffer is not full when scanning is tasked and the other requirements for
imaging are satisfied, the buffer fills at a constant rate ¤𝑏fill > 0. The satellite can empty the buffer by downlinking data
at a rate ¤𝑏down by using the downlink mode, as long as it is within view of a ground station with elevation 𝜓 ≥ 𝜓down.

The environment and satellite are modeled using Basilisk [20]∗, a high-performance, high-fidelity spacecraft
simulation framework. Using Basilisk’s modular architecture, the described scenario is constructed and features realistic
models of spacecraft dynamics, power systems, flight software, and the space environment. See [9] for a diagram of
Basilisk simulation modules used in a similar simulation.

B. Markov Decision Process Formulation
A POMDP is formulated to represent the scheduling problem for the mission described in the previous section.

In the POMDP representation of the scenario, each action enables a corresponding flight mode, state transitions are
found by propagating the simulation for some duration, and reward is given for collecting data. The task-based POMDP
formulation of the EOS scheduling environment is inspired by previous work from Harris et al., Eddy and Kochenderfer,
and Herrmann and Schaub [2, 4, 9]. The POMDP is implemented using the open-source bsk-rl† package, which
constructs a Basilisk simulation within a standard Gymnasium-API environment [21]. bsk-rl is designed to allow for
easy configuration of the scenario and repeatable randomization of simulation parameters.

Formally, a POMDP is defined by the tuple (S,A, 𝑇, 𝑅,O, 𝑍). For this environment, some elements are implicitly
and trivially defined by the deterministic generative model 𝐺 (𝑠, 𝑎) = 𝑠′ provided by propagating the simulator for a
duration Δ𝑡 of one decision interval, while others are designer-selected:

• State Space S: The entire state used within the simulator. This include both problem-relevant states, such as
battery charge and attitude, and hidden states that are require to maintain the Markov property of the full simulation
but are near-negligible to the scheduling problem, such as internal integrator states in low-level controllers or
epoch to the extent it affects gravity in the Sun-Earth Hill frame.

• Observation Space O and Observation Probability Function 𝑍: The observation space O is a selected subset
of the dimensions of the state space presumed to be relevant to decision-making: ifH are the hidden dimensions
necessary for the Markov property but unnecessary for decision making, S = O × H and the observation
probability 𝑍 (𝑜 |𝑠) = 1 for 𝑜 that is a subset of dimensions of 𝑠 = [𝑜, ℎ]. This indicates that the observation
is directly taken from the state without noise, though other work has shown that noise can be added to the

∗http://hanspeterschaub.info/basilisk/
†https://github.com/AVSLab/bsk_rl/
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Quantity Normalization Description
𝛀 Ωmax Reaction wheel speed fraction
𝑧 𝑧max Charge fraction
𝜃 𝜋 Nadir-pointing angle error [rad]
𝜙 𝜋 Sun-pointing angle error [rad]
𝑏 𝑏max Data buffer fraction

𝜏𝐺𝑆
𝑜 , 𝜏𝐺𝑆

𝑐 𝑇 Next ground station opportunity, orbital period-normalized
𝜏𝐸𝑐𝑙
𝑜 , 𝜏𝐸𝑐𝑙

𝑐 𝑇 Next eclipse transitions, orbital period-normalized
Table 1 Elements in the observation 𝑜, defined by a quantity divided by some normalization constant.

observation without impacting performance as long as the noise was modeled in training and deployment [22].
Deciding which elements of the state are observed relies on the designer’s knowledge of which factors could be
relevant to the scheduling problem; for this environment, the observation in Table 1 is used. The observations
are nondimensionalized and normalized where possible, both to allow for generalization of policies within a
reasonable domain of satellite parameters and to improve numerical conditioning of the problem. Observation
elements that favor generality are preferred: for example, the times to next eclipse and downlink opportunity are
given rather than planet or inertially-fixed position [17].

• Action SpaceA: The action space consists of four discrete actions, each corresponding to switching to one of the
flight modes in Figure 1: 𝑎charge points the solar panels at the sun; 𝑎down turns on the transmitter and, if available,
downlinks data to a ground stations; 𝑎desat fires thrusters while despinning reaction wheels; and 𝑎scan turns on the
instrument and, if within 𝜃scan of nadir, logs data to the buffer.

• Transition Probability Function 𝑇 (𝑠′ |𝑠, 𝑎): Following from the deterministic generative simulator, the transition
is deterministically 𝑇 (𝐺 (𝑠, 𝑎) |𝑠, 𝑎) = 1. Two sets of terminal states are defined: timeout states which are reached
when an episode successfully completes at 𝑡 ≥ 𝑡max, and failure states Sfail in which a resource constraint (power
or wheel speeds) is violated:

Sfail = {𝑠 | 𝑧 = 0 ∧ ∥𝛀∥∞ ≥ Ωmax} (1)

• Reward Function 𝑅(𝑠, 𝑠′): Reward is gathered at a constant rate for adding data to the buffer, normalized such
that the theoretical maximum reward is 1 for imaging the entire episode and minimum is -1 for immediately failing.

𝑅(𝑠, 𝑠′) =


𝑏′−𝑏
¤𝑏fill𝑡max

if 𝑏′ > 𝑏

−1 if 𝑠′ ∈ Sfail

0 else
(2)

While downlinking data is the ultimate goal of the mission, a downlink-based reward function would be sparse
and thus harder to learn than a reward-rich environment. In this formulation, downlink is incentivized implicitly
because the the agent needs to free space to collect more data.

III. Methods
Formulating the problem as an POMDP allows an online scheduling policy to be found using RL. PPO is selected

for training policies for this environment; a summary of PPO is given. Three methods for enhancing the simulation
environment to increase experience gained in unsafe regimes are proposed: parameter augmentation, wide initialization,
and longer horizon episodes.

A. Reinforcement Learning
RL refers to a class of optimization algorithms that find a policy — a mapping from states to actions that optimizes

reward — for an MDP [23]. Formally, the objective is to find a policy 𝑎 = 𝜋(𝑠) that maximizes

𝑈 𝜋 (𝑠) = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾
∑︁
𝑠′

𝑇 (𝑠′ |𝑠, 𝑎)𝑈 𝜋 (𝑠′), (3)
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the discounted (0 < 𝛾 < 1) sum of future rewards, for all 𝑠 ∈ S. The algorithm does not have knowledge about the
underlying model or reward structure of the MDP; instead it must interact with the MDP to infer a relationship between
states, actions, and future rewards. Generally, this occurs through an iterative process of environment interaction and
policy improvement: the learning agent collects experience in the environment and uses it to optimize the policy.

B. Proximal Policy Optimization
Deep reinforcement learning (DRL) is a class of RL that uses neural networks to represent the policy and other

learned function; among their advantages, DRL algorithms tend to generalize well and work on continuous state
and action spaces. PPO is a state-of-the-art policy gradient-based algorithm that restricts the size of policy updates
to maintain stability while training [24]. In this work, the RlLib implementation of asynchronous proximal policy
optimization (APPO) is used, which utilizes the PPO-clip variation of the algorithm [25]. Like any policy gradient
method, PPO optimizes some policy 𝜋𝜃 (𝑠) by improving the policy’s parameterization 𝜃. In PPO, this is achieved
through gradient descent over a loss function. The PPO-clip loss function is given in Equation 4, where 𝜖 is a small
hyperparameter that clips the change in policy at a given update step:

𝐿 (𝑠, 𝑎, 𝜃𝑘 , 𝜃) = min
(
𝜋𝜃 (𝑎 | 𝑠)
𝜋𝜃𝑘 (𝑎 | 𝑠)

𝐴𝜋𝜃𝑘 (𝑠, 𝑎), 𝑔 (𝜖, 𝐴𝜋𝜃𝑘 (𝑠, 𝑎))
)

(4)

where the clipping function 𝑔 is

𝑔(𝜖, 𝐴) =
{
(1 + 𝜖)𝐴 𝐴 ≥ 0
(1 − 𝜖)𝐴 𝐴 < 0

(5)

Equation 4 uses advantages estimates 𝐴𝜋𝜃𝑘 (𝑠, 𝑎) collected from on-policy trajectories to compute loss. By repeating
the process of trajectory generation, advantage estimation, and policy update steps, the policy is iteratively improved
towards an optimal policy, as described in Algorithm 1‡.

Algorithm 1 Proximal Policy Iteration
for 𝑘 = 1, 2, 3, ... do

Collect trajectories by running policy 𝜋𝜃𝑘 in the environment
Estimate advantages 𝐴𝜋𝜃𝑘 (𝑠, 𝑎) for each step in trajectories
𝜃𝑘+1 ← Update the policy parameterization using the PPO-Clip loss function (Equation 4) and the value function

end for

PPO is selected for this work as it is known to be performant across a wide range of MDPs. In particular, Herrmann
and Schaub have shown that it is effective for a variety of similar spacecraft scheduling problems [9].

C. Enhanced Training Environments
Training a satellite tasking policy using RL inherently introduces a gap between the training and deployment

environment: Training is completed on finite-horizon episodes (often of a few orbits), while satellites in orbit tend
to operate for years or decades. A few challenges commonly emerge when training policies on episodes simulating a
nominal satellite’s behavior:

For a satellite designed with comfortable margins, the frequency of safety interactions (e.g. charging, desaturating
reaction wheels) is relatively low when the vehicle is in a nominal operating range. This results in sparse training data in
safety-critical regimes, which means the resulting policy is less aware of optimizing mission objectives with respect to
safety actions and potentially less safe overall when deployed in a long-term setting. Also, the resulting policy may not
be robust to “unexpected unexpecteds”; that is, while the policy may be safe and performant even in the most difficult
cases that appear in the randomized training environment such as long eclipses, it has no incentive to remain any safer
than necessary to survive those cases. For a concrete example, it may take little to no extra effort to maintain the battery
at an average level of 80% instead of 40%, but if the worst case encountered in training only requires 40% battery, the
policy will exhibit the latter behavior even though the former is more robust to unexpected events like degraded or
malfunctioning equipment.

Three methods of enhancing the training environment to expose the satellite to a wider range of states and increase
learning near unsafe domains are proposed:

‡Adapted from spinningup.openai.com/en/latest/algorithms/ppo.html#pseudocode
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1) Wide Episode Initialization: In training, it is typical to initialize the satellite in states that are expected to
be encountered in deployment. However, there is no theoretical justification for restricting initialization to a
“reasonable” domain. Increasing the domain to all possible states (even those that are unrecoverable, such as a
near-zero battery at the start of an eclipse) exposes the learning agent to more unsafe states without relying on
exploration to encounter them. Unrecoverable initializations provide the agent with information about parts of
the domain that are certainly unsafe, which can be usefully extrapolated from by RL algorithms.

2) Longer Episodes: Longer episodes allow the agent to fully realize the impacts of its actions, at the expense of
fewer unique initial conditions experience over the same number of steps of training. Effects of the closed loop
environment-policy system that take many orbits to manifest — including negative effects that lead to reduced
reward or failure — can be properly accounted for by the agent.

3) Environmental Augmentation: With nondimensionalized observations, the policy can be effective across a
range of similar problems; for example, since battery percentage is reported as opposed to absolute charge,
a policy should reasonably generalize to other satellites with similar power system dynamics. This can be
leveraged in by training in an environment that is more difficult than the nominal mission environment, i.e. one
that leads to more safety interactions. Parameters can be adjusted for lower resource capacities and less favorable
environmental conditions to make an augmented environment. Not only does this increase safety interactions,
it encourages maintenance of resources at more favorable levels in the nominal case without reward function
tuning.

While each of these methods is likely to increase exposure to safety-critical states, the third, augmentation to the
environment parameters, offers the greatest potential benefits but risks drawbacks. Since the policy is trained for a
harder-than-expected environment, the policy is more robust to departures from the nominal system than a policy trained
in the standard environment. This is desirable behavior for many systems, where modeling errors or component damage
and degradation can result in control and tasking problems that are more challenging than the nominal case. However,
this method risks decreasing the performance of the agent with respect to the science objective: too augmented of an
environment in training may lead to an overconservative policy for the nominal environment that depresses reward in
favor of over-safe actions.

IV. Results
Parameters for training and deployment environment are selected and the results of training with and without

enhancements are compared in long-term deployed simulations to evaluate true performance. To test the robustness
of enhanced training, the same policies are tested in a more challenging environment with battery and solar panel
degradation. Finally, a scenario demonstrating the limits of augmentation on already-hard environments is considered.

A. Experimental Parameters
Decision-making agents are trained on each combination of enhancements: standard and augmented environment

parameters, narrow and wide initialization domains, and short and long episode horizons. Most parameters are constant
across all training and deployment environments, including those given in Table 2, ground station locations (Boulder,
Merritt Island, Singapore, Weilheim, Santiago, and Hawaii), and 500 km altitude and 45◦ inclination orbital parameters.
Parameters changed between the standard and augmented environments are as follows:

• Standard policies are trained using standard parameters in Table 3, which are representative of a typical small
satellite. These standard parameters are the same as those in the nominal, long-term deployment simulations used
to test the policies.

• Augmented policies are trained using augmented parameters in Table 3, which reduce resource capacities and
increase external torques.

Other parameters are randomized per-episode to ensure a complete training domain, such as epoch and ascending node.
Two different episode initialization ranges for safety-critical state elements given in Table 4 are compared when training
policies:

• The narrow domain initializes the satellite within a feasible, nominal range of states. This range is also used
when benchmarking policies in long-term deployment to ensure that the test is survivable.

• The wide domain initializes the satellite both in feasible and challenging scenarios. Some initializations may lead to
near-immediate failure, but overall the satellite is exposed to more difficult scenarios. Impossible initialization are
not inherently bad for training, as the agent can quickly correlate those states to failure without much exploration.

Agents train on episodes of one of two different lengths:
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Table 2 Fixed satellite parameters.

Quantity Value Description
¤𝑧base 10.0 W Base power draw
¤𝑧thr 80.0 W Thruster power draw
¤𝑧inst 30.0 W Instrument power draw
¤𝑧down 25.0 W Transmitter power draw
𝜂𝑤 0.5 Reaction wheel power efficiency for ¤𝑧𝑤 (𝛀)
𝐴𝐵 1 m2 Solar panel area
𝜂𝐵 0.2 Solar panel efficiency
¤𝑏fill 0.5 MBd Data collection baud
¤𝑏down −0.0224𝑏cap /s Downlink baud
Ωmax 6000 rpm Maximum wheel speed
𝜃scan 22.8◦ Max. angle from nadir for scanning
𝜓down 10◦ Min. elevation angle from ground station for downlink
𝑰 [121, 98, 82] kg m2 Moments of inertia
Δ𝑡 3 min Tasking decision interval

Table 3 Satellite parameters varied between the standard and augmented training environments.

Quantity Standard Augmented Description
𝑧cap 400 W hr 80 W hr Battery capacity
𝑏cap 5 Gb 1 Gb Data buffer capacity
|𝝉ext | 0.2 mN m 2.0 mN m External torque magnitude

Table 4 Initialization ranges of satellite parameters.

Quantity Narrow Wide Description
𝑧 [37.5, 62.5]% [0.0, 100.0]% Battery level
𝑏 [37.5, 62.5]% [0.0, 100.0]% Data buffer level
Ω𝑖 [−4000, 4000] rpm [−6000, 6000] rpm Wheel speeds

7



Table 5 Average probability of an agent failing (due to battery discharge or reaction wheel desaturation) per
step over the course of training [% chance per step]. Top three in bold.

Standard Augmented
Narrow Wide Narrow Wide

Failure Short Long Short Long Short Long Short Long
Battery 0.03 0.00 0.07 0.02 0.55 0.20 0.71 0.42

Wheel Sat. 0.01 0.00 0.42 0.11 0.03 0.00 0.51 0.13
All 0.05 0.01 0.49 0.12 0.57 0.20 1.20 0.55
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Fig. 2 Comparison of training curves with different enhancements.

• Short episodes have a duration of 3 orbits (90 decision intervals).
• Long episodes are simulated for 15 orbits (450 decision intervals, approximately one day), giving the agent more

time to explore if the policy leads to an unsafe or unrewarding state.
In addition to the RL-based policies, two other policies are considered in comparisons: A random policy, for which

𝑃(𝑎charge) = 𝑃(𝑎down) = 𝑃(𝑎desat) = 𝑃(𝑎scan) = 0.25, and a deterministic hand-tuned policy described by Algorithm 2.

Algorithm 2 Hand-Tuned Policy
if 𝑧 ≤ 25% then

return 𝑎charge
else if downlink window available then

return 𝑎down
else if |Ω𝑖 | ≥ Ωmax · 80% then

return 𝑎desat
else

return 𝑎scan
end if

B. Training Results
Each combination of environment, initialization, and episode horizon is trained using APPO. Table 5 shows that the

incidence of safety interactions in training increases with the use of wide initialization and augmented parameters, but
decreases with longer episodes. Wide initialization and augmented parameters intuitively lead to more safety interactions
in training, because both are more likely to put the satellite in a scenario from which it is difficult or impossible to escape.
Longer episodes decrease the chance of the satellite failing on a given step of training: While this gives the satellite
more time to fail due to a bad policy, once a good policy has been learned the satellite will survive nearly indefinitely as
long as the initial conditions were survivable. However, with long episodes the rate of failure is still high at the start of
training, so the lower failure rate overall does not necessarily indicate that less safety information was learned.

A surprising result shown in Figure 2 is that enhancements lead to better training stability. This is a side effect of the
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Fig. 3 Statistics of each policy over 100 trials in the nominal environment in long-term deployment. For reward
accumulation rate: 0 = no data collection; 1 = continuous data collection.

increased frequency of safety interactions with enhancements: In the non-enhanced cases, the sparsity of failures causes
the network to overcorrect when a failure is encountered because the value function is largely unaware of their existence;
unlearning due to this is observed in both the no enhancements and one enhancement case. By increasing the frequency
of those interactions, the learning agent interacts with a more apparently uniform problem over time and stability is
improved as seen in the majority of one and two enhancement cases. A drawback of enhancements is exposed here: The
narrow- and wide- long augmented cases display slower learning per-step due to the longer episodes, though this is still
preferable to unlearning.

C. Long-Duration Deployment of Policies
Each policy is deployed in the nominal mission environment, which uses standard parameters and the narrow

initialization range for one week of simulation time (3150 decision intervals), intended to mimic long-term operations.
Results for each policy are given in Figure 3.

In the upper right subplot, it is observed that parameter augmentation and episode duration have the two greatest
impacts on the rate at which data is collected and thus maximize the reward earned. The combination of all
three enhancements (augmented parameters, wide initialization, and long-horizon training) is best; in general, more
enhancements improves performance. Learned policies with a low data collection rate are indicative of a lack of
exposure in training to the data buffer filling and preventing data collection. While opportunities for downlink are
guaranteed to appear even in short-horizon training environments, it is not necessary to empty the buffer to make space
for more data in short-horizon, large buffer cases; however, when deployed in a long horizon the satellite continuously
attempts to collect data without ever freeing space by downlinking.

Enhancements to training also improve the robustness of policies. In the upper right plot, enhancements lead
to higher average battery levels in deployment; in particular, the use of augmented parameters and long-horizon
environments leads to this behavior. Enhancements likewise lead to better buffer dynamics, as shown in the lower right
plot. The buffer is on average held at 20% full when trained with enhancements, as opposed to other policies with
underperform by limiting data collection with a full buffer or by wasting power and time by downlinking even when the
buffer is relatively empty.
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Fig. 4 Distribution of actions taken by each policy.

Table 6 Satellite parameters in the degraded environment.

Quantity Standard Degraded Description
𝑧cap 400 W hr 200 W hr Battery capacity
𝜂𝐵 0.20 0.15 Solar panel efficiency

These improvements to average resource levels are reflected in the failure rates of each policy, lower right: Enhanced
training environments failed less. Most notably, the enhancements eliminate failures due to reaction wheel saturation
which are relatively hard to encounter in standard training. For example, the standard wide long policy frequently fails
due to reaction wheel saturation because it was never encountered in training, as Table 5 shows.

Figure 4 shows the distributions of actions taken by each policy. Among the enhanced policies, distributions are
remarkably similar despite the differing performance, which indicates that careful sequencing is critical for maximizing
reward. High-performing policies learn to only downlink when necessary, as opposed to at every opportunity, saving
time and power. The frequency of desaturation varies between policies, ranging from desaturating frequently to minimize
power draw to only desaturating to prevent wheel saturation.

D. Deployment in Unexpected Environments
To test robustness of these policies, the nominal environment parameters are modified to represent a satellite with

degraded performance; each of the prior policies is deployed on the degraded satellite for week-long trials. Degradation
parameters are given in Table 6, which model reduced battery capacity and solar panel efficiency, both issues commonly
observed on space systems. Observations reflect the lower 𝑧cap when normalizing.

Figure 5 shows the performance of each policy on the degraded system. Unsurprisingly, the standard parameter
policies perform poorly when extrapolating to a more difficult environment; those policies either fail very frequently or
accumulate reward very slowly (as is the case for the short narrow standard policy). Failures are almost all due to battery
discharge, which makes sense given the more challenging power environment. In comparison, the augmented parameter
policies maintain high reward accumulation and very low failure rates, following trends seen in the nominal benchmarks.
Lower failure rates are correlated with the augmented policies’ tendency to maintain battery charge at a higher level.

Figure 8 shows that all of the policies — even those with fewer enhancements — adjust their action distributions
to respond to the new environment; RL tends to be inherently good at generalizing even without generalization as a
specific objective. Again, the similar distributions of actions across all policies show that the specific sequencing that
each policy executes is critical to success and performance.

10



Short Long Short Long Short Long Short Long Random Hand
Tuned

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd 
Ac

cu
mu

lat
ion

 R
ate

Reward Accumulation Rate

Short Long Short Long Short Long Short Long Random Hand
Tuned

0

20

40

60

80

100

Ba
tte

ry 
Le

ve
l %

Average Battery Level

Short Long Short Long Short Long Short Long Random Hand
Tuned

0

20

40

60

80

100

Bu
ffe

r L
ev

el 
%

Average Buffer Level

Short Long  Short  Long   Short    Long     Short      Long   Random Hand
Tuned

0

20

40

60

80

100

Fa
ilu

re 
Ra

te 
%

Failure Modes
RW fail
Battery fail

Narrow Wide Narrow Wide
Standard Augmented

Narrow Wide Narrow Wide
Standard Augmented

Narrow Wide Narrow Wide
Standard Augmented

Narrow Wide Narrow Wide
Standard Augmented

Fig. 5 In the degraded environment, statistics for each of the prior policies over 100 trials in long-term
deployment.
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Fig. 6 In the degraded environment, distribution of actions taken by each policy.
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Fig. 7 Statistics for each policy trained and benchmarked in an environment with ¤𝑧base = 20 W in long-term
deployment over 100 trials.

E. Limitations to Environment Augmentation
As one may suspect, parameter augmentation for training environments are not universally applicable. If the

environment is augmented too much, it may no longer sufficiently resemble the original environment to provide benefit
to a nominal deployment and may even be infeasible. Similarly, environments that are already hard may not benefit
from augmentation, resulting in an overconservative policy that reduces data collected.

An example of the latter phenomenon can be demonstrated by increasing the baseline power draw of the nominal
environment from 10 W to 20 W, making power management significantly harder: The agent must charge >10% of the
time to maintain power positivity. Figure 7 shows the augmented-parameter policies underperforming compared to
standard polices because are too conservative. This conservatism is reflected in resource management: Power levels are
higher and buffer levels are lower for the augmented policies at the cost of reward. As a result, the failure levels are
lower with enhancements. The other enhancements (wide initialization and long episodes) have the same impacts on the
policy as in previous cases: Resource management is generally improved and reward is slightly increased. However,
these effects are not as pronounced as in other examples because the harder environment allows for a smaller range of
good policies.

V. Conclusion
This work demonstrates three enhancements to training environments for satellite tasking that improve robustness

and performance in long-term deployment: wider domains for initial states, longer horizons for training episodes, and
augmentations to the environment’s parameters to make the learning environment more challenging. These methods
expose the satellite to a larger domain of states while training, allowing the agent to more thoroughly learn unsafe
states and long-term system dynamics. These methods are shown to be effective at reducing failures and improving
performance on an EOS tasking problem. Furthermore, policies trained with these methods perform better than their
non-enhanced counterparts when running on degraded hardware.

These methods raise a number of questions to be explored in future work. As noted in the results, it is possible to
over-enhance the environment to the point of degrading performance with respect to the mission objective; further study
into this phenomenon would be valuable so that the proper amount of augmentation can be found efficiently. The results
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Fig. 8 In the ¤𝑧base = 20 W environment, distribution of actions taken by each policy.

also show enhanced policies maintaining resources at levels that are preferable to an operator; a method to induce
specific operator preferences through parameter augmentation may exist. Finally, effective ways to combine this work
with shielding, as demonstrated for spacecraft tasking in [8], should be explored; these methods would .
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