
(Preprint) AAS 24-012

REINFORCEMENT LEARNING FOR EARTH-OBSERVING
SATELLITE AUTONOMY WITH EVENT-BASED TASK INTERVALS

Mark Stephenson* and Hanspeter Schaub†

Advances in target scheduling algorithms are necessary to fully utilize the capa-
bilities of agile Earth-observing satellites. While most current approaches preplan
sequences of target collections, on-board autonomous methods that select targets
on the fly can adapt to opportunistic science events and rapid changes to target
requests, as well as reduce the burden on operators. In this paper, reinforcement
learning (RL) is used to train satellites to select upcoming targets in a high-fidelity
simulation environment, learning to account for target value and the feasibility of
slewing to nearby targets over a range of target densities. In the Markov decision
process formulation, imaging actions are tasked for the duration it takes to execute
the action as opposed to using fixed decision intervals, yielding a system that more
efficiently represents the problem. Novel contributions of this work are the com-
parison of the performance of RL against a pseudo-optimal mixed-integer program
solution in a high-fidelity spacecraft simulation environment and the demonstra-
tion of intelligent resource management by the RL agent in a power-constrained
case.

INTRODUCTION

On-demand satellite imagery is hugely beneficial for scientific observations, commercial opera-
tions, disaster response, or reconnaissance missions. “Agile” satellites are well suited to these tasks
as they are capable of performing along-track slews to image targets in front and behind them, as op-
posed to traditional Earth-observing satellites (EOSs) that can only slew across-track. The objective
of the agile Earth-observing satellite scheduling problems (AEOSSPs) is to sequence operations
such that the value of images taken by an agile Earth-observing satellite (AEOS) is maximized.
While agility can greatly increase the imaging throughput of a satellite, it complicates planning
operations because both the order and timing of each target can be modified, leading to a greatly
increased solution space for operations sequences [1]. Resource management for the satellite must
also be considered when planning tasks.

Satellite observation scheduling problems are commonly represented as directed acyclic graphs,
in which vertices represent observation opportunities and edges represent feasible transitions be-
tween observations [2, 3]. In this form, the problem can be expressed as a mixed-integer program
(MIP) as it is reduced to a discrete routing problem similar to the traveling salesman problem [4]; a
variety of high-performance commercial solvers exist to find the optimal solution to MIPs and quan-
tify the suboptimality of intermediate solutions. Peng uses a MIP-based solution as a benchmark but

*Ph.D. Student, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder,
Boulder, CO, 80303. AIAA Member.

†Professor and Department Chair, Schaden Leadership Chair, Ann and H.J. Smead Department of Aerospace Engineering
Sciences, University of Colorado, Boulder, 431 UCB, Colorado Center for Astrodynamics Research, Boulder, CO, 80309.
AAS Fellow, AIAA Fellow.

1

Figure 1: The decision agent selects which observation to schedule next among N multiple upcom-
ing targets.

encounters prohibitively long solution times in more complex, high-resolution cases [5]. A variety
of authors use MIP solutions for target allocation problems in constellations, which demonstrate
the utility for global optimization problems [6, 7, 8, 9]. Reference [10] utilizes neural networks to
construct graphs that accurately account for transition time dynamics and improves the efficiency
of the MIP formulation. A popular alternative to MIP solvers is iterative local search (ILS), which
leverages the problem structure to iteratively optimize short segments of the solution [11]. Peng
develops an ILS algorithm for observation scheduling that can account for time-independent or -
dependent target values [5]. Tangpattanakul uses ILS to ensure fair resource allocation between
users of a shared satellite [12].

Ultimately, preplanning approaches such as MIP and ILS solvers suffer from two major limita-
tions: 1) high computational requirements and — as a result — slow solution times, especially as
the problem size increases; and 2) being open loop, brittleness to a changing, uncertain, or mis-
modeled environment (in the case of MIP, the linearization of resources guarantees some degree of
mismodeling if included). If the plan is unsuccessfully executed or more desirable objectives are
added, either a new plan must be computed on the ground and reuploaded to the satellite or — com-
putation capacity permitting — the satellite may locally repair a short horizon of the upcoming plan
[11]. Reinforcement learning (RL) is a broadly applicable framework for closed loop autonomy
[13]. Nazari demonstrates that RL is effective at solving general waypoint routing problems [14].
Applied directly to spacecraft tasking, Harris [15], Hadj-Salah [16], and Eddy [17] formulate vari-
ous Markov decision processes (MDPs) for the AEOSSP. References [15] and [16] use simplified
probabilistic models for the spacecraft dynamics. In [15] and later [18, 19, 20], Harris and Her-
rmann develop the problem with a full-fidelity simulation and utilize shields to ensure operational
safety. Zhao considers target scheduling using two phases of RL, the first selecting observation
windows and the second picking observation times within the windows [21]. MDP representations
of other spacecraft tasking problems, such as small-body imaging, have also been formulated and
solved with RL [22, 23].

The goal of this work is to demonstrate autonomous agents executing learned policies (Figure 1)
for the AEOSSP that are competitive with MIP-based approaches when compared in a high-fidelity
simulation. This requires formulating the MDP to only propagate actions for the minimal neces-
sary duration to avoid satellite downtime, as opposed to using fixed-duration actions as in other
work. Furthermore, cases that the MIP planner cannot handle, such as nonlinear spacecraft power

2

resource constraints, are solved with RL. These RL-based solutions enjoy low onboard computation
costs, closed-loop opportunism, and robustness to mismodeling, as opposed to the brittle, high-cost
solutions provided by other methods.

PROBLEM STATEMENT

The basic, target-scheduling-only AEOSSP is described and formalized as a partially-observable
Markov decision process (POMDP) so that it can be solved with RL. A modified, power-constrained
version of the problem is also developed.

Agile Earth-Observing Satellite Scheduling Problem

The objective of the AEOSSP is to maximize the value of imaging requests fulfilled by a satellite
equipped with a camera-like sensor. The satellite is agile, meaning that it can not only slew about-
track to image targets not directly nadir of the satellite but also slew along-track, allowing complex
scheduling of imaging tasks. The satellite is on a fixed low-Earth orbit, meaning that the rotation of
the Earth changes the accessibility of targets over time.

Target-Based Request Model In this work, requests are modeled as individual points (as opposed
to continuous areas of land); Eddy and Kochenderfer explain how area-based request models can be
decomposed into the point-based request paradigm in [24].

Imaging requests ρ ∈ R consist of a tuple of a target’s planet-fixed location and value, ρi =
(ri, ri). All imaging requests start as unfulfilled, R = U , and are fulfilled by imaging the target,
moving it to the fulfilled set F . Once a target has been fulfilled, it is assumed that there is no value
in reimaging it (though an operator could add a new request in the same location, if reimaging
is desired). Targets can only be imaged when associated constraints are met, such as view angle
or time-of-day restrictions. In this paper, only the view angle constraints are considered, but the
methods are general enough to account for others. The intervals for which the constraints are met
are called opportunity windows [τ o, τ c] = w ∈ Wi, which are the set of intervals for which target i
can be imaged.

For clarity of notation, when indexing targets and opportunity windows in this work, the subscript
i refers to the unfulfilled request with the ith upcoming still-open window, ordered by window
closing time. For example, r2 is the value of the second upcoming target and τ c2 is the closing time
of that opportunity.

Three distributions of targets given in Figure 2 are used in this work: uniform, cities, and Swiss-
cheese. “Uniform” distributes targets equally over Earth’s surface. “Cities” distributes targets at
the locations of a random subset of the 42,000 most populous cities*. Finally, “Swiss-cheese”
uses a uniform distribution of targets, then removes targets in random circular regions up to radius
rE/4. The Swiss-cheese distribution is only used in training, as a means of exposing the satellite to
target-free periods. Uniform and Swiss-cheese distributions are considered for up to 10000 globally
distributed targets, while cities are considered for up to 3000 targets; these distributions lead to
similar maximum local densities.

Imaging Dynamics The satellite has a camera pointing in the body-fixed ĉ direction. To image
a target, the satellite must point the camera within some δθ and track the target within some δθ̇,
accounting for the relative motion of the satellite and the Earth. These constraints must be met

*City location data from simplemaps.com.

3

Un
ifo

rm
|R| = 100 |R| = 1000 |R| = 10000

Sw
iss

|R| = 100 |R| = 1000 |R| = 10000

Ci
tie

s

|R| = 300 |R| = 1000 |R| = 3000

Figure 2: Examples of each target distribution over different densities.

while an opportunity window for the target is open (i.e. other constraints are also satisfied). As a
result, transitions between requests are dynamically complex. The satellite has a nonzero angular
velocity when tracking a target and must slew to the next target and track it with a different nonzero
angular velocity. It may not be dynamically feasible to steer to and settle on some upcoming requests
before their opportunity window closes.

Simulation The satellite is modeled using the Basilisk† spacecraft simulation framework [25].
Basilisk is a high-fidelity, high-speed modular simulation system, making it a strong tool for this
work. The spacecraft is modeled to the component level in a realistic space environment: reaction
wheels, power system, and data collection system are all modeled in an environment that includes
orbital perturbations and SPICE-based solar system dynamics. In this work, the satellite is designed
to be a typical 300 kg small-sat.

The satellite’s flight software uses flight-heritage control algorithms. The satellite is guided to
targets using a modified Rodrigues parameter (MRP)-based attitude controller and rate servos for
reaction wheels [26]. The complete simulation setup is similar to that shown in [20]. Flight software,
spacecraft dynamics, and the environment are propagated at 2 Hz.

Markov Decision Process Formalization

The AEOSSP can be represented as a POMDP. Actions correspond to high-level modes in the
flight software, such as imaging a certain target or entering a charging mode; this mode-based
approach to spacecraft RL was proposed by Harris et al., Eddy et al., and Herrmann and Schaub
[15, 17, 20]. The agent is rewarded for imaging targets based on an operator-assigned per-target
value. Much of the POMDP — states, observations, and transitions — implicitly emerges from the
previously defined simulation of the environment.

†http://hanspeterschaub.info/basilisk/

4

Quantity Normalization Description
EωBE 0.03 rad/s Body angular rate
Eĉ - Instrument pointing direction

ErBE rE Earth-fixed position, Earth radius-normalized
EvBE vorb Earth-fixed velocity, orbital velocity-normalized
t tmax Time through episode (completion fraction)

{rm |m ∈ 1, . . . ,M} - Rewards ∈ [0, 1] of next M targets
{Erm |m ∈ 1, . . . ,M} rE Positions of next M targets

Equation 1 5.0 Upcoming reward density
z zmax Charge fraction

τ oEcl, τ
c
Ecl T Next eclipse transitions, orbital period-normalized

Table 1: Elements in the observation o and their normalization constants. The lower portion of the
table is only included in the power-constrained problem.

The POMDP is defined by the tuple (S,A, T,R,O, Z). The simulator provides a deterministic
generative model G(s, a) = s′. The elements of the POMDP are defined as follows:

• State Space S: The space of complete simulator states required to maintain the Markov
assumption. This includes directly observable variables such as the spacecraft’s dynamic
state and upcoming target information, hidden variables including far-off target information
and request statuses, and variables required for simulation such as controller integrator states.
Practically, only a subset of the state is relevant to the scheduling problem, which is exposed
through the observation function.

• Observation Space O and Observation Probability Function Z: The observation space
O consists of a selection of dimensions from the state space and transformations thereof.
The selected elements are those presumed to be relevant to decision-making for the problem,
based on expert knowledge and experimentation. In this POMDP, the observation consists of
the elements given in Table 1. Observation elements are normalized to fall approximately in
[−1, 1], which improves the performance of deep reinforcement learning (DRL) algorithms.
The number of upcoming unfulfilled target requests in the observation M is tuneable. To
encode long-term reward availability, the reward density function{∑

i∈U

{
ri if t+ (k − 1)∆t ≤ τ oi < t+ k∆t

0 else
| k = 1, . . . ,K

}
(1)

is added to the observation; it gives the cumulative reward available in each of the next
K = 20 intervals of ∆t = 5 minutes. The intent of this portion of the state is to reveal
gaps in upcoming target availability, which is relevant for long-term planning once resource
constraints are introduced. A large value of M would expose the same information, but the
potential for dense targets would require it to be very high; the horizon exposed by Equation 1
is not dependent on density and contributes fewer elements to the observation that individual
target information would.

Observation elements are taken directly from the state without noise, though other work has
shown that noise can be added to the observation without impacting performance as long as

5

the noise was modeled in training and deployment [27]. With the observation expressed as
a subset function of state O(s) ⊂ s, the observation probability function is deterministic:
Z(O(s)|s) = 1.

• Action Space A: The satellite has N imaging actions aim,n that task imaging of the target
with the nth upcoming imaging opportunity in the set of unfulfilled requests. The availability
of an action does not imply feasibility: a target’s opportunity window may close before the
satellite can slew and settle to image it.

• Transition Probability Function T (s′|s, a): Transitions are deterministic and generated by
the simulator, resulting in T (G(s, a)|s, a) = 1. The simulator propagates for a variable
duration at each step, depending on conditions met as the action is taken. In particular, the
simulator stops as soon as an action is successful or cannot be successful. When generating
the next state, the simulator runs until one of three conditions is met (hence the description of
the problem as “event-based”):

1. Imaging Successful: If the target is successfully imaged (moved from unfulfilled U to
fulfilled F), the step ends. No more reward can be obtained from continuing to image a
fulfilled request, so the satellite should retask immediately.

2. Opportunity Window Close: If the opportunity window for the target being imaged
closes before the target is imaged, t > τ ci , the step ends. There is no potential for
the satellite to image the target until a later orbit, so it is best for the satellite to retask
immediately.

3. Maximum Step Duration Timeout: If neither of the above conditions are met before
∆t = 5 minutes has elapsed, the step ends.

• Reward Function R(s, a, s′): The agent is rewarded for successfully fulfilling target re-
quests. The reward function yields the request value if the request is fulfilled during the step,
and zero otherwise:

R(s, aim,n, s
′) =

{
ri if ρn ∈ U and ρn ∈ F ′

0 else
(2)

The POMDP is implemented using bsk-rl‡, an open-source package for creating modular RL
environments for spacecraft tasking. The package is designed to be easily configurable, customiz-
able, and reproducible. bsk-rl uses the standard Gymnasium API for RL environments, making
the package compatible with all major RL frameworks [28].

Power-Constrained Problem Variation

The AEOSSP is commonly subject to resource management constraints that need to be main-
tained by the scheduler. A variant of the previously described problem is proposed in which the
satellite has a power subsystem that must be managed. The satellite is equipped with a battery with
capacity zmax and solar panels with efficiency η and area A with their normal antiparallel to the
instrument pointing direction. The satellite has a baseline power draw which is a function of other
subsystem states and an additional żim which is added when tasked with imaging a target. Since

‡https://github.com/AVSLab/bsk_rl/

6

the power generation of the solar panel is a function of the attitude over time, it is not possible
to accurately account for it with other planning methods without running complete simulations of
proposed plans, a prohibitively expensive process.

The POMDP is modified in three places to allow the agent to monitor and respond to the con-
straints of the power system:

1. As listed in Table 1, the observation is augmented with the current charge fraction z and the
eclipse transition times τ oEcl, τ

c
Ecl, giving the agent sufficient information to make decisions

about power management. The charge level indicates if the satellite is at risk of dying, and
the eclipse times show when the satellite can charge.

2. The satellite is given an additional charging action, acharge, which points the solar array to-
wards the sun for 1 minute. Charging is determined by the underlying simulation, so if the
action is taken during eclipse no power will be generated.

3. If the satellite enters a discharged state where z = 0, the episode ends. This is a hard con-
straint that the agent must learn to avoid. A reward rfail ≤ 0 is rewarded for entering the
failure states.

Other aspects of the base POMDP were formulated to help learning in the power-constrained varia-
tion. The upcoming reward density observation allows the satellite to identify upcoming low-reward
periods where it can charge with minimal loss of reward. The maximum step duration limit helps
prevent failures during learning by preventing discharge when selecting a far-off target by allowing
the agent to periodically reconsider its choice of action (ultimately allowing for the creation of a
shield), which is further discussed in a later section.

METHODS

Reinforcement learning, a class of methods for finding policies that approximate the solution
to a MDP, is reviewed and, proximal policy optimization (PPO), a widely-used DRL algorithm,
is described. Two problem-specific considerations for RL are discussed: the impacts of variable-
interval decisions and the use of shielding for safety in the power-constrained problem. Finally, a
pseudo-optimal solution to the target-sequencing-only problem from [10] is briefly described. This
method is used as a benchmark for comparison in the experiments.

Reinforcement Learning

The objective of RL is to find the policy a = π(s), a function that defines the action an agent
should take in response to an environment state, that maximizes the sum of future rewards for a
MDP [13]. The agent does not have access to the underlying model of the MDP; instead, it must
learn through interaction with the environment. DRL algorithms use neural networks to represent
the policy, taking advantage of generalization properties inherent to deep learning and allowing
them to be applied to problems with continuous state and action spaces.

Proximal Policy Optimization A popular and performant DRL algorithm is PPO [29]. PPO is a
policy gradient method, meaning that it directly optimizes the policy πθ by iteratively updating the
policy parameters θ as the agent gains experience in the environment. To prevent unlearning, PPO

7

limits the policy update to a small region around the current policy using the loss function

L (s, a, θk, θ) = min

(
πθ(a | s)
πθk(a | s)

Aπθk (s, a), g (ϵ, Aπθk (s, a))

)
(3)

where the clipping function g is

g(ϵ, A) =

{
(1 + ϵ)A A ≥ 0

(1− ϵ)A A < 0
(4)

A short summary is given in Algorithm 1§. Reference [20] shows that PPO performs well in a
variety of similar spacecraft tasking problems.

Algorithm 1 Proximal Policy Iteration

for k = 1, 2, 3, ... do
Collect trajectories by running policy πθk in the environment
Estimate advantages Aπθk (s, a) for each step in trajectories
θk+1 ← Update the policy parameterization using the PPO-Clip loss function (Equation 3)

and the value function
end for

Throughout this work, all policies are trained using RLlib’s implementation of PPO [30] for 5M
steps, approximately 20k to 25k episodes or 11 to 14 years of simulated mission time. Training
takes 10 to 15 hours of wall-clock time on 32 Intel Milan CPU cores. The separate policy and
value networks are each 2 × 2048 node, the discount factor γ is set to 0.0003, the training batch
size is 10,000, and the minibatch size is 250. Other hyperparameters use Stable Baseline 3 defaults
for PPO (notably not the RLlib defaults, which use VTrace instead of GAE and do not normalize
advantages).

Considerations for Variable-Interval, Infinite-Horizon MDPs The use of event-based decision
intervals in the POMDP introduces challenges not typically encountered in RL, in which each step
usually has an equal time-cost. The most theoretically sound way of handling this is to discount
rewards by elapsed time γ∆t rather than elapsed steps γ∆n. In practice, this is not an effective
strategy in a reward-dense environment: The continuous accumulation of rewards means that with
γ close to 1, the impact of the time discount between immediate next actions is minimal even if they
are relatively different in duration, while with a small γ, future actions are quickly disregarded in
favor of a greedy strategy.

Instead of duration-based discounts, a hard time limit of three-orbit-long episodes is used in
training and the episode completion fraction is included in the state. This allows the policy to
correlate higher completion fractions with less remaining potential and thus lower value. As a
result, the policy will learn to prefer shorter actions because they have less of an impact on future
value.

When using the policy in a deployment-type setting (i.e. one that is effectively infinite horizon),
the completion fraction element of the observation is set to a constant value instead of being in-
cremented with time. In this work, it is set to zero to avoid potentially using reckless or greedy
behavior learned at the end of episodes. In practice, this is not the case: any completion fraction in

§Adapted from spinningup.openai.com/en/latest/algorithms/ppo.html#pseudocode

8

[0, 1] results in the same action to be selected by the policy with high probability. This result makes
sense given the use of separate policy and value networks in PPO¶: the value network makes use of
the completion fraction element which in turn allows for a better policy to be learned, but there is
no reason to suspect the policy itself would strongly depend on the completion fraction.

The variable-interval nature of the problem also leads to practical challenges. Typical implemen-
tations of PPO run copies of the environment in parallel and step the environments simultaneously
once all environments have completed the previous step. In this problem, the duration of a step
can vary from a few seconds to several minutes of simulation time; this leads to many works idling
while waiting for the longest-interval steps to complete. Also, in the power-constrained problem,
agent deaths lead the environments to reset at different steps, which is also a time-intensive task.
To address these issues, the environments are stepped asynchronously using RLlib’s asynchronous
proximal policy optimization (APPO) variation.

Shielded Reinforcement Learning Shielded RL was introduced by Alshiekh et al. as a way of
making safety guarantees about the safety of an RL agent [31]. In this work, the post-processing
approach is taken, in which the shield evaluates the policy’s chosen action against the observation;
the shield either accepts the action as safe or overrides the potentially unsafe action with a safe
action. Harris et al. apply this to the spacecraft tasking to meet the safety requirements of space
systems [18].

Safety is only a consideration for the power-constrained variation of the problem. A relatively
simple hand-crafted shield is employed. The shield selects the charging action if the battery level is
below

zminsafe =

zfloor − (τ cEcl − τ oEcl)żdraw − τ oEclżgain if not in eclipse and > zfloor

zfloor − τ cEclżdraw if in eclipse
zfloor else

(5)

which maintains the battery level at least at zfloor, with a higher requirement as eclipse nears. Worst-
case estimates of żgain = 100%/orbit and żdraw = −100%/orbit are used, and zfloor is set to 25%.

A novel strategy using the shield is employed in this work to increase the speed of training. While
training with a shield usually leads to suboptimal policies that exclusively rely on the shield for
safety operations (as demonstrated in later results), it eliminates the need to learn to stay alive. Prac-
tically, this can greatly improve the time-efficiency of learning as frequent resets due to agent deaths
are completely avoided; especially in complex environments, resetting can be time-expensive. To
partially leverage the benefits of shielded training without limiting the quality of the final policy,
agents in this paper are trained with a parameterized version of the shield that is ramped down
from fully engaged to completely disengaged over the first 1M steps of training. In particular,
zfloor : 20% → 0%, żgain : 100%/orbit → 150%/orbit, and żdraw : −100%/orbit → 0%/orbit.
As shown in Figure 3, this avoids a slow, failure-dense initial period while achieving a strong final
unsheilded performance.

Pseudo-Optimal Benchmark

The hybrid analytical/simulation-based approach to the target sequencing problem described in
[10] is taken as a pseudo-optimal benchmark. In short, opportunity windows for each target are

¶While not an inherent feature of PPO, the use of separate policy and value networks is known to generally improve
the performance of the algorithm.

9

0 1 2 3 4 5
Training Step 1e6

2.0

2.2

2.4

2.6

2.8

3.0

M
ea

n O
rbi

ts
Co

mp
let

ed

0 1 2 3 4 5
Training Step 1e6

0

50

100

150

Re
wa

rd

0.0

0.2

0.4

0.6

0.8

1.0

Sh
iel

d L
ev

el

Figure 3: Orbits completed before failure and rewards for each episode during training in the zero-
penalty power-limited case. The shield is ramped down (dashed line) over the first 1M steps of
training.

time-discretized into individual opportunity times. Supervised learning is used to train a neural
network to predict slew durations between targets; these predictions estimate if the transition from
one discrete target-time to another is feasible. Feasible transitions are represented as edges on a
directed acyclic graph of slews. A MIP is formulated to find the maximum reward path across the
graph, which can be solved by commercial software to find a pseudo-optimal target sequence.

This MIP solution to the scheduling problem is a good benchmark. It is optimal up to the ac-
curacy of the neural network and the time discretization, both of which are shown to be minimally
impactful even on larger problems. In particular, the use of the neural network for slew duration
predictions makes this method more performant than heuristic-based approaches because it suffers
neither from idle time due to a conservative heuristic nor from missed targets due to an overly ag-
gressive heuristic; as a result, solutions from this method can be directly and successfully executed
in the full-fidelity simulation environment.

However, this work is motivated by limitations inherent to that class of planners. MIP planners
and ILS planners, which are more efficient than MIP but lack optimality quantification, are both
preplanning approaches. They both plan a sequence over an upcoming horizon and tend to be
computationally expensive, meaning that they are brittle to a changing environment and typically
limited to ground-based planning. For denser target distributions and longer horizons considered
in this work, the MIP planner may take over an hour to find the solution. Furthermore, accurately
accounting for nonlinear resources such as power generation and depletion is not possible with these
methods; at best, an inaccurate heuristic can be used.

TARGET SEQUENCING-ONLY PROBLEM

The generation of agents for the target sequencing-only problem (i.e. sans power management)
is considered first. The performance can be directly compared to the pseudo-optimal results given
by the MIP solver which only solves the power-free problem.

10

2500 5000 7500 10000
Requests |R|

50

60

70

80

90

100

Pe
rce

nti
le

Uniform

500 1000 1500 2000
Requests |R|

Cities

1

32

64

Ac
tio

n I
nd

ex

Figure 4: Distribution of upcoming target index tasked in MIP solutions.

Parameter Variation

Three factors are of particular interest: the state space target lookahead M , the action space
target lookahead N , and the target distribution used in training. The impact of these parameters on
the performance of the policy across the two test distributions (uniform and cities) and a range of
densities is desired. Ideally, some training parameters will produce a policy that generalizes well
across all test conditions.

Action Space Target Lookahead The number of targets N considered in the actions space must
be sufficiently large to allow the policy to select the best response. If N is too small relative to
the density of targets, the satellite may never succeed at taking any images since action aN would
not have sufficient time to settle on the target before going out of range. However, large N adds
complexity to the network and to training. Since MIP solutions are known, the index of actions
selected in the pseudo-optimal solution can be used as a reference, shown in Figure 4. Due to the
very tight clustering of cities in some areas, the cities distribution of targets requires higher action
indices in the worst cases. All of the uniform actions and most of the city actions are captured by
N = 32, which is primarily used in Figure 5 and beyond. This heuristic is not entirely rigorous as
there could be a policy equally performant to the MIP solution that selects further-spaced, higher-
valued targets, thus requiring a larger action space; however, Figure 5 shows that N = 64 does not
perform better than N = 32.

State Space Target Lookahead The number of targets M in the state space must be at least equal
to those in the action space N , as the policy intuitively should be provided with information on any
target it may select. It may be beneficial to have M > N so that the policy may consider more
future targets when selecting what to image; this is akin to how ILS-based solvers optimize over
short intervals of the sequencing task, though the network only estimates the first target of the
interval as opposed to explicitly optimizing an entire sequence. Three values of M are considered:
N = 32, 2N = 64, and 3N = 96.

Figure 5 shows that M > N does not improve performance over M = N , with variations in M
producing similar results. Discussed in more depth later, it is shown that the policies tend to favor
higher value targets over more targets, unlike the MIP solutions.

11

0 2000 4000 6000 8000 10000
Requests |R|

0.6

0.8

1.0

1.2

Op
tim

ali
ty

Fr
ac

tio
n

Uniform Deployment

0 1000 2000 3000
Requests |R|

Cities Deployment
M, N, Training Env.

32, 32, Uni.
64, 32, Uni.
96, 32, Uni.
32, 32, City
64, 32, City
96, 32, City
64, 64, City

Figure 5: Performance of each policy relative to MIP solution. Tested for 15 orbits over a range of
target distributions and densities. 1σ error bars.

Target Distributions Policies are trained with either the uniform or cities target distribution. For
each episode, a new target set is generated within the densities used in tests, ∈ [500, 10000] uniform
targets or ∈ [300, 3000] city targets. It is expected that uniform target training should generalize
to city target testing; the local segment of targets that the agent considers appears to be a uniform
distribution of the local city density. However, city-based training is expected to generalize poorly
to uniform targets, as there is a lack of training data in regions lacking cities.

These intuitions are confirmed by Figure 5: Uniform training performs nearly as well as city-
based training when tested on the cities distribution, showing its ability to generalize to non-uniform
distributions. In the other direction, city-based training does not generalize well when tested in the
uniform environment, performing significantly worse than the uniformly-trained policies. Disap-
pointingly, neither performs particularly well on cities when compared to the MIP solution.

Results

The M = 32, N = 32, uniform-target trained policy is selected for further analysis due to the
satisfactory performance exhibited in Figure 5. The policy found by PPO is compared to global
MIP solutions when tested over uniform (Figure 6) and city-based (Figure 7) target distributions,
target densities, and planning horizons.

When deployed in a uniform target environment, Figure 6 shows that PPO is able to achieve
comparable cumulative rewards to the MIP solutions, shown in the lower right subplot. Since the
MIP solver is global, it is able to achieve higher rewards over shorter planning horizons through
greedy behavior; this is opposed to the PPO policy, which always acts for the pseudo-infinite horizon
and thus shows no difference in reward per orbit over different horizons. As a result MIP and PPO
rewards are most similar over the longest horizon (15 orbits), showing near-optimality from the PPO
strategy.

Despite similar overall rewards in the uniform case, the strategies displayed by PPO versus MIP
are quite different. PPO tends to select fewer, higher value targets than the MIP solutions. It is
theorized that this type of solution is easier to find with PPO since imaging many low-value targets

12

0

50

100

150
Fu

lfi
lle

d |
F|

/O
PPO
MIP

0.4

0.6

0.8

Av
g.

Re
qu

est
 R

ew
ard

r/|

F|

0 2000 4000 6000 8000 10000
Requests |R|

0.90

0.95

1.00

1.05

Su
cc

ess
 R

ate

0 2000 4000 6000 8000 10000
Requests |R|

0

50

100

Re
wa

rd
r/O

O = 1
O = 3
O = 5

O = 10
O = 15

Figure 6: Over uniform targets, comparison of the policy found by PPO versus global MIP solutions
for different orbit O horizons. 1σ error bars. Fulfilled: Number of targets imaged per orbit by the
satellite. Avg. Request Reward: Average value of imaged targets. Success Rate: Fraction of targets
imaged before out of range. Reward: Cumulative per-orbit reward.

0

25

50

75

Fu
lfi

lle
d |

F|
/O

PPO
MIP

0.4

0.5

0.6

0.7

Av
g.

Re
qu

est
 R

ew
ard

r/|

F|

0 500 1000 1500 2000 2500 3000
Requests |R|

0.6

0.8

1.0

Su
cc

ess
 R

ate

0 500 1000 1500 2000 2500 3000
Requests |R|

0

20

40

Re
wa

rd
r/O

O = 1
O = 3
O = 5

O = 10
O = 15

Figure 7: Over city targets, comparison of the policy found by PPO versus global MIP solutions.

13

quickly requires understanding longer value traces. As Figure 5 shows, the PPO policy does not
learn to utilize additional information on the future target space, even though the existence of a
better global solution from the MIP implies that it could be beneficial.

In the cities target environment, Figure 7 displays many of the same trends as in the uniform
environment, but with notably lower rewards with the PPO policy versus the MIP solutions. This
underperformance can be explained by a large amount of wasted time (i.e. a low per-action suc-
cess rate) with PPO; this could explain the PPO-MIP gap in the uniform case as well. In general,
high-density clusters in the cities distribution make it an especially difficult planning environment,
challenging even the MIP solver with high solving times. A better understanding of the challenges
of the cities environment is needed to improve performance in future work.

Despite the RL-based approach not achieving the pseudo-optimal reward found by the MIP so-
lution, it shows very good performance (within 15% of optimal on uniform and 20-40% on cities)
while having key advantages with respect to computation requirements and robustness. Evaluating
the policy takes approximately 10 milliseconds at each decision interval regardless of the environ-
ment, while the MIP solutions take hundreds to thousands of seconds to find a solution for the
long-horizon, high-density cases where the policy’s performance is slightly depressed (see [10] for
deeper analysis of MIP solution times). Furthermore, the policy produced by RL is closed loop:
Actions are selected in response to a current and local view of the environment, even if the environ-
ment is non-stationary. Compare this to preplanning methods such as the MIP approach which are
brittle to changes in the target set or other unexpected events, requiring resolving of part or all of
the plan in such situations.

POWER-CONSTRAINED SCHEDULING PROBLEM

Training for the power-constrained scheduling problem, in which the satellite has a finite battery
capacity and the ability to enter a sun-pointing charging mode, is considered next. The primary goal
is to find the training method that minimizes loss in reward compared to the power-free problem
due to time spent charging.

Power-Constrained Policies

Six policies and deployment schemes are tested in the power-constrained environment. The same
hyperparameters are used as with the power-free agents, other than an addition of an action space
logit for the charge action.

• Unshielded Deployment (Unshielded Training): The agent is trained and deployed without
a shield in the power-constrained environment. This method may find good policies that an
extra conservatism in the shield prevents, but does not guarantee safety in deployment. The
policy is trained twice, once with zero failure penalty and once with a -300 failure penalty. To
speed training, the training uses the previously described method of initially ramping down
the shield to prevent frequent resets due to failures.

• Shielded Deployment (Unshielded Training): The same agents trained without a shield
(zero and -300 failure penalty) are deployed with a shield (Equation 5). This guarantees
safety but potentially comes at the expense of performance.

• Shielded Training: The agent is trained with a shield preventing unsafe actions during train-
ing and is deployed with the shield. This guarantees safety but is known to lead to suboptimal

14

0 pen., Unshielded
0 pen., Shielded

-300 pen., Unshielded
-300 pen., Shielded

Shielded Training
Power Free (Shielded)

0.8

0.9

1.0
Re

wa
rd

Ra
tio

0

10

20

Ti
me

 C
ha

rgi
ng

 [%
]

0 2000 4000 6000 8000 10000
Requests |R|

0

5

10

15

Du
rat

ion
 [O

]

0 2000 4000 6000 8000 10000
Requests |R|

0

50

100

Sh
iel

de
d C

ha
rgi

ng
 [%

]

Figure 8: Deployment of policies in the power-limited environment with uniform targets for 15
orbits. 1σx̄ error bars. Reward Ratio: Reward while alive compared to the best RL agent in the
power-free environment. Time Charging: Percent of episode spent in charge task. Duration: Num-
ber of orbits completed before failing. Shielded Charging: Percent of charging actions tasked by
the shield as opposed to the base policy.

agents that “hang” on the shield.

• Shielded Power-Free Policy: The agent trained in the power-free environment is deployed
with the shield.

Agents newly trained for the power-constrained environment are trained using the Swiss-cheese
distribution of targets. This generalizes to any local target density in the same way as uniform
training but also ensures that the upcoming target density state (Equation 1) has a training domain
that includes periods without any targets. This is important for generalization to cases like the cities
distribution, where the satellite should intuitively charge over oceans and other areas without targets.

Results

Figure 8|| and Figure 9 (uniform and city targets, respectively) compare the performance of each
policy deployed in the power-constrained environment for 15 orbits, using the power-free environ-
ment and policy as a baseline. Disqualifying the unshielded policies due to their high failure rates,
the 0-failure-penalty shielded policy performs the best in both environments.

||n.b. Some reward ratios are greater than one due to favorable target generation in low-request cases.

15

0 pen., Unshielded
0 pen., Shielded

-300 pen., Unshielded
-300 pen., Shielded

Shielded Training
Power Free (Shielded)

0.8

0.9

1.0

Re
wa

rd
Ra

tio

0

10

20

Ti
me

 C
ha

rgi
ng

 [%
]

0 1000 2000 3000
Requests |R|

0

5

10

15

Du
rat

ion
 [O

]

0 1000 2000 3000
Requests |R|

0

50

100

Sh
iel

de
d C

ha
rgi

ng
 [%

]

Figure 9: Deployment of policies in the power-limited environment with city targets.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [orbits]

0

10

20

30

40

50

Cu
mu

lat
ive

 R
ew

ard

Eclipse
Charge (Policy)
Charge (Shield)
Reward
Battery Level

0

10

20

30

Ta
rge

t V
alu

e D
en

sit
y

Figure 10: Charging and reward behavior of the policy over a |R| = 3000 city target distribution.
The policy chooses to charge when there are not targets present.

16

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [orbits]

0

250

500

750

1000

1250

Pa
ssi

ve
 G

en
era

tio
n [

kJ
]

Eclipse
Power Limited
Power Free

Generation
Reward

0

50

100

150

200

Cu
mu

lat
ive

 R
ew

ard

Figure 11: Passive (i.e. non-charge mode) power generation of a power-limited vs. a power-free
satellite in the same |R| = 3000 uniform target environment. The power-constrained policy learns
to generate additional power passively while completing science objectives with negligible loss in
reward.

Most notably, the shielded policy performs as well or better than the power-free policy wrapped
with a shield in all cases. This implies that the policy has learned to charge in an anticipatory
manner, such as during reward-sparse periods as opposed to charging just when the battery is low
enough to require maintenance, which may otherwise occur during high-reward segments of the
episode; this positive behavior of charging when few or no targets are present is displayed in Fig-
ure 10. In fact, Figure 8 shows that the shielded policy tends to spend more time charging than the
shield-wrapped power-free policy while still achieving higher overall rewards, due to this antici-
patory behavior. The majority of the times the shielded policy charges are on its own accord and
not due to the shield, further demonstrating “smart” behavior. Shielded training is found to be poor
across all cases, with the agent almost never learning to charge other than when forced to by the
shield.

In the example time-series data given in Figure 11, another aspect of the intelligent behavior of
the best policy in the power-constrained environment is demonstrated. Comparing the passive power
generation (i.e. power generation when not in the charging mode) to that of a power-free agent, it
becomes apparent that the power-constrained agent has learned to image targets that simultaneously
increase power generation as a way of reducing dedicated charging time; the power generation is
greater than that of the power-free satellite which has no incentive to increase power generation. The
selected targets increase power generation by creating a favorable geometry with the solar panels
and instrument being antiparallel.

CONCLUSION

This paper presents an MDP for the AEOSSP and uses RL to find a performant policy for it. In
some cases, performance similar to a pseudo-optimal MIP-based global solution is achieved; addi-
tionally, the policy can be executed closed loop and with significantly less computation power than
the global solution. Furthermore, satisfactory performance is demonstrated in a power-constrained
version of the environment, which is a scenario that cannot be adequately represented by the MIP.

Additional work is required to reach pseudo-optimal performance across all cases with the RL-

17

based solution. In particular, the challenging case of city-distributed targets must be solved. Addi-
tionally, reformulating the MDP to be independent of state and action space lookaheads M and N
is desirable, as the current formulation is not robust to tight clusters of > N targets.

ACKNOWLEDGEMENT

This work is partially supported by a NASA Space Technology Graduate Research Opportunity
(NSTGRO) grant, 80NSSC23K1182. This work is also partially supported by the Air Force Re-
search Lab grant FA9453-22-2-0050.

This work utilized the Alpine high-performance computing resource at the University of Colorado
Boulder. Alpine is jointly funded by the University of Colorado Boulder, the University of Colorado
Anschutz, Colorado State University, and the National Science Foundation (award 2201538).

REFERENCES
[1] X. Wang, G. Wu, L. Xing, and W. Pedrycz, “Agile Earth Observation Satellite Scheduling Over 20

Years: Formulations, Methods, and Future Directions,” IEEE Systems Journal, Vol. 15, Sept. 2021,
pp. 3881–3892, 10.1109/JSYST.2020.2997050.

[2] V. Gabrel, A. Moulet, C. Murat, and V. T. Paschos, “A new single model and derived algorithms for the
satellite shot planning problem using graph theory concepts,” Annals of Operations Research, Vol. 69,
1997, pp. 115–134.

[3] S. Augenstein, “Optimal Scheduling of Earth-Imaging Satellites with Human Collaboration via Di-
rected Acyclic Graphs,” The Intersection of Robust Intelligence and Trust in Autonomous Systems:
Papers from the AAAI Spring Symposium, 2014, pp. 11–16.

[4] D. L. Applegate, R. E. Bixby, V. Chvatál, and W. J. Cook, The Traveling Salesman Problem: A Compu-
tational Study. Princeton University Press, 2006.

[5] G. Peng, R. Dewil, C. Verbeeck, A. Gunawan, L. Xing, and P. Vansteenwegen, “Agile earth observation
satellite scheduling: An orienteering problem with time-dependent profits and travel times,” Computers
& Operations Research, Vol. 111, Nov. 2019, pp. 84–98, 10.1016/j.cor.2019.05.030.

[6] D.-H. Cho, J.-H. Kim, H.-L. Choi, and J. Ahn, “Optimization-Based Scheduling Method for Agile
Earth-Observing Satellite Constellation,” Journal of Aerospace Information Systems, Vol. 15, Nov.
2018, pp. 611–626, 10.2514/1.I010620.

[7] S. Nag, A. S. Li, and J. H. Merrick, “Scheduling algorithms for rapid imaging using agile Cubesat con-
stellations,” Advances in Space Research, Vol. 61, Feb. 2018, pp. 891–913, 10.1016/j.asr.2017.11.010.

[8] J. Kim, J. Ahn, H.-L. Choi, and D.-H. Cho, “Task Scheduling of Agile Satellites with Transition Time
and Stereoscopic Imaging Constraints,” Journal of Aerospace Information Systems, Vol. 17, June 2020,
pp. 285–293, 10.2514/1.I010775.

[9] X. Wang, Y. Gu, G. Wu, and J. R. Woodward, “Robust scheduling for multiple agile Earth observation
satellites under cloud coverage uncertainty,” Computers & Industrial Engineering, Vol. 156, June 2021,
p. 107292, 10.1016/j.cie.2021.107292.

[10] M. Stephenson and H. Schaub, “Optimal Target Sequencing In The Agile Earth-Observing Satellite
Scheduling Problem Using Learned Dynamics,” AAS/AIAA Astrodynamics Specialist Conference, Big
Sky, MT, Aug. 2023.

[11] G. Picard, C. Caron, J.-L. Farges, J. Guerra, C. Pralet, and S. Roussel, “Autonomous Agents and
Multiagent Systems Challenges in Earth Observation Satellite Constellations,” International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2021), May 2021, pp. 39–44,
10.5555/3463952.3463961.

[12] P. Tangpattanakul, N. Jozefowiez, and P. Lopez, “A multi-objective local search heuristic for scheduling
Earth observations taken by an agile satellite,” European Journal of Operational Research, Vol. 245,
Sept. 2015, pp. 542–554, 10.1016/j.ejor.2015.03.011.

[13] R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction. Adaptive computation and ma-
chine learning, Cambridge, Massachusetts London, England: The MIT Press, second edition ed., 2018.

[14] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takac, “Reinforcement Learning for Solving the Vehicle
Routing Problem,” NeurIPS, 2018.

[15] A. Harris, T. Teil, and H. Schaub, “Spacecraft Decision-Making Autonomy Using Deep Reinforcement
Learning,” AAS Spaceflight Mechanics Meeting, Maui, Hawaii, Jan. 2019.

18

[16] A. Hadj-Salah, R. Verdier, C. Caron, M. Picard, and M. Capelle, “Schedule Earth Observation satellites
with Deep Reinforcement Learning,” Nov. 2019. arXiv:1911.05696 [cs].

[17] D. Eddy and M. Kochenderfer, “Markov Decision Processes For Multi-Objective Satellite Task
Planning,” 2020 IEEE Aerospace Conference, Big Sky, MT, USA, IEEE, Mar. 2020, pp. 1–12,
10.1109/AERO47225.2020.9172258.

[18] A. Harris, T. Valade, T. Teil, and H. Schaub, “Generation of Spacecraft Operations Procedures Using
Deep Reinforcement Learning,” Journal of Spacecraft and Rockets, Vol. 59, Mar. 2022, pp. 611–626,
10.2514/1.A35169.

[19] A. Herrmann and H. Schaub, “Reinforcement Learning for the Agile Earth-Observing Satellite
Scheduling Problem,” IEEE Transactions on Aerospace and Electronic Systems, 2023, pp. 1–13,
10.1109/TAES.2023.3251307.

[20] A. Herrmann and H. Schaub, “A Comparison Of Deep Reinforcement Learning Algorithms For Earth-
Observing Satellite Scheduling,” AAS/AIAA Spaceflight Mechanics Meeting, Austin, TX, Jan. 2023.

[21] X. Zhao, Z. Wang, and G. Zheng, “Two-Phase Neural Combinatorial Optimization with Reinforcement
Learning for Agile Satellite Scheduling,” Journal of Aerospace Information Systems, Vol. 17, July 2020,
pp. 346–357, 10.2514/1.I010754.

[22] A. Herrmann and H. Schaub, “Reinforcement Learning for Small Body Science Operations,” AAS As-
trodynamics Specialist Conference, Charlotte, North Carolina, Aug. 2022.

[23] M. Piccinin, P. Lunghi, and M. Lavagna, “Deep Reinforcement Learning-based policy for autonomous
imaging planning of small celestial bodies mapping,” Aerospace Science and Technology, Vol. 120, Jan.
2022, p. 107224, 10.1016/j.ast.2021.107224.

[24] D. Eddy and M. J. Kochenderfer, “A Maximum Independent Set Method for Scheduling Earth-
Observing Satellite Constellations,” Journal of Spacecraft and Rockets, Vol. 58, Sept. 2021, pp. 1416–
1429, 10.2514/1.A34931.

[25] P. W. Kenneally, S. Piggott, and H. Schaub, “Basilisk: A Flexible, Scalable and Modular Astrodynamics
Simulation Framework,” Journal of Aerospace Information Systems, Vol. 17, Sept. 2020, pp. 496–507,
10.2514/1.I010762.

[26] H. Schaub and S. Piggott, “Speed-constrained three-axes attitude control using kinematic steering,”
Acta Astronautica, Vol. 147, June 2018, pp. 1–8, 10.1016/j.actaastro.2018.03.022.

[27] A. Brandonisio, L. Capra, and M. Lavagna, “Deep reinforcement learning spacecraft guidance with state
uncertainty for autonomous shape reconstruction of uncooperative target,” Advances in Space Research,
July 2023, p. S0273117723005276, 10.1016/j.asr.2023.07.007.

[28] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu, M. Goulão, A. Kallinteris,
A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. J. S. Tan, and O. G. Younis,
“Gymnasium,” Oct. 2023. original-date: 2022-09-08T01:58:05Z.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization Algo-
rithms,” Aug. 2017. arXiv:1707.06347 [cs].

[30] E. Liang, R. Liaw, P. Moritz, R. Nishihara, R. Fox, K. Goldberg, J. E. Gonzalez, M. I. Jordan, and
I. Stoica, “RLlib: Abstractions for Distributed Reinforcement Learning,” June 2018. arXiv:1712.09381
[cs].

[31] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu, “Safe Reinforcement
Learning via Shielding,” Sept. 2017. arXiv:1708.08611 [cs].

19

	Introduction
	Problem Statement
	Agile Earth-Observing Satellite Scheduling Problem
	Target-Based Request Model
	Imaging Dynamics
	Simulation

	Markov Decision Process Formalization
	Power-Constrained Problem Variation

	Methods
	Reinforcement Learning
	Proximal Policy Optimization
	Considerations for Variable-Interval, Infinite-Horizon MDPs
	Shielded Reinforcement Learning

	Pseudo-Optimal Benchmark

	Target Sequencing-Only Problem
	Parameter Variation
	Action Space Target Lookahead
	State Space Target Lookahead
	Target Distributions

	Results

	Power-Constrained Scheduling Problem
	Power-Constrained Policies
	Results

	Conclusion
	Acknowledgement

