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INTENT SHARING FOR EMERGENT COLLABORATION IN
AUTONOMOUS EARTH OBSERVING CONSTELLATIONS

Mark Stephenson*, Lorenzzo Mantovani* and Hanspeter Schaub†

The objective of the multiagent agile Earth-observing satellite scheduling prob-
lem is to maximize the global sum of values of requests imaged by a constella-
tion while satisfying safety constraints for each satellite. Prior work has shown
that individually-trained satellites with reinforcement learning-based policies op-
erating on the same fixed-interval cadence exhibit emergent cooperative behavior
when a communication step is added to share what targets have been successfully
imaged; however, in cases with high satellite or low target densities, this is not suf-
ficient to avoid duplicating efforts. In this work, novel methods for generalizing to
constellations where satellites are operating on asynchronous variable intervals —
a more realistic case — are explored. Also, an intent-sharing method for coordi-
nating actions to avoid duplication of tasks in dense constellations is considered.
This method maintains the advantages of the single-agent training, multi-agent
deployment pipeline, including scalability and responsiveness, while improving
global performance.

INTRODUCTION

Scheduling constellations of agile Earth-observing satellites (AEOSs) is a challenging problem,
especially with higher densities of targets and satellites [1]. Because of the agile nature of the
satellites (i.e. the ability to slew along-track), each observation request has a time window for
which can be imaged, greatly increasing the set of feasible solutions when compared to traditional
Earth-observing satellites (EOSs) that can only slew across-track. In this work, ideas from two
previous papers are combined to create a scaleable autonomous solution to the problem: a variable-
interval formulation of the agile Earth-observing satellite scheduling problem (AEOSSP) [2] and
the use of single-agent policies in a multi-agent environment [3]. This paper explores how best
to induce cooperation between a cluster of satellites operating on different intervals to complete a
many-target imaging task, as shown in Figure 1.

Much of the existing literature treats the AEOSSP as a discrete task-based planning problem,
representing possible collection events as vertices and feasible slews as edges [4]. The problem (not
considering resource management, which must be handled by additional constraints) is then reduced
to maximization over a directed acyclic graph, part of a well-studied class of problems [5, 6]. Mixed-
integer programs (MIPs) or iterative local search (ILS) can then be used to find optimal solution.
For single-satellite planning, these approaches are considered in [7] and [8], among many others.
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Figure 1: A formation of satellites each selecting from among upcoming point targets.

These preplanning approaches can be extended to account for multi-satellite constellation plan-
ning and request deconflicting among agents. Bianchessi considers the problem for hundreds to low
thousands of requests across two satellites and multiple users, comparing a heuristic method to an
optimal solution [9]. Cho develops a two-step approach to constellation scheduling, first planning
downlink opportunities then request fulfillment for up to 12 satellites and 700 requests [10]. Kim
introduces additional realistic constraints for imaging and a heuristic to speed planning times for a
constellation [11]. Wang formulates a MIP with added cloud uncertainty for up to 300 targets [12].
Nag utilizes dynamic programming to greatly improve planning times for a two-satellite constella-
tion [13]. Eddy introduces a set-theory-based approach to target allocation that scales better than
other approaches for large constellations and request sets [14].

A common theme among these approaches is a time-expensive planning stage, often requiring
tens of minutes to hours to plan for constellations with at most tens of agents and hundreds to
thousands of requests. These computationally expensive and time-consuming approaches limit the
possibility of replanning when the request set has changed or of onboard planning. A recently
proposed alternative for satellite scheduling is the use of onboard autonomous tasking policies found
with reinforcement learning. Markov decision processes (MDPs) for the single-agent, task-based
AEOSSP are formulated in [15, 16, 17, 18]. In particular, [15] and [16] use high-fidelity simulation
environments for training and testing. Zhao applies reinforcement learning differently, training an
agent to perform the global scheduling problem for a single satellite [19]. Reference [2] builds
on previous work in on-orbit autonomy by implementing variable-duration decision intervals into
the MDP formulation, in order to be able to produce the same quality of solutions as MIP-based
approaches. To generalize to a scalable multi-satellite constellation, Herrmann adds communication
between single-agent-trained satellites to deduplicate efforts [3]. This work builds on Herrmann’s
paper by introducing considerations for communications when satellites are not operating on the
same decision interval.

PROBLEM STATEMENT

A multi-satellite, power-constrained variation of the AEOSSP is modeled with a high-fidelity
spacecraft simulation and formalized as a decentralized partially-observable Markov decision pro-
cess (Dec-POMDP).
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Figure 2: Examples of each target distribution over various request densities.

Agile Earth-Observing Constellation Scheduling Problem

The AEOSSP is considered for a homogeneous constellation of imaging satellites with a joint
objective to maximize the cumulative value of unique imaged targets. The environment is the same
as the power-limited environment described in [2], other than the addition of multiple agents; thus,
a compressed development of the environment is presented here.

Image Request Model Image requests are specified as a tuple of target position and priority,
ρi = (ri, ri) ∈ R, using a point-based request model. In this work, two distributions of requests are
considered (Figure 2): A uniform distribution over the surface of the Earth, |R| ∈ [100, 10000], and
a city-based distribution, |R| ∈ [300, 3000].* For both distributions, target priorities are uniformly
distributed ri ∈ [0, 1].

All requests start in the unfulfilled set R = U . When a request is imaged, it is removed from
R and added to the fulfilled set F . Imaging a target ρi ∈ U yields a reward equal to the priority
ri; imaging ρi ∈ F yields no reward, though should an operator want to image a location multiple
times, multiple requests can be made in the same location.

Target requests are subject to various dynamic constraints to be imaged. The satellite’s instrument
must be pointed at the target within δθ and track its relative motion within δθ̇ to take an image. Since
the satellites are agile (i.e. capable of slewing along-track), each target is accessible for an interval
of time; additional constraints define the opportunity window [τ o, τ c] = w for the target; in this
work, a minimum elevation angle constraint is included.

Power Constraints The satellite is modeled with a power system consisting of solar panels (nor-
mal antiparellel to the instrument), a battery, and power draws from reaction wheels, the bus, and the
instrument. The satellite’s power system must be maintained positive at all times, including through
eclipse. While the satellite passively charges during operations, it can enter a charging mode that
points the solar panels at the sun to maximize power gain.

Markov Decision Process Formulation

The problem is formalized as a Dec-POMDP, a generalization of an MDP for decentralized
decision-making between multiple agents with a single goal [20]. A deterministic simulation of

*City location data from simplemaps.com.
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Quantity Normalization Description
EωBE 0.03 rad/s Body angular rate
Eĉ - Instrument pointing direction

ErBE rE Earth-fixed position, Earth radius-normalized
EvBE vorb Earth-fixed velocity, orbital velocity-normalized
t tmax Time through episode (completion fraction)

{rm |m ∈ 1, . . . ,M} - Rewards ∈ [0, 1] of next M targets
{Erm |m ∈ 1, . . . ,M} rE Positions of next M targets

Equation 1 5.0 Upcoming reward density
z zmax Charge fraction

τ oEcl, τ
c
Ecl T Next eclipse transitions, orbital period-normalized

Table 1: Elements in the observation o and their normalization constants, from [2].

the scenario is given as G(s, a) = s′. The elements of the Dec-POMDP are as follows:

• State Space S: The space of simulator states required to maintain the Markov assumption.
This consists of the satellite state spaces and the environment state, S = S1× ...×Ss×Senv.
These states include “intuitive” aspects of the state, like satellite positions and attitudes, as
well as “hidden” aspects, like internal flight software states, in order to make the formulation
Markov.

• Joint Observation Space O and Observation Probability Function Z: The product of the
individual observation spaces of each satellite; since the satellites are homogeneous, O =
O1 × ... × Os = OS

sat. Each satellite’s observation is a noiseless subset of the state space
O(s) ⊂ s, so Z(O(s)|s) = 1. The elements included in the observation for each satellite
are given in Table 1; this includes satellite states and information about the next M = 32
unfulfilled requests. To encode long-term reward availability, the reward density function{∑

i∈U

{
ri if t+ (k − 1)∆t ≤ τ oi < t+ k∆t

0 else
| k = 1, . . . ,K

}
(1)

is included in the state. This allows the satellite to wait to charge until little or no reward is
available, as opposed to charging during periods of high reward density due to a myopic view
of the environment.

• Joint Action Space A: The product of the individual action spaces of each satellite; since
the satellites are homogeneous, A = A1 × ...×As = AS

sat. Each satellite has N + 1 actions:

– aim,i ×N : Actions to attempt to image each of the N = 32 next unfulfilled targets, by
time of next encounter. The satellite slews to point the instrument at the target and —
if attitude, rate, and access constraints are met — takes an image. As such, this action
does not guarantee successful imaging.

– acharge: Action to enter sun pointing mode for one minute. The satellite slews to point
the solar panels at the sun to maximize power gain; if the satellite is in eclipse, the
underlying simulator will not charge the battery.
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• Transition Probability Function T (s′|s, a): Transitions are generated by the deterministic
simulator, leading to T (G(s, a)|s, a) = 1. The simulator propagates for a variable amount of
time, depending on the actions taken and how the environment evolves during propagation.
Propagation is halted at one of three conditions:

1. Imaging Successful: If any satellite tasked with an imaging action successfully images
the target, the simulation halts since that satellite’s action can result in more reward.

2. Opportunity Window Close: If the opportunity window closes for any satellite tasked
with an imaging action, the simulation halts since the action will not result in any reward.

3. Maximum Step Duration Timeout: If none of the above conditions are met for any
satellite after ∆t = 5 minutes of simulation time, the simulation halts.

• Reward Function R(s, s′): The agents are jointly rewarded for imaging unfulfilled target
requests during a step:

R(s, s′) =
∑
ρi∈R

{
ri if ρi ∈ U and ρi ∈ F ′

0 else
(2)

Simulation Environment

The environment is configured using bsk-rl†, an open-source package for building spacecraft
tasking environments for reinforcement learning (RL). The environment includes component-level
dynamics models, flight-proven flight software algorithms, and models of the space environment.
The package uses Basilisk‡ for the underlying high-fidelity spacecraft simulation [21]. Agents
interact with the environment via the Gymnasium API, allowing for compatibility with all major
RL frameworks [22].

METHODS

Shielded RL is applied to the single-satellite case to find a per-agent policy; a complete devel-
opment of the policy can be found in [2]. Central to this work is determining the best methods for
sharing information between agents and retasking the agents to induce collaborative behavior; the
considered methods are described in detail.

Reinforcement Learning

RL is a method of finding a mapping of states to actions (π(s) = a) to maximize a long-term
reward signal in an environment with unknown and sometimes probabilistic dynamics [23]. The
learning agent finds this mapping by interacting with the environment, receiving a reward signal, and
updating its policy based on the reward signal and the observed state-action pairs. For continuous
or sufficiently large state and action spaces, deep reinforcement learning (DRL) is often applied,
which uses deep neural networks to represent the agent’s policy.

To guarantee the safety of an agent, shielded RL is used in deployment [24]. When the agent
selects an action, the shield checks if the action is safe with respect to the current state. If it is safe,
the action is taken; if it is not, a deterministic safe response is executed instead. In this environment,

†https://github.com/AVSLab/bsk_rl/
‡http://hanspeterschaub.info/basilisk/
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the only safety constraint is keeping each satellite’s power system alive. The shield checks if the
power level is sufficient to make it through the next eclipse; if it is not, the agent is forced to charge.

Single-Satellite Agent Generation

The policy network and shield used for agents in this paper are generated in [2]. In that paper,
agents are trained in a single-satellite environment using the RLlib implementation of asynchronous
proximal policy optimization (APPO) and then deployed with a shield to prevent unsafe actions
[25, 26]. Experiments are performed on the state and actions space target lookaheads, M and N , and
the failure penalty. The policies produced in that work are found to perform well when compared to
a pseudo-optimal MIP-based solution method. On uniformly distributed targets, the agent achieves
90-95% of the optimal reward; for cities, a more challenging environment, the agent achieves 60-
80% of optimality. The primary cause of suboptimality is found to be the agent selecting targets for
which it has insufficient time to slew to before the opportunity window closes. This effect is seen in
certain cases in this paper’s multi-satellite results.

Communication Between Agents

The system contains multiple satellites sharing information among them. Therefore, a communi-
cation model is utilized where communication is assumed to be available at all times with sufficient
bandwidth to transmit necessary information, similar to the free communication adopted by [3].
Communication is independent of the satellites’ attitudes. These assumptions are reasonable for
small satellites flying close together, with the possibility of using omnidirectional antennae. The
inter-satellite communication links are used to share information about requests that have been ful-
filled or are currently being pursued.

Completion Sharing vs. Intent Sharing Two communication cases are considered, each with
different information shared about request status:

• Completion Sharing Each satellite broadcasts when it has successfully fulfilled a request,
causing the other satellites to remove that request from their list of unfulfilled requests.

• Intent Sharing Each satellite broadcasts the request associated with its currently selected
action, causing the other satellites to temporarily remove the request from the set of unfulfilled
targets. If the satellite fails to complete the imaging task after communicating intent, the target
is readded to each satellite’s set of unfulfilled targets; if successful, the request is permanently
moved to the set of fulfilled requests.

Since only unfulfilled requests appear in the observation and action spaces, satellites will not select
targets that have been communicated as fulfilled or intended-to-be-fulfilled by other satellites.

Continuous Retasking vs. Conflict Retasking Two approaches are used to determine when satel-
lites should retask (i.e. reevaluate the policy network), as opposed to continuing their current task.

• Continuous Retasking All satellites retask with the shielded policy network at every MDP;
that is, when any satellite completes a task. Since the completion of tasks changes the environ-
ment, other satellites may have a new optimal action with respect to the current environment

• Conflict Retasking Satellites only reevaluate the shielded policy network when the task as-
sociated with their previous action is completed by themselves or another satellite; otherwise,
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the previous action is maintained through the next step. If the previously selected request is
shared as fulfilled or intended by another satellite, the satellite will retask.

Tasks are evaluated in two passes: first, actions that are being maintained from a previous step are
assigned in order of satellite index. Then, tasks selected by the shielded policy network are assigned
in order of satellite index. This gives a slight advantage to the first satellite in the list, since in cases
where multiple satellites retask on the same step, earlier satellites get first pick of the requests.

RESULTS

The performance of the intent-sharing and completion-sharing methods for communication com-
bined with continuous retasking and conflict retasking are compared. Additionally, a method with
no communication and no retasking is added as a benchmark, where satellites act independently of
each other. Therefore, the results showcase the following cases:

• No Communication: No sharing of fulfilled requests and retasking only when the current
task is completed.

• Intent-Conflict: Intent sharing with conflict retasking.

• Intent-Continuous: Intent sharing with continuous retasking.

• Completion-Conflict: Completion sharing with conflict retasking.

• Completion-Continuous: Completion sharing with continuous retasking.

These methods are tested in along-track (spaced true anomaly) and across-track (spaced longitude
of ascending node) formations with five satellites each on a 45◦inclination, 500 km orbit over the
city and uniform request distributions.

The performance of the methods are measured by the total reward obtained by the system, the
wasted time, and the counts of unique and duplicated requests. The total reward is the sum of the
rewards obtained by each satellite. The wasted time is defined as the time spent by the satellites
in a given action without completing it due to retasking; it is normalized by the total simulation
time — three orbits — times the number of satellites. The number of unique requests fulfilled
is the number of targets that were imaged at least once by the constellation, while the number of
duplicated requests is the number of times beyond the initial fulfillment that a target was imaged.

Figure 3 shows results for a formation of five satellites in an along-track configuration with 0.1◦

of true anomaly spacing. The results show that the Intent-Conflict method performs better than all
other methods in terms of total reward, wasted time, and unique and duplicated request fulfillments.
Cases with continuous retasking show higher wasted time since satellites retask every time another
satellite completes an action. During this retasking process, the satellite picks a new action that can
differ from the previous one, which creates a chattering behavior of constantly changing actions that
wastes time since actions are infrequently completed. Conflict retasking has less chattering behavior
since the satellite only retasks after finishing an action or when its current action conflicts with
other satellites’ actions. Completion-Conflict cases share information about imaged targets after
actions are completed, which leads to satellites wasting time when two pursue the same request.
Since the Intent-Conflict method involves sharing intent before taking actions, the satellites never
waste time due to conflicts leading to strong overall performance. Considering a city-based request
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Figure 3: Performance comparison of the five different methods in the along-track formation with
spacing of 0.1 degrees with uniform request distribution.

distribution instead of a uniform distribution leads to similar results, with the Intent-Conflict case
again delivering the best performance as shown in Figure 4.

The chattering behavior can be partially explained by the single-agent policy’s lack of experience
in the domain of mid-action dynamics (i.e. it never experienced steps stopping mid-slew during
training). As a result, the policy does not know that it can feasibly continue pursuing the same
request and thus retasks to a later request, even though continuing to pursue the request is optimal
in most cases as the environment has not significantly changed.

The No Communication method yields a higher number of duplicated requests than any other;
however, the method’s reward in the uniform request distribution cases (Figure 3) is as least as
good as the worst communication method because of the sheer number of requests fulfilled. The
dynamics of gathering many targets without coordination is seen as the number of duplicates for
the No Communication case reaches a maximum close to 6,000 requests and then decreases; this
is because the increased number of requests reduces the chance of two satellites selecting the same
target. This implies that in certain cases, some types of communication can hurt overall performance
by preventing satellites from engaging in potentially useful tasks in order to avoid duplication. In
the city-based request distribution, the greedy strategy displayed by No Communication performs
worse since the requests are sparser; when only clusters of requests are present, communication is a
net positive to maximize diversity of tasks during those short periods of time.

In the along-track formation case, the satellite in front of the formation accesses requests first; as
a result, it has a higher chance of imaging it first, collecting the reward, and tasking another request.
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Figure 4: Performance comparison of the five different methods in the along-track formation with
0.1◦ spacing with city-based request distribution.
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Figure 6: Performance comparison of the five different methods in the along-track formation with
2.0◦ spacing with city-based request distribution.

If continuous retasking is used, the other satellites retask only once the first satellite successfully
images the target, resulting in more wasted time. This is corroborated by the results presented in
Figure 5, which shows the reward per satellite and wasted time per satellite for both Intent-Conflict
and Intent-Continuous cases. The results show that the satellite in front of the formation — “Sat. 1”
— has the largest reward and the other satellites have larger wasted times in the Intent-Continuous
case, while both the reward and wasted time are more evenly distributed in the Intent-Conflict
case. The opposite is seen in the Completion-Conflict and Completion-Continuous cases, where the
satellites in the back of the formation have the largest reward and lowest wasted time. Completion
cases share the information after imaging the target, so satellites in the back have access to requests
other satellites do not have anymore, preventing them from being retasked due to conflict.

Constellation Spacing Experiments

In addition to changing the number of requests, the spacing of both formations was varied to
address the impact of the distance between satellites on the performance of the methods. Initially,
an along-track formation similar to Figure 4 with a wider spacing is addressed. After, an across-
track formation is considered where the spacing between the satellites’ longitude of the ascending
node was varied for a constant number of requests.

By increasing the separation between satellites, the performance of completion methods gets
closer to the intent methods. Figure 6 shows the case of a formation with 5 satellites in an along-
track configuration and 2.0◦of spacing between the satellites. In this case, the reward as a func-
tion of the number of requests in the Completion-Conflict case overlaps with the Intent-Conflict
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Figure 7: Along-track formation with spacing varying from 0.1◦ to 30.0◦ degrees with |R| = 6000
uniform request distribution.

case in some intervals. This behavior is associated with the number of duplicates obtained by
the Completion-Conflict and Completion-Continuous cases, which dropped from about 40 for a
0.1◦cluster separation — seen in Figure 4 — to less than 10 for a 2.0◦cluster separation. This is
explained by the probability of satellites selecting the same request decreasing with the increase in
the angular separation between satellites, increasing the number of unique images. Therefore, the
wasted time is reduced for the Completion-Conflict case, but not significantly for the Completion-
Continuous and Intent-Continuous cases.

Increasing the number of requests reduces the probability of satellites selecting the same request,
therefore reducing the number of duplicates and increasing overall rewards. Similarly, increasing
the distance between satellites, defined by the cluster spacing in degrees, also reduces the probability
of satellites selecting the same requests. Figure 7 shows the results of varying the cluster spacing
from 0.1◦ to 30.0◦ for an along-track formation and 6000 request uniform target distribution. These
results showcase that the number of duplicates reduces as the satellites are farther apart; the same is
seen for the wasted time.

Overall, the results show that the Intent-Conflict outperforms other methods, particularly in chal-
lenging cases with smaller inter-satellite distances and higher target density. Intent-sharing com-
munication reduces the number of duplicates, while conflict-based retasking reduces wasted time.
Combining these two approaches leads to the best performance, dropping the wasted time and num-
ber of duplicates to zero and avoiding chattering behavior during retasking.
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CONCLUSION

This paper presents the use of RL to solve a Dec-POMDP for the scheduling of multiple AEOSs.
The novelty of this work is showing the performance of asynchronous variable decision-making
intervals and the advantage of intent-sharing communication methods to create emergent collab-
oration in a multi-agent system, avoiding a duplication of efforts. Hence, two different retasking
methods were compared — continuous retasking and conflict-based retasking — with two different
information-sharing approaches — intent sharing and completion sharing. The results show that the
Intent-Conflict method tends to show the best performance, while cases with continuous retasking
show higher wasted time and lower rewards compared to conflict retasking. This trend is seen in
both city-based targets and uniform targets. The relative performance of the methods depends on
the distance between satellites; larger spacing results in fewer conflicts between satellites.

The single-satellite training of the agent is shown to not be suitable for retasking when inter-
rupted mid-task, as this is outside the training domain. Therefore, future work is required to train
an algorithm with continuous retasking capabilities to improve overall rewards. Also, an auction
method could be added to improve target selection in the case of intent sharing with continuous re-
tasking. Ultimately, an agent-count agnostic multi-agent reinforcement algorithm may be necessary
to maximize coordination between the agents.
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