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Abstract

This research study investigates the feasibility of the Tethered Coulomb Structure (TCS) concept.
With the TCS the spacecraft structure is segmented into discrete nodes whose relative positions
are controlled through very thin tethers. Tension among all tethers is ensured by employing ac-
tive charge control on the TCS nodes and raising their potentials to dozens of kilo-Volts. This
charging can be done using Watt levels of power and emitting extremely small amounts of fuel.
The TCS concept has the benefits that very light weight space structures are feasible that are
not only deployable (electrostatic repulsion maintains tension during deployment), but can also
change the shape and size to accommodate changing mission requirements. The DII study on
the TCS concept focuses on the nonlinear TCS and tether dynamics of a range of deployed TCS
configurations to determine how well disturbances can be rejected, and how stiff such a concept
would be. Nonlinear 6-degree-of-freedom TCS node simulations are employed to investigate the
translational and rotational stiffness as a function of the potentials employed, the tether lengths, as
well as the TCS node size and mass properties. The simulations indicate that with voltage ranging
up to 30-50kV it is feasible for the TCS node rotational stiffness to accommodate initial rotations
of 40-80 degrees per minute.

Further, the TCS shape study has demonstrated that care must be taken when developing
the TCS node network. Otherwise, even having all the nodes charged to the same polarity can
cause compressive tether elements. Multi-tether connections between the TCS nodes are shown
to provide increased resistance to rotations, as well as provide general three-dimensional stiffness.
Nonlinear finite element simulations are employed to perform detail studies of the tether dynamics
of a TCS system. The results indicate that the tether inertia and bending stiffness play a minor role
in the TCS dynamics. Eigenstrains due to fabrication, storage, and environmental effects (partial
heating, radiation) may lead to large undesirable TCS motion. However, this study suggests that
the electrostatic forces are able to mitigate eigenstrain effects if sufficiently small tether diameters
are chosen. Further, electrically conducting, charged tethers aid in mitigating large displacements
of the tethers.

The report also outlines the impact of the local space weather on the feasibility of the TCS
concept. The nominal geosynchronous plasma environment is very suitable to active spacecraft
charging. However, the plasma conditions can vary drastically, and conservative worst case con-
ditions are considered where the Debye length is reduced from 200 meters nominal to about 4
meters in length. Solving the full electrostatic field equations about a charged node in a plasma,
the effective Debye lengths are evaluated for TCS configurations. The results indicate that even
with short Debye lengths it is feasible to achieve electrostatic repulsion between charged ele-
ments up to 2-3 times the Debye length. Further, the power requirements of the TCS concept are
studied across the ranges of possible space weather conditions. Nominal Watt-levels of power
can increase to 10’s of Watt’s during solar storms. However, in all space weather configurations
electrostatic inflation of the TCS system is found feasible.
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Chapter 1

Introduction

Large space-based platforms on the order of hundreds of meters and more are sought for remote
sensing, high resolution surveillance, radiometry, space telescopes, space situational awareness
or power collection. Spacecraft formations and large space structures are two methods of achiev-
ing a large space-based platform. Advanced spacecraft and formations with shape changing
capabilities would allow for long duration missions in that the platform shape can be adjusted to
accommodate changing mission requirements.

1.1 Tethered Coulomb Structure Concept

Fixed tether 
attachment points

Tethers maintain structures 
shape/configuration

Thruster 
node

Conducting 
Tethers

Charged nodes 
provide rigidity

Sensor 
node

Figure 1.1: Tethered Coulomb structure concept

This study investigates a recently introduced
large space structure concept called the Tethered
Coulomb Structure (TCS).1,2 The TCS concept of-
fers a number of advantages over the free-flying
Coulomb spacecraft cluster concept in that the
relative motion is constrained through the tether
lengths. The TCS uses discrete spacecraft nodes
that are inter-connected with fine, low-mass teth-
ers as illustrated in Figure 1.1. Each node is re-
pelled from the other TCS nodes through the use
of electrostatic (Coulomb) forces. The inflationary
Coulomb forces provide rigidity and shape control.
The TCS size and shape is constrained by the
tether lengths which limit how far the nodes can
repel from each other. The electrostatic force is
applied by manipulating each TCS node’s poten-
tial with a charge control device. Here active emis-
sion of charged particles such as electrons or ions
are used to drive the node potential away from its
natural space weather dependent equilibrium to a desired potential level.

Similar to the Coulomb formation flying benefits, some key advantages of the TCS system
is that it only requires Watt-levels of power and very little propellant (low mass ions or electrons).
This provides the TCS with long term mission capabilities.1 The main difference between TCS and
Coulomb formation flying scenarios is that the charge control problem is significantly simplified.
Instead of requiring precise charge levels to maintain relative positions, as well as complex non-

Schaub, Maute and Moorer University of Colorado/Wacari Group 1/131



Chapter 1: Introduction Tethered Coulomb Structure Final Report

Initial loose deployment 
of tethered spacecraft 
structure components

Coulomb fields are 
engaged to provide 

required tensile forces

Tether lengths are 
increased while assuring 
tension with controlled 
Coulomb force fields

Figure 1.2: Illustration of TCS being First deployed, and then electrostatically inflated to desired
shape and size

affine control developments, the TCS only requires the charge levels to be maintained above a
certain threshold that guarantees robustness to orbital perturbations. For example, to guarantee
tether tension in the presence of differential gravity or solar radiation pressure, the electrostatic
inflationary force must be larger than these perturbations.

Primary Spacecraft 
Element

Free Tethered 
Nodes

Figure 1.3: Tether sensor nodes held next to
a primary spacecraft component

TCS configuration sizes ranging from tens to hun-
dreds of meters are envisioned by connecting strands
of charged nodes with tethers. The TCS concept has
the advantage of being launched in a compact and
stored configuration, that is then inflated or deployed
on-orbit as shown in Figure 1.2. A key feature of TCS
is that this Coulomb force inflation provides structural
rigidity and an ability to resist deformation and distur-
bances. With length-adjustable tethers it is possible to
change the structures shape and size on-orbit provid-
ing an adaptable nodal network to meet variable sens-
ing and mission requirements. The concept can also
be used to deploy and hold a sensor node in a fixed po-
sition from a primary spacecraft providing situational
awareness or local sensing (see Figure 1.3). An ad-
ditional advantage of the TCS concept is that tether
tensions can be maintained without requiring a partic-
ular orbit, equilibrium configuration or spin, like typical
tethered systems.

The potential benefits and applications of the TCS
concept are summarized through:

1. Large light-weight and deployable space structures can be achieved.

2. Provide an adaptable sensor network capable of changing its shape and size to meet chang-
ing mission and sensor requirements.

Schaub, Maute and Moorer University of Colorado/Wacari Group 2/131



Chapter 1: Introduction Tethered Coulomb Structure Final Report

3. Generate 3D tethered structures of sensors without requiring particular equilibrium configu-
rations or spinning to maintain tether tension.

4. Deployment of single sensors about the primary vehicle to monitor the local spacecraft neigh-
borhood, as well as provide external monitoring of the spacecraft health and condition.

1.2 Alternate Concepts

A large platform can be launched as a rigid structure. However, its size and mass is limited
by the capabilities of the available launch vehicles. On-orbit construction can increase the overall
dimensions of a rigid structure such as has been done with the assembly of the international space
station; however, such structures require human construction or advanced autonomous assembly
techniques. The design of deployable spacecraft components is an active research area with few
having been successfully implemented or tested in space.3,4,5,6

Along with the development of large space structure technologies, sophisticated applications
and missions are emerging. One such mission is the Eyeglass concept that is intended to be used
for Earth surveillance from Geosynchronous Earth Orbit (GEO). A 25-100 m aperture diffractive
lens is to be deployed on orbit.7,8

Two proposed missions that intend to generate large kilometer size baselines are the NASA
Goddard Stellar Imager9 and the NASA JPL study on the proposed Terrestrial Planet Finder
(TPF).10 Both of these concepts utilize a formation of free-flying spacecraft. Free flying forma-
tions offer advantages such as variable baselines, system redundancy and fractionated and re-
sponsive architectures.11 The PRISMA mission is designed specifically to demonstrate advanced
autonomous formation flying techniques.12 A challenge with free-flying craft is the complex relative
dynamics, challenging relative motion sensing requirements, and the associated control strategies
which can often require high propellant usage to maintain an accurate formation.

Spacecraft formations can be operated with conventional chemical thrusters or electric propul-
sion where the fuel propellant mass, or electrical power requirements, must be taken into careful
consideration. Further, for close proximity operations less than 100 meters, the thruster exhaust
plume impingement issues must be taken into account.

Over the last decade, novel, essentially propellant-less relative motion control concepts con-
sider using either Coulomb electrostatic interactions,13,14,15 magnetic formation flying,16 Lorentz
forces17,18,19,20 or flux-pinning.21,22 In particular, the use of inter-spacecraft Coulomb forces of-
fers close formation relative motion control with low power and propellant requirements.13,23,15

However, the control of a cluster of actively charged spacecraft remains a challenging research
area due to the non-affine nature of the electrostatic force actuation.24,25,26,27 Analytically sta-
ble charge feedback control strategies are discussed for a two-spacecraft cluster in References
28, 29, 30, and for a three-vehicle cluster in Reference 24. The control of a larger formation with
more than 3 vehicles remains an open research topic. Izzo and Pettazi propose the self-assembly
of large space structures with Coulomb spacecraft.31 However, their N -vehicle charge control law
does not have analytical stability guarantees.

Figure 1.4 shows how the concepts shape change attributes and control requirements com-
pare to alternate space platform techniques. A large, monolithic space structure such as the
Hubble space telescope is essentially launched and deployed as a single unit (except for the de-
ployed solar arrays). This provides good overall rigidity with very little relative motion or flexing
control requirements. Large space structure concepts are considered now. The iSat program for
instance, envisions deployable structures that could reach 100 meters in size and larger. This
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Figure 1.4: TCS concept shape change attributes and control requirements comparison

increased shape changing ability results in a very light weight structure that might require active
damping and smart materials to dampen out oscillations. Other large spacecraft concepts such
as solar sails or gas-inflatable structures achieve even larger shape change capabilities with ever
more light-weight structures. On the other end of large space platforms in Figure 1.4 are free-
flying formations. Here the space platform shape is free to change subject to thruster propellant
and power limitations. However, the relative motion sensing and control requirements are signif-
icantly increased in contrast to continuous structures such as iSat or solar sails. The proposed
TCS concept falls between the current solar sail and inflatable concepts, and the free-flying space-
craft cluster concepts. While the TCS nodes are interconnected, the milli-Newton tether tensions
are small enough such that the orbital motion must be taken into account when studying TCS
dynamics.

1.3 TCS Challenges

While the TCS concept has many benefits which enable novel spacecraft missions to be consid-
ered, the development of this concept is just beginning. This section outlines the primary chal-
lenges that are investigated in this multi-disciplinary study. These are initial studies for prototype
TCS to evaluate the feasibility and limitations of the TCS concept. In particular, the study will con-
sider nominally deployed TCS configurations which are holding a constant potential. Deployment
studies, or active TCS shape damping methods, are beyond the scope of this 9 month study.

1.3.1 Electrostatic Relative Motion

The charged relative motion of free-flying spacecraft is a highly nonlinear dynamical system. Cur-
rent research is investigating methods to effectively control a large cluster of charged bodies in
space. The TCS concept maintains the desired relative positions through the use of both tethers
and Coulomb force fields. Ideally the physical tethers enforce the desired component separation
distances. This provides a tremendous control simplification compared to a free-flying sensor
cluster, charged or un-charged. While simplified, the resulting TCS dynamical system remains
complex and challenging to model and analyze.
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Figure 1.5: Comparison of the Coulomb and differential gravity force magnitude and resulting
tether tension for GEO 2-craft TCS with 100 kg nodes and 1µC charge

The charged relative motion study is challenging in that it involves both the nodal orbital
motion, as well as the finite body rotations of each nodal element. Regarding the coupled or-
bital motion, the Coulomb forces must compensate for the differential gravity forces and pro-
duce repulsive Coulomb forces which guarantee that tether tension is maintained. In contrast
to the free-flying Coulomb spacecraft concept, TCS only requires the charge levels to exceed
a lower bound, and does not have to track specific values. This greatly simplified the imple-
mentation of the TCS charge control. Further, as illustrated in Figure: 1.5, the differential grav-
itational influence can have a distinctly different impact on the TCS charge requirement. Con-
sider a simple charged two-node system interconnected with a tether. If the nodes are aligned
in the orbit radial direction, then the differential gravity will always assist in maintaining tether
tension. In this scenario the Coulomb force will maintain a strong tether tension at short sepa-
ration distances where the differential gravity is the weakest, while differential gravity maintains
tension for larger separation distances where Coulomb repulsion is the weakest. Both force
complement each other. However, if the nodes are aligned with the orbit normal direction as

Rotating 
TCS Nodes

Figure 1.6: Relative TCS rotational stiffness.

considered in Figure 1.5(b), then the differential grav-
ity will try to compress the TCS structure, and fixed
Coulomb charges will only be able to maintain tether
tension for a finite range of separation distances.
Thus, a particular astrodynamics challenge is how to
construct a network of charged nodes such that ten-
sion can be maintained for general three-dimensional
configurations.

The second relative motion challenge is the rota-
tional stiffness of the TCS system illustrated in Fig-
ure 1.6. While the repulsive forces are sufficient to
overcome differential gravitational forces, the question
is how well the TCS nodes can resist rotational mo-
tion. The residual relative motion could be due to or-
bital perturbations such as differential solar radiation
pressure, or due to the structure having been recently
deployed. Of concern is how much initial TCS nodal
rotation can be present without having the nodes wrap
up in the thin tethers. The rotational stiffness will be a
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function of the nodal separation distance, where the tethers are attached, how many tethers are
used to inter-connect two nodes, and of course, the TCS potential levels employed.

1.3.2 Networked Tether Dynamics

The network of thin filaments to interconnect the charged spacecraft components must be carefully
considered. The required force levels to maintain a shape dozens of meters in size at GEO is on
the order of micro- to milli-Newtons. To avoid significant wrinkling and twisting of the thin tethers,
the material selection must be carefully coordinated with the tether thickness and strength. Sig-
nificant wrinkling can be typically avoided with a sufficient force to cable cross-section area ratio.
Because of the potentially large tether deflections that could occur, sophisticated finite element
modeling methods must be employed that enable nonlinear tether deflections to be considered.

Figure 1.7: Illustration of a continuous tether with end masses being modeled through finite ele-
ment software simulations

The higher-fidelity tether dynamics study provides insight into the conditions under which the
tether motion can be modeled through a simpler nonlinear displacement model with proportional
stiffness. This provides a verification and validation of the earlier charged astrodynamics study
which uses a simplified tether model for computational efficiency. Further, the finite element tether
model always allows studies into the impact of residual strain on the tether and TCS nodal motion,
the influence of material property choices and tether diameters, as well as the impact of the tethers
being charged. Careful study will prevent the TCS tether motion from causing significant nodal
motion or TCS shape deformations.

1.3.3 Orbital Environment

The plasma environment about a spacecraft is influenced by the material and geometry, the am-
bient space plasma environment, and the presence of solar radiation. Most spacecraft charging
research has investigated how a single vehicle will charge due to the plasma charge current and
the photo-electron current. The coupled influence with another charged spacecraft remains an
open area of research. The proposed work will investigate 1st order models of how the cluster
craft with equal charge polarity will influence the local Debye shielding and associated plasma
analytical properties.

Due to possible charge shielding from the local plasma environment it is necessary to operate
a TCS at GEO altitudes (see Figure 1.8) or higher where the plasma is nominally hot and sparse.
At GEO, a spacecraft can naturally charge to kilovolt potentials during periods of Earth eclipse.
Such kilovolt charge levels are similar to the levels of charge that are considered for the TCS
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Recent Progress in Physics-Based Models of the Plasmasphere 197

Fig. 1 Example data-model comparison (at 18:30 UT on 17 April 2002) between an IMAGE EUV snapshot
and a DGCPM plasmasphere result. Shown here is a an EUV image (count rates per pixel) on a linear
green-shade color scale, b DGCPM equatorial plane cold plasma densities on a logarithmic color scale, and
c the magnitude of the gradient of the logarithm of the density from DGCPM on a linear color scale. In the
EUV image, the view is over the North Pole with the Sun off to the left and slightly downward, as indicated.
In the model results, the view is over the North Pole with the Sun directly to the left, and distances are given
in RE . In the image, the plasmapause is the steep drop in intensity from light green to darker green. The
extracted plasmapause from this image is shown in the model results as circles. (Adapted from Liemohn et
al. 2005)

given radial slice is designated the plasmapause. These two radial distances can then be
directly compared (as a function of LT and universal time UT).

It was found that the selected two-cell convection model (McIlwain 1986; Liemohn et
al. 2001) is good at predicting the nightside plasmapause location, particularly in the post-
midnight sector. However, the small electric fields on the dayside from this model yield
incorrect dayside morphologies for the stormtime plasmasphere, at least during the recovery
phase of the storm. The Weimer electric field model (Weimer 1996) yields a better day-
side description of the plasmapause, particularly regarding the shape of the plasmaspheric
plume relative to that produced by the modified McIlwain description. The electric fields
are somewhat too strong in the inner magnetosphere, though, resulting in a systematically
smaller plasmasphere than those extracted from the observations. The self-consistent elec-
tric field model yielded the best comparison with the observed plasmaspheric plume loca-
tion. However, a too low imposed conductance in the post-midnight region led to a modeled
plasmapause that was inward of that observed in this magnetic local time (MLT) quadrant.

The second study in the series (Liemohn et al. 2005) was a systematic analysis of the
self-consistent electric field choice. In particular, the ionospheric conductance needs to be
specified in the model, and the settings for defining this parameter can be altered within rea-
sonable limits. This conductance model has sources from sunlight on the dayside, starlight
(applied everywhere), and a smooth auroral oval of high conductance. The first objective of
this study was to conduct a parametric examination of the response in the numerical sim-
ulation results to various settings for the nightside ionospheric conductance. The second
objective was to compare these results against observations to determine whether (and why)
these systematic changes in the conductance bring the simulation results closer to reality.
Like Liemohn et al. (2004), this study focused on the 17 April 2002 storm event.

There are five ways in which the conductance was changed between the simulations
performed for this study. The first was the amplitude of the oval conductance peak, which

Figure 1.9: IMAGE (Imager for Magnetopause to Aurora Global Exploration) space weather snap-
shot from April 17, 2002. (Image presented in Reference 37)

concept in this paper.32,33 This charge can be controlled with charge emission technology that
is already space-proven. One example is the volt-level control the European CLUSTER mission
demonstrates.34,35,36 A charge emission device can be used on each of the TCS nodes or on a
single node and distributed to other nodes via conducting tethers. The benefits and draw backs of
either scenario are still being investigated.

The space weather will thus have a direct impact of the electrostatic forces that are experienced
between charged TCS nodes, as well as the power requirements to maintain non-equilibrium TCS
potentials. The Low-Earth-Orbit (LEO) regime is not practical for TCS because the plasma is too
cold and dense, yielding Debye lengths on the order of centimeters. For the GEO regimen the
nominal Debye length is on the order of 150-250 meters. However, at times the colder, lower
altitude plasma environment can get pushed up into the geostationary regions as documented in
Figure 1.9 of Reference 37. As a result the plasma parameter can fluctuate radically. This compli-
cates the TCS design in that the tether tensions must not only be maintained during nominal, but
also during worst case space weather conditions. The study will explore the impact of the space
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Figure 1.10: Asymmetric two-node system with two degrees of freedom

weather on the TCS expansion force creation, as well as on the associated power requirements
to maintain desired potentials during space weather fluctuations.

1.4 Benchmark TCS Configuration

The dynamic analysis of the TCS nodes or the inter-connecting tether can quickly grow in com-
plexity as the number of nodes increases. The TCS study uses the two-node setup shown in
Figure 1.10 as a convenient benchmark.

By providing the nodes with an initial non-equilibrium separation distance r, and asymmetric
rotations, the nodes undergo one-dimensional rotational motion and translation. This reduces
the the complex six degree-of-freedom relative motion of a two-node TCS system to only 2. The
benefit is that this allows for basic analytical insight into the voltage to translational and rotational
stiffness relationship, as well as provides simple simulation cases that are used in both the TCS
nodal dynamics and TCS tether dynamics simulations scenarios.

This setup will be used as the basic benchmark setup. Note that the two nodes are only
interconnected via a single tether. Thus, as the simulation complexities are increased by consid-
ering other initial rotational motions, or considering multiple tethers interconnecting the nodes, this
performance of the benchmark setup is used for relative performance comparisons.

1.5 Report Outline

The final technical report on the DII TCS study is organized as follows. Chapter 2 discusses
the TCS nodal dynamics, taking into consideration both the translational and rotational stiffness
of charged nodes. In particular, of interest is how constant TCS potentials influences the shape
stiffness. Further, a shape study is presented where the coupled differential gravity and elec-
trostatic force interactions are studied. Of interest is how differential gravity, or having particular
three-dimensional nominal shape requirements, impacts the required charge levels, and if there
are limitations on what types of shapes can be achieved with the TCS system. Next the orbital
perturbations impact on the TCS nodal motion are studies. Finally, the chapter ends with a study
of a particular two-node system where one element is much more massive (primary spacecraft)
than the second node (sensor element).

Chapter 3 discusses how the tether dynamics is modeled through the use of nonlinear finite el-
ement simulation software. This work includes a validation study of the simplified tether dynamics
model used in chapter 2, as well as a study on when the tether wrinkling effect significantly impacts
the TCS nodal motion. The numerical tether dynamics simulation will consider deformation due to
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initial TCS nodal motions, residual strain within the tether material, as well as deformations due to
the tethers being charged and mutually repelling.

Chapter 4 presents the findings on how cold and dense the geostationary space environment
can become at worst case conditions. The resulting parameters are then used to study the impact
on the electrostatic charge shielding. In particular, the effective Debye lengths are computed
where the TCS potential exceed the Debye-Hückel assumptions. Further, numerical simulations
are performed of the plasma environment about two nodes to obtain first order force and power
variations due to having over-lapping Debye sheaths about equally charged objects. The space-
weather related electrostatic forces are then used to revisit the translational and rotational TCS
stiffness study and show the potential space weather storm impact. Finally, the TCS power and
fuel estimates are studied for a range of space environmental conditions.
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Chapter 2

Tethered Coulomb Structure Dynamics
Modeling

This work utilizes a nonlinear numerical simulation that models a general number of spacecraft
nodes which are tethered in a selectable configuration. Both the relative motion and rotation are
modeled, providing each TCS node six degrees of freedom. The tethers are modeled here as
proportional springs with nonlinear displacements. More detailed studies of the tether dynamics
are performed with finite element simulations in chapter 3. This chapter examines the dynamics
of TCS systems with the goal of obtaining qualitative and quantitative relationships between the
TCS response and its system and nodal parameters and initial conditions. A description of the
electrostatic force model used is given, as well as reasoning for its use. The system forces and
the equations of motion for translation and rotation are given. The translational stiffness of a
two-node TCS is examined for various system parameters. An analysis of rotational stiffness is
conducted to examine the effects of system parameters, multiple tethers, and nodal properties.
Orbital perturbations such as differential gravity and solar radiation pressure are analyzed and
their effects are quantified. Finally, advanced TCS concepts are presented and simulated.

2.1 Electrostatic Force Modeling

A Coulomb force is generated from the electrostatic interaction of two charged bodies. If two
bodies in a vacuum have charges q1 and q2, the Coulomb force between them is computed through

|Fc| = kc
|q1q2|
r212

(2.1)

where kc = 8.99×109 Nm2C−2 is the vacuum Coulomb constant and r12 is the separation distance
between bodies 1 and 2. If it is assumed that the spacecraft body is comprised of an outer spherical
surface that maintains a constant charge q1, then its potential in a vacuum is given as:

Vsc1 =
q1kc
ρ

(2.2)

where ρ is the radius of the spherical craft.
Equation 2.2 is only valid in a vacuum, which is not true at geosynchronous orbits (GEO)

altitudes. At GEO the Coulomb force will be partially shielded by free-flying charged particles of
the local plasma environment. The Debye length, λD signifies the strength of the shielding due
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Figure 2.1: Two closely separated charged finite spheres

to the plasma. If a small spacecraft potential is assumed compared to the local plasma thermal
energy

ecVsc1 � κTe (2.3)

where ec = 1.602176×10−19 C is the elementary charge, κ = 1.38065×10−23 JK−1 is the Boltzmann
constant and Te is the plasma electron temperature in Kelvin, then the potential about this charged
craft is represented by the Debye-Hückel equation:38,39

V = kc
q1
r
e−(r−ρ)/λD (2.4)

This potential equation incorporates plasma shielding and resembles a conservative bound of the
charge interaction the nodes will experience.40 At GEO, the ecVsc1 � κTe condition is no longer
true if the spacecraft charges to 1-10 kV potentials. As discussed in Reference 40, the neglected
higher order terms of Poisson’s partial differential equation, which led to Equation (2.4), results in
less plasma shielding of the electrostatic fields. Thus, the use of Equation (2.4) is considered a
conservative estimate of the actual potential that might exist about a body. The benefit of using
Equation (2.4) is that it allows for simplified analysis, and faster numerical simulations because
the full Poisson-Vlasov equations do not need to be solved. Solving the full Poisson-Vlasov equa-
tions requires solving complex partial differential field equations and is discussed in more detail in
section 4.2.

Taking the gradient of the potential in Equation (2.4) (assuming spherical symmetry) yields the
resulting Coulomb force Fc relationship between charged craft 1 and 2:

|Fc| = kc
q1q2
r212

e−r12/λD
(

1 +
r12
λD

)
(2.5)

The Coulomb force of Equation 2.5 is created between two isolate point charges and does not
accommodate realistic electrostatic potential distributions from having two closely separated finite
spheres. An improvement to the Coulomb force is made by modeling the effective charge between
two finite spheres of fixed potential. This has a significant influence on the effective charge of each
sphere when the center-to-center separation is low relative to the sphere radii (separations less
than approximately 10 sphere radii, r < 10ρ). Figure 2.1 shows two close spheres that maintain a
fixed potential, Vi.

In the absence of sphere 2, the point charge of 1 is computed using Equation 2.2. However,
once sphere two is introduced the net potential of both spheres changes the effective sphere
charge and consequently the Coulomb force. The potential at sphere 1 is computed including the
charge of sphere 2 using the expression:41,42

V1 = kc
q1
ρ

+ kc
q2
r

(2.6)
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Similarly, there is an equivalent potential equation for sphere 2. With spheres 1 and 2 set to
known and equivalent potential magnitudes V1 = V2, (a nominal TCS application characteristic)
the two potential equations can be independently solved for the resulting equivalent charge of
each sphere:

q∗i =
Vi
kc

(
ρr

ρ+ r

)
(2.7)

If the spheres have a large separation distance (r >> ρ) Equation 2.7 will reduce to the
standard single sphere charge defined in Equation 2.2, as required. The effective charge and
repulsive Coulomb force is reduced from the equivalent point charge model.

Generalizing Equation 2.6 for N spheres gives the potential equation:

Vi = kc

q∗i
ρi

+

N∑
j=1

q∗j
rij

 j 6= i (2.8)

Equation 2.8 can be reduced a system of linear equations given by:

V = kcAq
∗ (2.9)

where A is given by:

A =


1
ρ1

1
|r12| · · ·

1
|r1N |

1
|r12|

1
ρ2

...
...

. . .
...

1
|r1N | · · · · · · 1

ρN

 (2.10)

This system of equations is what is used in simulation to solve for the charges of each node.
An additional improvement to the Coulomb force model is the inclusion of induced charge

effects that occur when the spherical nodes are operating in very close proximity (separations less
than approximately four sphere radii, r < 4ρ). This is relevant for the TCS during situations such
as deployment. When the spheres are driven to a fixed potential, but in close proximity, the charge
distribution on the sphere is no longer evenly distributed43 and Equation 2.2 no longer provides an
accurate potential prediction.

One method to account for close sphere induced effects is by representing the spheres’ charge
with an infinite series of charges computed using the method of images.41,42,43 Figure 2.2 is used
as an example to highlight the principle of the electrostatic method of images. In isolation, spheres
1 and 2 have a fixed potential that is represented with a respective charge q1 and q2 located at
sphere center; however, at close separations a redistribution of charge occurs. This is modeled
with a series of charges qn, of decreasing magnitude and decreasing separations xn (n = a, b, c...).

ρ

r

qa

qa
qb

ρ

xbqc

V1

Figure 2.2: Method of images to model induced charge effects of close spheres
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Figure 2.3: coulomb force between spheres of radius (ρ = 0.25m) and 30 kV potentials for each
model in a vacuum. Compares the force between the isolated point charge force model to the finite
close sphere force model that includes induced effects.

The values of qn are computed for spheres of equivalent potential and polarity (repulsive force)
using:

qn = − rqn−1
d− xn−1

(2.11)

where n > 1, qa = q∗1 and xa = 0. This results in an overall reduced net Coulomb force. The values
of xn are computed using:

xn =
r2

d− xn−1
(2.12)

Numerical computation is used to calculate the ratio of charges and locations for a finite series
of charges. It is necessary to adjust the charge value to ensure the overall charge on each sphere
is equal to that of the original sphere43 (which can be the effective value for close finite spheres,
computed with Equation 2.7). The net Coulomb force on the spheres is computed by summing the
force between each charge image from within both spheres.

The effective repulsive force including both these effects is compared to the isolated point
charge force model of Equation 2.1 in Figure 2.3. These force levels are computed for a two node
TCS, with 0.25 m radii charged to |30| kV. For this force computation the induced charge affects are
computed with a summation of 20 charge images. The results indicate that the effective repulsive
Coulomb force is lower across all separation distances than the isolated point charge model in
Eq. (2.1). However, because this study focuses on the TCS properties of deployed structures
where the separation distances are at least 2 meters or more, the induced effect play a negligible
role on the TCS stiffness properties. Future work considering the deployment dynamics would
need to take induced effects into account.

An important consideration for the TCS study is that the magnitude of this force model reduction
is low for the separation distances envisioned. Table 2.1 At a separation of 2.5 m center-to-center,
(a common simulation example in this study) the effective Coulomb repulsive force is reduced
17.7% from the isolated point charge force. At a separation of 5 m the effective Coulomb force is
reduced by only 9.3% from the isolated point charge force. This force magnitude decrease that
is a result of having two charged finite spheres in close proximity requires the nodes to charge to
slightly larger magnitudes to compensate and maintain desired repulsive forces and tether tension.
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Table 2.1: Reduction in the repulsive Coulomb force between two spheres using finite and induced
close sphere model compared to the isolated point charge model. Spheres are 0.25 m radius and
charged to 30 kV potential in a vacuum.

Separation distance (m) Force reduction (%)
1 40.15

1.5 27.94
2 21.61

2.5 17.68
3 14.99
4 11.50
5 9.35

For this example, the finite sphere effects are dominant and induced charge effects are minimal
beyond separations of 1.25 m (5 radii). The range of separation distances used throughout this
analysis are greater than 5 sphere radii. For this reason the inclusion of induced effects using the
method of images are not included in the Coulomb force model. However, the effects of having
close finite charged spheres are added to the TCS Coulomb force model with the conservative
plasma shielding, resulting in the effective Coulomb force model between two spheres:

|Fc| = kc
q∗1q
∗
2

r212
e−r12/λD

(
1 +

r12
λD

)
(2.13)

where the charged q∗i are evaluated using Equations 2.9 and 2.10 for a given TCS node potential
V .

2.2 TCS Equations of Motion

The numerical simulation developed for this study solves for the six degree-of-freedom transla-
tional and rotational motion of TCS nodes. The only forces assumed acting on a TCS at GEO are
Coulomb, tensile, gravity, and solar radiation pressure forces. The Coulomb force is given in the
previous sections by Equation 2.13. The remaining forces are discussed next.

The tethers are modeled as a proportional spring with nonlinear end displacements. This
allows for general tether stretching due to arbitrary node translation and/or rotation. The magnitude
of the tensile force from a single tether is given by:

|Fs| =
{
ksδL δL > 0,

0 δL ≤ 0.
(2.14)

where ks is the proportional spring constant and δL is the stretch in the tether. Thus, this simulation
doesn’t allow the tethers to carry any compression. Instead, the tether force is set to zero if any
negative tether length displacements are computed due to the TCS nodal motion. The spring
constant is given by:

ks =
EAt
L

(2.15)

where E, At and L are Young’s modulus, tether cross-sectional area and tether length, respec-
tively.
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Figure 2.4: Dynamic model setup for a three dimensional, three-node example

If only a two-node TCS with a single tether is simulated, Equation 2.14 would give the total
tether force on a node. However, the simulation is capable of simulating more than two nodes with
multiple tethers between nodes. Figure 2.4 illustrates a simulation setup with 3 TCS nodes which
are interconnected with single tethers. The NxN adjacency matrix, [K], defines which nodes are
connected and by how many tethers. The tether length increase of tether k between nodes i and
j is defined by δLijk. Therefore, the resulting tensile force acting on node i from the tether(s)
connected to node j is:

Tij = ks

M∑
k=1

δLijkτ̂ijk (2.16)

where M is the number of tethers between nodes i and j as defined by [Kij ] and τij is the vector
defining the kth tether’s connections between node i to j.

A two-body model for gravity is used in simulation to simulate TCS operating on orbit at GEO.
The force from gravity is given as:

|Fg| =
µmi

|Ri|2
(2.17)

where µ = 3.986 × 1014 m3s−2 is the gravitational coefficient for Earth, mi is the spacecraft node
mass and Ri is the inertial position of node i.

Solar radiation pressure is simulated using a simplified model. The SRP force magnitude is
given by:

Fsrp = PsrpCrAsc (2.18)

where Psrp, Cr, and Asc are the solar radiation pressure, surface reflectivity of the spacecraft and
the cross-sectional area of the spacecraft, respectively.

2.2.1 Translational Equations of Motion

All four forces presented previously impact the translational motion of a TCS node. Including
gravity and solar radiation pressure, then summing over all nodes, including the Coulomb force of
Equation 2.13 and the tensile force of Equation 2.16, results in translational equations of motion
of node i being calculated by:

R̈i = − µ

|Ri|2
R̂i+PsrpCrAscŜi+

N∑
j=1

Kij
Tij
mi

+

N∑
j=1

kcq
∗
i q
∗
j (−r̂ij)

mir2ij
e−rij/λD

(
1 +

rij
λD

)
, i 6= j (2.19)
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where R̂i is the unit vector from the Earth to node i, Ŝi is the unit vector from the Sun to node
i, N is the total number of nodes in the TCS model, and Kij is a scalar based on the adjacency
matrix which is 0 if no tethers are connected or 1 if any tethers are connected. Equation 2.19 is
the full translational motion for a TCS in GEO. However, most of the simulations in this work use a
simplified model for translational motion where gravity and solar radiation pressure are neglected.
The simplified equation of motion is given by:

R̈i =

N∑
j=1

Kij
Tij
mi

+
N∑
j=1

kcq
∗
i q
∗
j (−r̂ij)

mir2ij
, i 6= j (2.20)

Justification for this simplification is given in further sections.

2.2.2 Rotational Equations of Motion

It is assumed that the only forces that affects the rotational motion of the TCS nodes are the
tether forces. Coulomb force induced torques are neglected because symmetric charge distribu-
tion is assumed, and the electrostatic forces are acting on the center of each node. Differential
gravity torques are ignored because the spacecraft are spherical. Solar radiation pressure can
induce torques but is not included early on. Solar radiation pressure disturbances are studied in
section 2.6.

Therefore, the attitude of each spacecraft node is dependent on the torque acting on the node
from each tether:

BΓi =
N∑
j=1

[
M∑
k=1

(
Kij
Bpijk × [BI]i

ITijk
)]

, i 6= j (2.21)

where pijk is the body fixed vector that defines the location of the kth tether attachment point on
node i that connects to node j and [BI]i is the direction cosine matrix of the attitude of node i
relative to the inertial frame. The angular acceleration of each node is defined in the body frame
with Euler’s rotational equations of motion:44

[I]ω̇i = −ωi × ([I]ωi) + Γi (2.22)

The attitude of each node is represented with the Modified Rodrigues Parameters (MRP) which
are integrated using the differential kinematic equation:

σ̇i =
1

4

[
(1− σ2i )[I3x3] + 2[σ̃]i + 2σiσ

T
i

]
ωi (2.23)

The MRP set will go singular with a rotation of ±360◦. To ensure a non-singular description, the
MRP description is switched to the shadow set whenever |σ| > 1.44

2.3 Translational Stiffness Study

Using the TCS equations of motion, a simplified two-node TCS configuration (benchmark two-
node TCS problem shown in Figure 1.10) was simulated to study the effects of various system
parameters on the translational stiffness of the TCS. The system parameters under review are the
node separation distance, node mass, tether spring constant and node voltage. Table 2.2 shows
the nominal parameters used in the numerical simulation sweeps. The spring stiffness reflects a

Schaub, Maute and Moorer University of Colorado/Wacari Group 16/131



Chapter 2: Tethered Coulomb Structure Dynamics Modeling Tethered Coulomb Structure Final Report

value that is similar to that of Amberstrand fiber, a commercially available conducting wire. These
parameters are the values used when varying the other parameters. Figure 2.5 shows the transla-
tional frequency and peak to peak oscillation amplitude for the various simulations conducted. For
these simulations the nodes are started with the tensile and Coulomb forces in equilibrium and
then each node is given and equal and opposite initial translational velocity of 0.1 mm/s.

Table 2.2: Translational Simulation Parameters

Separation Distance 5 m
Node Mass 50 kg

Spring Constant 35.8398 N/m
Node Voltage 30 kV

Figure 2.5 illustrates the common trends of a two-node configuration as the TCS parameters
are varied. For example, Figures 2.5(a), 2.5(b), 2.5(c), and 2.5(d) show the frequency and ampli-
tude response if the voltage and separation distance is varied and all other parameters are held
fixed. Naturally the translational frequency and the amplitudes vary as the TCS equilibrium de-
pends on the voltage and separation distance used. The figure shows that larger voltages and
shorter separation distances increase the translational stiffness.

Figures 2.5(e) and 2.5(f) show how the translational stiffness increases if the nodal masses
are kept small. Thus, for the TCS concept, it is beneficial to keep the support nodes as light as
possible to increase the overall TCS stiffness. Additionally, Figures 2.5(g), 2.5(h) show that a stiffer
tether provides more translational stiffness.

The tether displacements for varying voltages in Figure 2.5(b) remain low, unless the poten-
tials are very low, making is easier for the tethers to go slack. The low-voltage deflections in Fig-
ure 2.5(b) illustrate the large compressions that occur with the weak electrostatic restoring forces.
Also, note that the tether displacements generally remain small on the order of sub-millimeters for
the other parameter variation sweeps. For all cases the translation oscillation periods are on the
range of 10-20 seconds.

2.4 Rotational Stiffness Study

A TCS system stiffness of more interest than the translational is that of rotational stiffness. Rotation
of individual nodes is of specific interest for TCS systetms because this will have a direct impact
on the deployment and orbital maneuvers of TCS systems. The aim of this section is to determine
the allowable rate and direction of node rotation that that will return the node to its original attitude
and that does not result in the tether becoming entangled with the node. A TCS configuration
must be robust towards initial conditions and perturbations. Therefore the rotational stiffness of
a two-node configuration in deep space is examined. Figure 2.6 details an asymmetric rotation
scenario that is considered. This scenario is chosen because there is no net angular momentum,
thus isolating the effects of TCS system parameters. Please note that this 2-node, single-tether
configuration provides the worst possible rotational stiffness of a TCS system. As such, it is a good
system to study to examine lower performance bounds. This section examines the two-node TCS
for various TCS parameters and initial rotation rates. Additionally, the rotational stiffness of a two-
node TCS configuration with multiple tethers is analyzed. Lastly, the impact of nodal properties
such as inertia, radius and multiple tether attachment angles is examined.
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Figure 2.5: TCS nodes translational motion behaviors
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Figure 2.6: Asymmetric rotational motion

Table 2.3: Rotational Stiffness Simulation Parameters

Separation Distance 5 m
Node Mass 50 kg

Spring Constant 35.8398 N/m
Node Charge 30 kV
Node Radius 0.5 m

Inertia Distribution Solid Sphere
Initial Spin 10 deg/min

2.4.1 System Parameter Effects

Similar to the translational stiffness analysis, a two-node TCS is examined for various voltages,
masses, separation distances and spring constants. The rotational case shown in Figure 2.6
is simulated with the parameters shown in Table 2.3, and the resulting rotational frequencies and
maximum angular deflections are shown in Figure 2.7. For these simulations the nodes are started
at a TCS equilibrium with an initial angular spin rate of 10 deg/min.

Figures 2.7(c) and 2.7(e) show that the rotational stiffness of a TCS configuration can be
increased by decreasing either the node mass and/or decreasing the node separation distance.
Additionally, Figures 2.7(d) and 2.7(f) show that decreasing the separation distance and/or node
mass also decreases the maximum deflection of the nodes. From Figures 2.7(g) and 2.7(h) it can
be seen that the spring constant has little effect on the rotational stiffness of a TCS configurations.
Finally, Figures 2.7(a) and 2.7(b) show that increasing the node voltage effectively increases the
TSC system rotational stiffness. Note that the rotational oscillations now have a period on the
order of hundreds of seconds, where in contrast the translational motion was faster on the order
of tens of seconds. The TCS dynamics studies indicate that the translational and rotational mode
experience little cross-coupling due to this frequency separation.

Even though these cases are a lower bound on TCS performance, Figure 2.8 shows that the
spacecraft are still capable of withstanding moderate initial rotation rates of 10’s of degrees per
minute without the tether wrapping up around the spacecraft. For this single tether spherical
two-node TCS, tether wrap up would occur when a node is rotated 90 degrees from the vector
connecting the two nodes. Figure 2.8(a), 2.8(b) and 2.8(c) show the maximum angular deflection
of nodes over various ranges for 2.5m, 5m, and 10m separation distances. The results from
Figure 2.8 also agree with the results from Figure 2.7, which show that larger voltages and shorter
separation distances increase the rotational stiffness of the TCS configuration.
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Figure 2.7: Rotational motion dependencies
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Figure 2.8: Stiffness towards initial spin rates

Table 2.4: Spherical Node Rotation Causing Tether Entanglement (for Single-Axis, Asymmetric
Rotations)

Rotation Axis Single-Tether (deg) Double-Tether (deg) Triple-Tether (deg)
X-axis (Node 1 Positive) 90 90 - φ 90 - θ
X-axis (Node 1 Negative) 90 90 - φ 90 - φ

Y-axis N/A 90 90
Z-axis 90 90 90 - ψ

2.4.2 Multiple Tethers

A key thing to note about rotation of single-tether two-node TCS is that it does not provide full
three-dimensional stiffness. From Figure 2.6 it can be seen that initial rotations about the Y-axis
would have no restoring torque. One way to provide the desired three-dimensional stiffness is to
connect the nodes with two or three tethers. The connections for these scenarios are shown in
Figure 2.9.

However, the additional tethers do affect the rotation angle at which a node will become en-
tangled with a tether. The variation in entanglement angles can be seen for the double- and
triple-tether TCS configurations in Figure 2.9. Table 2.4 lists the nodal rotation angles at which
each TCS configuration will reach the entangled state. The entanglement rotations in Table 2.4
are based upon geometry, where θ = tan−1(2cotφ) and ψ = tan−1

(
2cotφ/

√
3
)
. However, one

should note that nodes are not likely to be spherical and the tether attachment points could be
attached away from the nodes on booms, thus increasing the possible absolute rotations.

2.4.2.1 Nodal Motion

A single-tether connection yields the simplest and most intuitive dynamics for a two-node TCS
configuration under the disturbance of an initial angular velocity. Figure 2.10(a) shows the re-
sulting dynamics of the single-tether system under an initial asymmetric nodal rotation about the
X-axis using the simulation conditions in Table 2.3. It is important to note that for all results the
translational motion is only due to the rotational coupling, as the node is initially at translational
equilibrium. Figure 2.10(a) shows the smooth and sinusoidal nodal separation, the asymmet-
ric nodal rotations and the tether tension of a single-tether TCS. Under this small initial rotation
disturbance (10 deg/min) the nodes rotate a maximum of approximately 20 degrees about the
X-axis and the tether remains under tension at all times. Larger initial disturbances can make the
single-tether configuration go slack and cause the motion to no longer be sinusoidal. In contrast
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(a) Double-tether XZ view (b) Double-tether YZ view (c) Triple-tether XZ view (d) Triple-tether YZ view

(e) Triple-tether 3D configuration

Figure 2.9: Two-node TCS tether configurations and connections

to the single-tether configuration, Figure 2.10(b) shows the translational and rotational motion for
the double-tether configuration with initial rotations about the X-axis. The nodal motion is now
piecewise linear. The nodes rotate, only about the X-axis, at a constant rate until the tethers be-
come taught and reverse the direction of rotation. The piecewise linearity of a multiple-tether TCS
configuration is due to the tethers no longer remaining continuously taught. This is shown by the
plot of tether tension for each tether (T1 and T2). Maintaining a taught tether is not a required
dynamic property, although there is concern of a tether reaching a buckled or tangled state. In
these simulations each tether only reaches a slightly loose state on the order of millimeters over
its entire 4 meter length.

The triple-tether configuration for this X-axis rotation results in similar dynamics to that shown
for the double-tether in Figure 2.10(b). Although the triple-tether demonstrates similar separations
and X rotations to the double-tether it adds another unique complexity to the two-node TCS con-
figuration. The 3D spread of the triple-tether attachment points adds coupled off-axis rotational
motions that is most apparent with rotations about the Z-axis. Figure 2.11 shows the three axes
rotational motion of a triple-tether node with an initial rotation about the Z-axis. From the figure
it can be seen that there is no longer pure rotation about the Z-axis. Figures 2.9(c) and 2.9(d)
highlight the cause, showing that the connections for tethers 2 and 3 are no longer on a nodal
axis and rotation leads to tether force moments and off-axis rotations. Figure 2.11(b) shows the
resulting tensions for each tether, reiterating the coupling effect.
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(b) Double-tether configuration

Figure 2.10: TCS nodal dynamic response to asymmetric nodal rotation about the X-axis

2.4.2.2 Multiple Tether Advantages

As shown in the prior sections, additional tethers in a two-node configuration adds complexity
to the nodal dynamics. However, there are rotational stiffness advantages that multiple tethers
provide. With the inability of a tether to hold torsional loads there is no stiffness in the Y-axis (for a
single-tether) and only restoring torques for rotations about the X and Z axes are feasible. Using
a TCS configuration with two or three tethers allows for there to be a restoring torque for rotations
about any axis.

Additional tethers not only provide added system robustness to initial rotations, but they also
reduce the maximum deflection a node can incur. The maximum angular deflection of the node is
a measure of the TCS configuration rotational stiffness to an angular rate disturbance. Figure 2.12
demonstrates this by showing the maximum principal rotation angle reached as a function of initial
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Figure 2.11: Triple-tether nodal dynamic response to asymmetric nodal rotation about the Z-axis
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Figure 2.12: Maximum absolute principal rotation as a function of initial initial angular rate

angular rate. The maximum rotation is shown for each of the tether number configurations and
shown for three cases, each with an initial rotation about a different axis. Note the difference in the
angular rate axis of each of these figures. Angular rates about the Y-axis result in large rotations
much faster than the other two axis rotations. It is shown in Table 2.4 that the multiple tether nodes
have a reduced absolute rotation before entanglement occurs. For this reason Figure 2.13 shows
the maximum rotation of the nodes relative to their corresponding entanglement rotation angle.
Additionally, Figure 2.14 reiterates the effect of multiple tethers on node rotation by showing the
absolute maximum rotations as a function of node potential. The rotation about each axis is now
analyzed for the three rotation cases using the results of Figures 2.12-2.14.

Case 1: Figure 2.12(a) shows that for asymmetric rotation about the X-axis, the addition of
tethers reduces the maximum absolute angle reached from the single-tether case. The double-
tether does, however, perform better than the triple-tether configuration. This is due to the moment
arms provided by the tethers. From Figures 2.9(b) and 2.9(d) it can be seen that the attachment
points in the positive Z direction for the two tether configuration are further away from the X-axis
than the three tether configuration. This difference provides a larger moment arm for the restoring
torques and is one reason the multiple tether configurations are stiffer at higher rates for this
rotation. Additionally, the double-tether has larger moment arms than the triple-tether and that is
why the double tether performs the best for X-axis rotation.

While the addition of tethers certainly reduces the absolute rotational deflection of the node, the
increased tether attachment locations places the node closer to the entanglement rotation. This
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(b) Case 2: Y-axis rotation
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(c) Case 3: Z-axis rotation

Figure 2.13: Maximum principal rotation relative to maximum entanglement rotation (Table 2.4)

is demonstrated in Figure 2.13(a) which shows the maximum angular deflection as a percentage
of the entanglement rotation, which is a function of each tether configuration and rotation axis
(as defined in Table 2.4). The result is that each tether configuration has a similar proximity to
entanglement. The double-tether keeps the node further from entanglement than the single-tether,
while the triple-tether results in entanglement with disturbances above 30 deg/min.

The effect of multiple tethers on X-axis rotation as a function of node potential is seen in
Figure 2.14(a). The double- and triple-tether both provide more rotational stiffness across all node
potentials than a single-tether TCS configuration. The double-tether does provide a slightly more
stiff system than the triple-tether configuration.

Case 2: Rotational stiffness about the Y-axis for a two and three tether configuration is shown
in Figure 2.12(b). The single-tether configuration is omitted because it has no rotational stiffness
for Y-axis rotations. From the Figure it can be seen that the double- and triple-tether configurations
provide equal rotational stiffness about the Y-axis, because the moment arms about the Y-axis are
equal. Figures 2.9(a) and 2.9(c) show how the moment arms are all the same radial distance from
the Y-axis.

Figure 2.13(b) shows how close the Y-axis angular deflection comes to reaching the entangle-
ment angle. The Y-axis has a reduced disturbance angular rate as the nodes have less rotational
stiffness, however the inclusion of additional tethers provides prevention of entanglement for the
disturbance range analyzed. In this case the single-tether entanglement rotation is undefined as
the tether is bound about itself.
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(a) Case 1: X-axis rotation
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(b) Case 2: Y-axis rotation

10 20 30 40 50
0

20

40

60

80

Voltage (kV)

M
ax

 R
ot

at
io

n 
(d

eg
)

 

 
1 Tether
2 Tether
3 Tether

(c) Case 3: Z-axis rotation

Figure 2.14: Maximum absolute principal rotation as a function of nodal potential

Figure 2.14(b) provides additional evidence of the effects of multiple tethers on Y-axis rotation.
Again the double- and triple-tether configurations perform identically. However, at lower potentials
the nodes reach undesirable rotation angles. The lower rotation rates and the large node rotation
agrees with Figure 2.12(b) and shows that for a two-node TCS configuration the Y-axis has the
least rotational stiffness.

Case 3: For a single-tether the Z-axis rotation is identical to X-axis rotation. However, Fig-
ure 2.12(c) shows that a double-tether configuration provides less stiffness than a single-tether
for rotations about the Z-axis. Again the moment arm is the cause for this reduced stiffness. The
moment arm about the Z-axis in Figure 2.9(b) is less than what the moment arm of a single-tether
provides. The moment arm for this configuration is only in the Y direction and is reduced pro-
portionally to the attachment angle φ. A triple-tether configuration also has a moment arm that
is dependent on φ but the maximum rotation is less than that of a single-tether. The additional
stiffness in a three tether configuration is because tethers 2 and 3 in Figure 2.9(d) provide a larger
moment arm about the Z-axis. The larger moment arm arises because tethers 2 and 3 are not
located in the ZY plane, which adds additional length to the moment arm.

The relative angular deflection about the Z-axis is shown in Figure 2.13(c). These results in-
dicate that the double-tether system will reach entanglement at disturbances above 20 deg/min.
The triple-tether however performs significantly better than than the double- and single-tether con-
figurations at keeping the node away from entanglement.

The rotational stiffness for rotations about the Z-axis and dependence on node potential is
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shown in Figure 2.14(c). The figure shows that a triple-tether configuration provides more ro-
tational stiffness than a single-tether. Also, a double-tether configuration again provides lower
stiffness than a single-tether for rotations about the Z-axis.

Case Summary: The results of Figure 2.12 indicate that there is up to a 75% decrease in the
absolute maximum angular rotation about the X-axis by using a triple-tether over a single-tether.
Similarly, there is up to a 60% decrease in the Z-axis rotation with a triple-tether over the single. As
the single-tether offers no Y-axis rotational stiffness the addition of tethers does provide rotational
stiffness. These values are approximate and are calculated for an initial rotation rate of 20 deg/min
and a node voltage of 30 kV. The actual quantitative increase in stiffness is a function of the initial
rotation rate and node potential.

The multiple tether configurations have a geometry that places the tether attachment point
closer to the entanglement rotation prior to any rotational motion. The results of Figure 2.13
indicate that the multiple tethers offer minimal advantage in reducing the chances of entanglement,
and sometimes perform worse than a single-tether. The advantage of using multiple tethers is that
it reduces the absolute nodal rotation for an equivalent initial disturbance as well as introducing
3D rotational stiffness.

In addition, from these results it would appear that a equally spaced quad tether would offer
all axis rotational stiffness as well as symmetric moment arms. This combination may provide
an advantageous rotational stiffness capability over the tether configurations used in this study.
However, a quad tether configuration is no longer statically determinate and any slight discrepancy
in tether length results in asymmetric motions. This concept is to be investigated in future studies.

2.4.3 Spacecraft Nodal Properties

To further expand the TCS capabilities it is advantageous to explore other system parameters
that affect the rotational stiffness of the system. Spacecraft nodal parameters such as radius,
mass distribution and tether attachment angle are critical components in determining the rotational
stiffness of a TCS configuration. Figure 2.15 shows the effect of varying these nodal parameters
on the maximum absolute rotation of a two-node configuration, disturbed about the X-axis.

Figures 2.15(a) and 2.15(b) show the results for a single-tether TCS as a function of mass dis-
tribution and nodal radii respectively. Similar trends can be shown for multiple tether configurations.
The results of multiple tethers are shifted in maximum angle in the same ratio as the comparison
shown in Figure 2.12(a). Figure 2.15(c) shows the results of a double-and triple-tether TCS con-
figuration as a function of the tether attachment angle φ. All other simulation parameters are listed
in Table 2.3.

With a node of a certain mass and radius, the shell model provides the largest possible nodal
inertia. This scenario then shows the lower bound on the rotational stiffness that can be achieved.
The solid sphere (homogeneous mass distribution throughout the sphere) will have a lower inertia,
and thus increased rotational stiffness. However, even the solid sphere model is very conservative.
Ideally the TCS nodes would have most of their mass near the node center, and thus obtain an
even lower moment of inertia. As Figure 2.15(a) indicates, compared to the shell model, a 2-
3 fold increase in the rotational stiffness can be achieved by designing the TCS nodes to have
their most massive components near the nodal center, and thus a lower inertia. Additionally, for a
constant mass distribution, solid sphere, Figure 2.15(b) shows that larger node radii increase the
rotational stiffness. Even though the inertia is increasing for larger radii, the larger moment arms
for the tethers dominates and thus increases the stiffness. Therefore, Figures 2.15(b) and 2.15(c)
indicate that the ideal TCS would have its attachment points the furthest away from the center of
the craft. Additionally, Figure 2.15(c) shows that as the tether attachment angle increases (moment
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Figure 2.15: Maximum principal rotation as a function of nodal parameters

arm increases) the maximum absolute rotation decreases. Based on the results of this figure an
ideal tether attachment angle is approximately between 20-45 degrees.

Taking into consideration the previous results of nodel parameters an ideal TCS spacecraft
node design may appear similar to the conceptual illustration of Figure 2.16. This design maxi-
mizes the spacecraft rotational stiffness, increases nodal wrap-up angles and provides a spherical
conductive surface for even Coulomb force generation. The mass moment of inertia is minimized
by placing the spacecraft components within a low-mass exterior conducting shell. The tethers are
connected to attachment arms that extend beyond the shell increasing the tether moment arms
and consequently rotational stiffness. This attachment arm design also increases the maximum
angle before nodal wrap up.

2.5 Shape Configuration Study

For the shape configuration study, four TCS configurations are analyzed. The primary goal of the
shape configuration study is to determine what charge levels would be necessary to overcome
differential gravity effects experienced by a TCS in orbit. As such, only differential gravity forces in
circular orbits and electrostatics are assumed to be acting on the structures. Each configuration is
analyzed as a static structure, and analytic expressions are determined for all tether forces. These
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Conducting shell

Figure 2.16: Illustration of conceptual TCS spacecraft node design

expressions are all determined assuming that each of the nodes in the TCS are of equal mass,
m. Simplifying assumptions are made in order to yield conditions that would guarantee tension in
all the tethers (neglecting dynamic effects). This section seeks to determine how the TCS shape
impacts the minimum necessary charge level required to maintain tension, and it electrostatic
inflation can be used to ensure tension for all types of shapes.

2.5.1 Method of Analysis

For the structural analysis, we assume that the tethers do not deflect under the forces consid-
ered. As such, dynamic effects of node motion are not considered. Instead, a static analysis is
performed using the method of joints. Applying Newton’s second law at each of the nodes yields

mir̈i = Fi, (2.24)

where mi is the mass of the node, r̈i is the inertial acceleration of the node, and Fi is the total
force acting on the node which consists of tether, Coulomb, and differential gravity forces. Since a
static assumption is made, no node motion is present. Thus, Eq. 2.24 is reduced to

Fi = 0. (2.25)

Contained in Eq. 2.25 are three equations for each node (one for each direction). If we define the
reference coordinate frame as the orbital frame, we can expand Eq. 2.25 to obtain

ôr : Tr + Cr + Fg,r = 0 (2.26)
ôt : Tt + Ct + Fg,t = 0 (2.27)
ôn : Tn + Cn + Fg,n = 0, (2.28)

where the subscript r represents the along track direction, t the along-track direction, and n the
orbit normal direction. The forces Tr, Tt, and Tn represent the tether forces projected in each of
the three directions. Similarly, Cj is used to represent Coulomb forces, and Fg,j is the differential
gravitational forces. To determine the components of the forces in each of the three directions, the
dot product identity can be used. For example, the projection of the tether force between craft 1
and 2 on the ôr axis can be obtained for node 1 by

Tr,12 = T12ê12 · ôr, (2.29)
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where ê12 is the unit vector pointing from craft 1 to craft 2. To obtain the forces for all tethers in the
TCS, Eqs. 2.26 - 2.28 are applied to multiple nodes until all tethers have been solved for.

2.5.2 Differential Gravity Model

For the differential gravity model, the linearized gravitational force model from Reference 1 is used.
To compute the differential gravitational forces acting on each node, the center of mass of the TCS
is used as the reference position. The linearized gravity effects are only present in the orbit radial
and orbit normal directions. In the radial direction, the linearized force is

δFr ≈ m
3µ

r3c
L, (2.30)

where m is the node mass, µ is the gravitational constant, rc is the orbit radius of the TCS center of
mass, and L is the distance of the node above or below the center of mass in the radial direction.
For any node above the center of mass, L will be positive. This means the force will be directed
away from the earth. If the node is below the center of mass, L will be negative and the force will
be directed towards the earth.

The differential gravity force for the orbit normal direction is expressed as

δFn ≈ −m
µ

r3c
L, (2.31)

where for this case L represents the magnitude of the distance of the node from the center of
mass in the orbit normal direction. The orbit normal differential gravity effects will always tend to
compress the craft inwards towards the center of mass.

2.5.3 Three-craft TCS Analysis

Two configurations are analyzed which both consist of three craft in an isosceles triangle arrange-
ment, as shown in Figure 2.17. The difference between the two configurations is how they are
arranged with respect to the TCS orbit frame O direction. The first of the two configurations is
aligned such that craft 2 and 3 are aligned in the orbit along-track direction, ôt. Craft 1is cen-
tered above craft 2 and 3 in the orbit radial direction. It is this arrangement which is pictured in
Figure 2.17. The only dimensions needed to describe the geometry of this configuration are the
lengths L and b.

To determine the tether tensions, a static analysis is applied to the three craft structure. For
the configuration depicted in Figure 2.17, the tensions in each of the three tethers are

T12 = kc
q1q2
L2
12

e−
L12
λ (1 +

L12

λ
) +mµ

L12

r3c
(2.32a)

T13 = kc
q1q3
L2
13

e−
L13
λ (1 +

L13

λ
) +mµ

L13

r3c
(2.32b)

T23 = kc
q2q3
b2

e−
b
λ (1 +

b

λ
)−mµ b

2r3c
, (2.32c)

where µ is the earth gravitational parameter, kc is the Coulomb constant, and rc is the distance
from the center of the earth to the TCS center of mass. It is evident that if q2 = q3 the tensions
in tethers T12 and T13 will be equal, due to the symmetry of the shape. Furthermore, electrostatic
inflation is not needed to ensure tension in T12 or T13, as these two tethers will naturally experience
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Figure 2.17: Triangular 3-craft TCS configuration aligned with orbit along-track direction
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Figure 2.18: Tension due to differential gravity only for tethers T12 and T13 at different altitudes.
With q1 = 0, the tethers maintain tension.

tensile forces due to differential gravitational effects. This is illustrated in Figure 2.18, which shows
the tether tensions due solely to gravity at different altitudes. For the simulations, the structure is
assumed to be in orbit at an altitude ranging between 20,000 and 50,000 km, and in a plasma
environment with a Debye length of λ = 200 m. All craft in the structure were assumed to be of
equal mass, with m=100 kg.

Tether T23, on the other hand, does require charging of craft 2 and 3 to ensure the tether will be
in tension, due to the natural compressive effects of differential gravity for this particular geometry.
For tension, it is required that T23 > 0. Thus, the required charge product q2q3 can be determined
as

q2q3 >
mµb3

2kcr3c (1 + b
λ)
e
b
λ . (2.33)
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Values for q2 and q3 can be determined by taking the square root of Eq. (2.33). This yields a result
where q2 = q3. Note that the right hand side of Eq. (2.33) will always be positive, so there is no
chance of obtaining imaginary charges using this method. The minimum necessary charges to
ensure tension, assuming q2 = q3, for a range of altitudes are presented in Figure 2.19 as solid
lines. Interestingly, Eq. (2.33) is independent of L. What this means is that we may place craft 1
arbitrarily high above craft 2 and 3 without affecting the necessary charges to maintain tension in
tether T23. The distance L could be increased to maximize the gravity induced tension in tethers
T12 and T13, so that craft 1 could remain uncharged.

The second configuration considered has the same geometry as in Figure 2.17. Instead of craft
2 and 3 being aligned in the along track direction, however, they are arranged in the cross track
direction. This arrangement provides an additional compressive force to tether T23 due to differen-
tial gravity. In this configuration, the tensions in tethers T12 and T13 are equal to the expressions in
Eqs. (2.32a) and (2.32b). The tension in tether T23, however, is now computed as

T23 = kc
q2q3
b2

e−
b
λ (1 +

b

λ
)−mµ b

r3c
. (2.34)

The compressive forces acting on T23 for this configuration are twice that of the previous case,
due to the additional differential gravity effects. To ensure that tension is maintained, craft 2 and 3
must be charged so that

q2q3 >
mµb3

kcr3c (1 + b
λ)
e
b
λ . (2.35)

The charges required, again assuming q2 = q3, to maintain tension are shown in Figure 2.19
as dashed lines for different altitudes. As expected, the necessary charges for the cross-track
alignment are higher than those for the along-track alignment. Note that at higher altitudes, less
charge is needed to maintain tension. This is due to the fact that gravitational effects are smaller
at higher altitudes. The comparison of these two similar structures yields a clear picture that the
effect of orbital alignment can have on tether tensions. By selecting certain nominal arrangements
(along-track alignment in this case), required charges can actually be lower for the same structure
than would be needed in a different alignment.

2.5.4 Four-craft TCS Analysis

The third case under consideration is a 4-craft tetrahedron, as depicted in Figure 2.20. Craft 1, 2,
and 3 make up the base, which is an equilateral triangle with side length L. Craft 4 is positioned
above the base center of mass at a height b in the orbit radial direction. Craft 3 lies in the orbit
along-track direction, and craft 2 and 3 are aligned in the orbit cross-track direction relative to the
TCS center of mass. In this configuration, the geometry is determined entirely by the dimensions
L and b.

The tensions in the six tethers for the tetrahedron arrangement are

T12 = kc
q1q2
L2

e−
L
λ (1 +

L

λ
)− 3

4
mµ

L

r3c
(2.36a)

T13 = kc
q1q3
L2

e−
L
λ (1 +

L

λ
)− 1

4
mµ

L

r3c
(2.36b)

T14 = kc
q1q4
L2
14

e−
L14
λ (1 +

L14

λ
) +

3

4
mµ

L14

r3c
(2.36c)

T23 = kc
q2q3
L2

e−
L
λ (1 +

L

λ
)− 1

4
mµ

L

r3c
(2.36d)
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Figure 2.19: Necessary charges on craft 2 and 3 to maintain tension in tether T23 at different alti-
tudes, assuming q2 = q3. Solid lines represent along-track alignment and dashed lines represent
cross-track alignment.

T24 = kc
q2q4
L2
24

e−
L24
λ (1 +

L24

λ
) +

3

4
mµ

L24

r3c
(2.36e)

T34 = kc
q3q4
L2
34

e−
L34
λ (1 +

L34

λ
) +

3

4
mµ

L34

r3c
. (2.36f)

The symmetry of the tetrahedral configuration leads to similarities in several of the tethers. If
q1 = q2 = q3, the tensions in tethers T14, T24, and T34 will be the same. Also, if q1 = q2, the tensions
in tethers T13 and T23 will be equal. In this tetrahedral configuration, the tethers connected to craft
4 will be in tension, even when q4 = 0. Differential gravity effects are enough to ensure that the
tethers T14, T24, and T34 will be in tension without craft charging. This is illustrated in Figure 2.21,
which shows the tensions in these three tethers solely due to differential gravity effects. With no
spacecraft charging, the forces in the tethers will be on the order of 0.1 mN or less. Spacecraft
charging is required, however, to ensure tension in the base tethers T12, T13, and T23. Without the
use of Coulomb forces, the tethers will naturally go slack due to differential gravitational effects. To

L L

L
b

ôt

ôn
ôt ôr

q1, m1 q2, m2

q3, m3

q4, m4

Figure 2.20: Tetrahedral 4-craft TCS configuration
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Figure 2.21: Tension in tethers connected to craft 4 due only to differential gravity. From symmetry,
T14 = T24 = T34.

guarantee rigidity of the three base tethers, it is required that

q1q2 >
3mµL3

4kcr3c (1 + L
λ )
e
L
λ (2.37)

q1q3 >
mµL3

4kcr3c (1 + L
λ )
e
L
λ (2.38)

q2q3 >
mµL3

4kcr3c (1 + L
λ )
e
L
λ . (2.39)

These three inequalities correspond to the three base tethers. Note that if q1 = q2, satisfying
Eq. (2.38) also guarantees that Eq. (2.39) will be satisfied. Determining acceptable ranges for the
three craft charges that satisfy these inequalities can be done by first ensuring that q1 = q2 by
taking the square root of Eq. (2.37). This gives the minimum necessary charges on craft 1 and 2.
With q1 = q2, the minimum required charge for craft 3 can be found by satisfying either Eq. (2.38)
or Eq. (2.39), since they are equal. The results of this procedure are shown in Figure 2.22. The
minimum needed charges on craft 1 and 2, assuming q1 = q2 are shown as solid lines. These
values were then used to determine the minimum charges needed on craft 3, which are shown as
dashed lines. It should be said that there is no reason why these particular assumptions need to
be made; rather, they were used merely to provide a simple way to compute charges required to
maintain tension. Note that, similar to the three-craft structure, the tensions in the base tethers
are independent of the height of craft 4, b. Again, this means craft 4 may be placed arbitrarily high
above the base without causing extra compression in the base tethers.

2.5.5 Six-craft TCS Analysis

The fourth structure under study is a six craft TCS, pictured in Figure 2.23. Unlike the three
previous tethered Coulomb structures analyzed, the six-craft configuration does not feature fully
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Figure 2.22: Minimum charges required for tension for three base craft. Charges on craft 1 and 2
(q1 = q2) are shown as solid lines, while charges needed for craft 3 are shown as dashed lines.

interconnected nodes. This means that a single node does not have a tether connection to all
other nodes. As a result, inter-craft Coulomb forces affect more than only one tether at a time.
This means that when charging the craft, careful consideration must be taken to avoid inducing
unmanageable compressive forces in the structure. The other cases examined only exhibit com-
pressive forces due to gravity, but with the six craft TCS inter-craft Coulomb forces may cause
compression in the tethers.

The shape of the structure under investigation is presented in Figure 2.23. Four craft are
arranged in a square with a side length of 2L. A craft is placed above and below the center of
this square at a distance of h in the orbit radial direction. The dimensions are thus defined by the
lengths h and L, with the side length S computed as

S =
√
h2 + 2L2. (2.40)

If we define the magnitude of the Coulomb force between two craft as

Fij = kc
qiqj
r2ij

e
−
rij
λD

(
1 +

rij
λD

)
, (2.41)

and recall our equal mass assumption, then the resulting tether forces are expressed as

T12 = F12 − F14 (2.42a)

T13 = F13 + F14 +
S

2

(
F16

h
+ 3

mµ

r3c

)
(2.42b)

T15 = F15 + F14 +
S

2

(
F16

h
+ 3

mµ

r3c

)
(2.42c)

T23 = F23 +
F24√

2
+ L

[
F14

S
− F56

S
− 1

2

(
F16

h
+ 3

mµ

r3c

)]
(2.42d)
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ôr
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Figure 2.23: Six-Node TCS System

T25 = F25 +
F24√

2
+ L

[
F14

S
− F56

S
− 1

2

(
F16

h
+ 5

mµ

r3c

)]
(2.42e)

T26 = F26 + F56 +
S

2

(
F16

h
+ 3

mµ

r3c

)
(2.42f)

T34 = F34 +
F24√

2
+ L

[
F14

S
− F56

S
− 1

2

(
F16

h
+ 5

mµ

r3c

)]
(2.42g)

T35 = F35 − F24 + 2
√

2
L

S
(F56 − F14) (2.42h)

T36 = F36 − F56 (2.42i)

T45 = F45 +
F24√

2
+ L

[
F14

S
− F56

S
− 1

2

(
F16

h
+ 3

mµ

r3c

)]
(2.42j)

T46 = F46 + F56 +
S

2

(
F16

h
+ 3

mµ

r3c

)
. (2.42k)

Because Fij are positive forces of arbitrary value (due to the choices of qi in Eq. (2.41)), is apparent
that spacecraft charging can lead to compressive forces in more than one tether. In fact, this is
the case in tethers T12, T23, T25, T34, T35, T36, and T45, which is seven out of the eleven tethers in
the structure. Also, we make note that for the six craft TCS, the forces in the base tethers are
dependent on the vertical distance h, unlike with the previous three cases examined. This can be
attributed to the fact the structure is no longer fully interconnected.

A quick examination of tethers T12 and T36 shows that for tension, it is required that q2 > q4
and q3 > q5. Also, if we assume q1 = q6 and q4 = q5, tether T35 requires that q3 > q2. If these
assumptions are made, and the inequalities are satisfied, tethers T12, T36 and T35 will always
experience tensile forces. This leaves four tethers which may experience compressive forces,
depending on the charges. It is important to develop a way to ensure tension in the remaining
tethers. This can be done by determining which tether will experience the minimum tensile forces.
The similarity of the tether force expressions makes this a relatively straightforward task. Consider
the similarities of tethers T25 and T34, where the only difference between the two is the first term.
Because we have already assumed that q4 = q5 and q3 > q2, we know that T25 < T34 because
F25 < F34. That is, if we select charges to ensure tension in T25, T34 will also be in tension. A
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similar analysis can be performed to compare tethers T23 and T45 with the result that T45 < T23.
Thus, we know which two tethers will experience the smallest tensile forces out of T23, T25, T34,
and T45. What remains is to determine which tether, T25 or T45, will have the minimum tension.
Unfortunately, this is not immediately clear. While it is true that F45 < F25 due to the fact that
q4 < q2, it is not clear whether or not this difference is enough to make up for the additional
compressive forces due to gravity experienced by T25. Thus, we must consider both of the tethers
when determining a set of charges that will ensure tension. If we define the value of q4 = q5 as
some fraction, f , of q2 such that

q4 = q5 = fq2, (2.43)

we can develop two relationships that must be satisfied in order to ensure tension in all tethers.
Using tether T25, charge requirements for q2 can be determined as

q22 > 8e
2(1+

√
2)L

λD L3λD

 kcq
2
1r

3
ce
−2h
λD ( 2h

λD
+ 1) + 20h3mµ

4fkch3r3c

[
4e

2
√
2L

λD (2L+ λD) + e
2L
λD (4L+

√
2λD)

]
 . (2.44)

Likewise, consideration of tether T45 yields

q22 > 8e
2(1+

√
2)L

λD L3λD

 kcq
2
1r

3
ce
−2h
λD ( 2h

λD
+ 1) + 12h3mµ

4fkch3r3c

[
4fe

2
√
2L

λD (2L+ λD) + e
2L
λD (4L+

√
2λD)

]
 (2.45)

With a few assumptions, the charge requirements can be reduced to satisfying only a few condi-
tions. In sum, tension can be ensured in all tethers by satisfying the following:

1. q1 = q6

2. q4 = q5 < q2

3. q3 > q2

4. Satisfaction of the greater of Eqs. (2.44) and (2.45)

There are no explicit requirements on the magnitudes of the charges q1 and q6, only that they
be positive to make sure that tethers T12 and T36 are not slack. There is a direct impact on the
necessary magnitude of charges q2 and q3, however. Assigning too high of a charge for q1 and q6
could necessitate an unimplementable charge level on craft 2 and 3.

Regarding which of Eq. (2.44) and (2.45) will be greater, there are two factors which will affect
the result for a given shape: the fraction value, f , and the Debye length, λD. As an example,
consider a six craft TCS formation at GEO with the dimensions h = 25 m and L = 7.5 m, with
q1 = q6 = 1 µC. The effects of varying λD and f on the requirements for such a shape are
illustrated in Figure 2.24. To examine the effects of varying f , the Debye length is set at a constant
λD = 100 m. Likewise, when considering the effects of varying Debye lengths, f is held at a
constant 0.5. Figure 2.24 shows that the values of both parameters affect which of T25 and T45
requires a higher magnitude of q2. This is the reason why both inequalities must be checked when
determining charges for the craft.

To ensure that the outlined assumptions and inequality constraints do yield tension in all teth-
ers, a range of Debye lengths are tested using the above assumptions. At each different value
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Figure 2.24: Effect of varying a) f and b) λD on Eqs. (2.44) and (2.45)

of λD the required q2 is calculated and all tether tensions are computed. For these calculations,
the values in Table 2.5 were used. The resulting tether tensions using these parameters and the
value of q2 calculated using Eqs. (2.44) and (2.45) are presented in Figure 2.25 for a range of
Debye lengths. All of the tethers are positive except one, which is zero, at each Debye length
computed. At small Debye lengths, it is tether T45 that is slack. For the larger Debye lengths,
tether T25 is slack. This is a result of the effect demonstrated in Figure 2.24(b). The reason these
tethers experience zero tension is because q2 was computed as the greater of the right hand sides
of Eqs. (2.44) and (2.45). To actually satisfy the inequality, q2 would have to be increased above
the value used here. In doing this, tethers T25 and T45 would be in tension. The craft charges cor-
responding to the tensions calculated in Figure 2.25 are presented in Figure 2.26. The necessary
charges are on the order of 2 µC or less, even at worse-case Debye lengths of 5 meters.

The method described here for ensuring tension in all tethers is simply one approach to the
problem. There is no reason why certain assumptions must be made; they were only done to
simplify the problem and arrive at useful analytical solutions to the problem. In fact, there are an
infinite number of potential charge combinations which would yield tension in all tethers, with no
clear direction towards an “ideal” solution. The analysis performed for the six-craft TCS clearly
indicates the complexities of designing structures with large numbers of craft. Not only are there
many different conditions which must be met to guarantee tension, there are also the added con-
cerns of inducing tension in the tethers due to inter-node electrostatic forces.

2.5.6 Compressive Forces due to Electrostatics

The existence of compressive electrostatic forces in the six-craft TCS is unique compared to the
other three configurations analyzed. This is an intriguing result, as it implies that in complex teth-
ered Coulomb structures careful design consideration must be given to ensure that compressive

Table 2.5: Parameter values used in tension calculations

q1 = q6 q3 f h L rc
1 µC 1.1q2 0.5 25 m 7.5 m 42164 km

Schaub, Maute and Moorer University of Colorado/Wacari Group 38/131



Chapter 2: Tethered Coulomb Structure Dynamics Modeling Tethered Coulomb Structure Final Report

0 20 40 60 80 100
−2

0

2

4

6

8

10

12

14

16

18

Debye Length, !
d
 (m)

T
e
t
h
e
r
 
T
e
n
s
i
o
n
 
(
µ
N
)

 

 
T12
T23
T25
T34
T35
T36
T45

Figure 2.25: Tensions computed in each of the tethers using inequality constraints to define q2
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Figure 2.26: Craft charges computed using inequality constraints to ensure tension in TCS tethers

forces are not generated by electrostatics which cannot be overcome. Naturally, it is of interest to
determine when such cases may or may not be possible. That is, what kinds of structures may
exist where electrostatic forces cannot cause compression in any tethers, assuming all craft are
charged to the same polarity (positive or negative)?

While, in general, large and complex structures consisting of many nodes (5 or more) need
to be analyzed on a case by case basis to determine potential compressive forces caused by
electrostatics, we can return to the case of completely interconnected structures and demonstrate
that, at least for statically determinate structures, no compression can occur in any of the tethers
due to electrostatics. By completely interconnected, we mean that each node is connected to all
other nodes with a tether. This is illustrated in Figure 2.27. For comparison, a structure that is not
completely interconnected is also presented.

For a statically determinate structure, we can apply the method of joints at each node to de-
termine the tether tensions. In order for the structure to be statically stable, the forces acting on a
particular node must satisfy ∑

C +
∑

T = 0, (2.46)
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Figure 2.27: Example of a completely connected (left) and non-completely connected (right) truss
structure

where C is the Coulomb force vector acting on the node, and T is the tether force acting on
the node. Because we are concerned with electrostatic compressive effects, differential gravity is
omitted from this analysis. This has no effect on how the Coulomb forces affect the tethers, as
gravitational forces are decoupled from the electrostatic forces. To proceed further, we first define
an orthogonal coordinate frame described by

N : (n̂1, n̂2, n̂3).

If we define a unit vector êij as a vector from craft i to craft j in the formation, we can express the
forces acting on craft i as

Fi =
k∑

j=1,j 6=i
(Tij − Cij)êij, (2.47)

where Tij represents the tether force between craft i and j, and Cij represents the Coulomb force
generated between craft i and j. In our three-dimensional coordinate system, we obtain three
equations using Eq. (2.46):

n̂1 : Fi1 =
k∑

j=1,j 6=i
Tij êij · n̂1 −

k∑
j=1,j 6=i

Cij êij · n̂1 = 0 (2.48)

n̂2 : Fi2 =
k∑

j=1,j 6=i
Tij êij · n̂2 −

k∑
j=1,j 6=i

Cij êij · n̂2 = 0. (2.49)

n̂3 : Fi3 =
k∑

j=1,j 6=i
Tij êij · n̂3 −

k∑
j=1,j 6=i

Cij êij · n̂3 = 0.. (2.50)

To determine the tether forces this process must be repeated for each tether until enough ex-
pressions have been derived such that the tether forces may be solved for algebraically. If we
denote the number of tethers in the TCS as t, we will need to obtain t independent equations
using Eqs. (2.48)-(2.50). With these t equations, the problem can be expressed in matrix form as

[At×t]T = [Bt×t]C, (2.51)

where T = [T12 T13 ... Tij ]
T and C = [C12 C13 ... Cij ]

T . The [A] and [B] matrices are populated
using Eqs. (2.48)-(2.50). The form of these equations, however, guarantees the every row of the
[A] and [B] matrices will be identical. Thus, [A]=[B], and solving for T yields

T = [A]−1[A]C = C. (2.52)

Thus, for a completely interconnected TCS, the tether force component due to electrostatics be-
tween craft i and j will equal the Coulomb force between the two craft.
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This result has important implications regarding compressive forces generated by electrostat-
ics in a TCS. Recalling that the force between any two craft is given as

Cij = kc
q1q2
r2ij

e−rij/λD
(

1 +
rij
λD

)
, (2.53)

it is immediately clear that all tether force components due to inter-craft Coulomb forces will be
tensile so long as all craft have the same polarity, irregardless of the TCS size or shape. This is
directly applicable to all three and four craft TCS formations. Any formation of three or four craft
must be completely interconnected in order for it to be statically stable (that is, tethers can balance
all other forces and prevent dynamic motion of any node). Thus we can conclude that for any 3 or
4 craft TCS, it is impossible to generate compressive forces in any tether due to the inter-
craft electrostatic forces, so long as all craft have the same polarity. This conclusion also
applies to 5-craft completely interconnected structures. Beyond five craft, the system becomes
statically indeterminate, and such structures have not yet been analyzed.

2.5.7 Discussion of Shape Configuration Study Results

The shape analyses presented here were done using basic static analysis techniques, assuming
no deflection in the tethers. Careful consideration must be taken when observing the charge
results required for tension. Actual implementation of the charges presented in the analysis would
yield ideal tether tensions on the order of µN. In practice, tensions on this order would be too
low to ensure rigidity of the structure. The important results of the shape configuration study
concern the magnitude of the gravitational forces within the tethers, and the minimum amount
of craft charges needed to offset those forces. Furthermore, we have observed possible issues
which may be present when designing complex tethered Coulomb structures, such as induced
compressive forces due to craft charging. Lastly, our analysis has demonstrated that for completely
interconnected tethered Coulomb structures of five craft or less, craft charging will only cause
tensile forces within the tethers so long as all craft have the same polarity.

2.6 Orbital Perturbation Study

The full translational equations of motion, Equation 2.19, for a TCS models a system that is af-
fected by differential gravity and solar radiation pressure (SRP). However, both forces have been
neglected in previous sections to isolate effects on translational and rotation motion. This section
examines both perturbations separately and provides justification for using the simplified equa-
tions of motion of Equation 2.20. The benchmark two-node TCS will be used for this analysis.
Since the rotational and translational equations of motion are coupled, both the translation and
rotation of a two node TCS are investigated.

2.6.1 Differential Gravity

Previous simulations examine TCS rotational motion with no gravitational effects. However, TCS
systems are envisioned to be operated at GEO where differential gravity can affect the nodal
dynamics. A two node TCS system will be only be stable on orbit if the two nodes are in an
orbit radial configuration. This condition is also stable if the nodes undergo initial asymmetric
rotations. Table 2.6 shows the percent difference between the max principal rotations of a two-
node TCS system with 10 deg/min asymmetric initial rotations in deep space as compared to GEO.
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From the table it can be seen that putting the benchmark problem into GEO has minimal effect
on the rotation of the TCS system. Therefore, differential gravity can be excluded from simple
rotational simulations so that the TCS system dynamics can be isolated and analyzed. However,
it is important to note that with differential gravity effects, rotations are no longer purely about a
single axis for single- and double-tether TCS but they are very small respectively.

Table 2.6: Maximum Rotation Percent Difference Between Deep Space and GEO Simulations

Initial Rotation Axis Single-Tether Double-Tether Triple-Tether
X-Axis -0.0839% 0.6780% -1.1596%
Y-Axis N/A -0.1514% -0.1514%
Z-Axis 1.5793% 1.3376% -2.2354%

2.6.2 Solar Radiation Pressure Compression

Solar radiation pressure is the only other prominent external force for spacecraft at GEO. The force
on a spacecraft due to solar radiation is given in Equation 2.18. The worst case SRP compression
force for a two spacecraft system is when the two TCS nodes are aligned relative to the sun and
one node shields the other from the SRP. This worst case configuration is shown in Figure 2.28.

Figure 2.28: Worst case, two-node solar radiation pressure orientation

The key concern with SRP and TCS is if it will cause the TCS to loose tension. For the worst
case scenario, loss of tension will occur when Coulomb inflationary force between nodes 1 and 2,
Equation 2.5, is equal to the SRP force on node 1. Dividing Equation 2.18 by Equation 2.5 yields
a percent of lost Coulomb force. Simplifying and letting K = πPsrpCrkc be a constant, results in
the percent of lost Coulomb force

%LCF = K
r212

V 2e−r12/λD
(

1 + r12
λD

)100 (2.54)

which only depends on the node voltage(V ), separation distance (r12) and the Debye length (λD).
However, if the nodes are not the same radius, the ratio of the crafts radii must be added to the
numerator of Equation 2.54. The simulation is started at TCS equilibrium with the parameters of
Table 2.7. As long as the percent of lost Coulomb force is less than 100, there will be no loss of
tension in the TCS. Figure 2.29 shows the percent of lost Coulomb force for the plausible operating
regions for a two identical node craft in deep space.

It is important to note that this is for the worst case configuration with a worst case debye length
of 4m. Even so, the SRP force only overcomes the Coulomb force for low potential values at high
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Table 2.7: Rotational Simulation Parameters

Separation Distance 5 m
Node Mass 50 kg

Spring Constant 35.8398 N/m
Node Charge 30 kV
Node Radius 0.5 m

Psrp 4.56e-6 N/m
Cr 1
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Figure 2.29: Percentage of lost Coulomb force

separation distances. Looking at the typical operating regions of 30 kilovolt potentials and 5 meter
separation, Figure 2.29 shows that the SRP force is less than a percent of the Coulomb force and
thus can be considered negligible.

Note that this plot shows this force ratio percentage on a logarithmic scale. For the voltages
(20-40kV) and separation distances (2-5m) that are being considered between the nodes, the
solar radiation force is 2-3 orders of magnitude smaller than the Coulomb force. For smaller TCS
configurations the solar radiation pressure will have a negligible impact. However, as larger TCS
node clusters are considered, the differential solar could contribute to large scale flexing of the
TCS shape.

2.6.3 Solar Radiation Pressure Torques

The effects of solar radiation pressure on TCS compression is not the only way SRP can affect
a TCS. SRP may also cause torques on a TCS. Two different worst case SRP torque scenarios
are examined for a single tether two node TCS in deep space. The first scenario is a SRP torque
about the system center of mass. This can arise when one craft is experiencing the effects of SRP
and the other is not, due do some external shielding of a craft. The SRP torque about the center
of mass scenario is shown in Figure 2.30.

Assuming the two craft are identical and that the SRP force is given in Equation 2.18, then the
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Figure 2.30: SRP center of mass torque scenario

Figure 2.31: SRP body torque scenario

torque on the system will be given by
Tsrp = Fsrp

r

2
(2.55)

where r is the node separation distance. Since this scenario is considered a worst case it is not
envisioned to last for long durations. A three-hour simulation for the SRP center of mass torque
was conducted to examine the effects of the torque. The simulation was started with the Coulomb
and tensile forces in equilibrium. The parameters for the simulation are shown in Table 2.7. The
simulation shows that as expected, the two craft TCS begin to rotate about their center of mass due
to the external torque. After the three hour simulation the TCS was rotating at 1.5e-4 rad/s about
the center of mass. However, when working with formations of spacecraft the relative positions
and rotations are often of more importance. The change in relative position and rotation for the
simulation was less that 1e-15 deg, effectively zero. Therefore the only concern with having a SRP
torque around the system center of mass is that the system will begin to rotate as a whole.

The second SRP torque of interest is an SRP body torque. This type of torque can occur if a
only a portion of a spacecraft is shielded. Figure 2.31 show a possible scenario. The figure shows
that node one shields approximately half of node two from the SRP force. Therefore the SRP force
on node two is given by

Fsrp2
= PsrpCr

Asc
2

(2.56)

This force is simplified by assuming the SRP only acts on a half sphere instead of the crescent
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Figure 2.32: SRP body torque relative rotation

shape that most likely would occur with spherical craft. This total force is applied at the centroid of
the cross-section half-circle of node two and results in the body torque

Tsrp = Fsrp
4r

3π
(2.57)

where r is the radius of the node. This type of SRP torque that arises when nodes shield other
nodes, will become more prominent working with TCS that have many nodes. A simulation is run
where the only SRP force applied is on half of node two. The force on node one is neglected to
isolate the effects of the body torque on one node. The nodes are started at equilibrium and all
parameters are listed in Table 2.7. The change in relative position between the two nodes is again
less than 1e-15 m. However, there is a change in relative rotation, which is shown in Figure 2.32.
From the figure it can be seen that there is max relative rotation of 0.1 deg between the two craft.
The rotation due to SRP body torques is minimal and the effects of these torque will not be the
dominating perturbation.

The results of both SRP induced torque scenarios show that SRP will only have negligible
effects on a TCS. The relative positions and rotation between TCS will be negligibly affected. The
key effect from solar radiation pressure is that it will rotate a TCS system as a whole. This, like
most other space systems affected by SRP, could be counteracted using thrusters or momentum
wheels.

2.7 Advanced Dynamic Concepts

Previously, the two-node TCS is the only configuration that has been examined in the shape stiff-
ness studies. This section provides a preliminary study of advanced TCS concepts to further
show its capabilities. Work with a two-node TCS is expanded upon by examining a similar two-
node TCS, but with one craft much larger and massive than the other such as in a mother-child
configuration of having a primary craft deploy a small sensor sub-vehicle. Additionally, a three-
node TCS with the nodes in an equilateral triangle is examined. Lastly, the topic of damping is
introduced and a simple control law is simulated to show the further prospects of a TCS.

2.7.1 Mother/Child Configuration Study

One envisioned use of a TCS is to provide situational awareness for a geostationary satellite. Here
one large spacecraft (the mother) has a smaller spacecraft (the child) tethered to it as illustrated
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Figure 2.33: Illustration of mother/child spacecraft scenario

Table 2.8: Mother Child Simulation Parameters

Parameters Mother Child
Mass (kg) 2000 50
Radius (m) 2 0.5
Voltage (kV) 30 30

Separation (m) 5 5

in Figure 2.33. This type of TCS configuration can provide a unique vantage point for on-orbit in-
spection of the mother craft, rendezvous, docking and refueling operations and space environment
measurements. The key advantage that a TCS can provide for situational awareness at GEO is
that it can hold a child spacecraft at a relatively fixed position and angle with respect to the mother
craft with minimal use of control and propulsion.

Free Mother-Craft Scenario: The trivial set up for a TCS mother child craft configuration is
when the two craft are in the orbit radial configuration. This type of system would even be effective
for spacecraft without charge, but less robust to perturbations. Charging the spacecraft allows for
additional configurations with negligible relative translation and rotation. For example, using the
parameters in Table 2.8, the maximum relative translation and rotation of the two craft after one
orbit when the craft are oriented in either of the principal local vertical local horizontal directions is
less than 1 mm and 0.001 deg, respectively. These simulations use a one tether TCS where the
spacecraft started with initial Coulomb and tensile forces in equilibrium.

A configuration of more interest is when the child craft is placed at an arbitrary position relative
to the mother craft. One such example would be placing the child craft where it would have positive
radial and along track components relative to the mother craft. Figure 2.34 shows time elapsed
snapshots of a tethered structure (TS) and TCS for this set up with the system parameters given
in Table 2.8. From the figure it can be seen that for a TS the relative position and attitude of the
two craft varies over an orbit. The tether is mostly slack and the child craft only rotates the mother
craft after approximately 5 hours. The TCS however, maintains a reasonably fixed relative position
and rotation between the two craft and the changes in relative position and rotation from the initial
conditions can be seen in Figure 2.35. The reason for this consistency is that tether between the
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Figure 2.34: TS and TCS comparison of mother child configuration
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Figure 2.35: TCS mother child relative position and rotation considering a freely rotating mother
craft

two craft remains almost always in tension throughout the orbit. These results are also typical if
the child craft has an out of plane component, relative to the mother craft.

Fixed Mother-Craft Scenario: Even though a mother child TCS keeps relative positions and
rotations nearly constant for an arbitrary set up, it does cause the system as a whole to rotate
relative to the orbit frame. This is typically not desired, but can be easily fixed by implementing a
simple attitude control solution. Figure 2.36 shows the relative values for a mother child configu-
ration with a control that zeros the torque on the mother craft by applying an equal and opposite
torque to that which is applied by the tether. In this scenario the mother craft orientation is held
fixed, while the tethered child spacecraft is free to rotate due to the differential gravity influence.
Of interest are how much the child spacecraft will move relative to the mother craft in this scenario.
The parameters for this simulation are given in Table 2.8 and the control was updated at 10Hz.

The top figure in Figure 2.36(b) shows the relative rotation between the child and mother craft,
while the bottom plot illustrates the rotation of the mother craft relative to the orbit frame. From
the figure it can be seen that this simple control can hold a child craft almost fixed relative to a
mother craft while keeping the formation aligned with the orbit frame. The relative motion is larger,
as expected, than with the free-mother craft scenario. However, in this constrained mother craft
orientation scenario the relative motions are still held very small with the constant electrostatic
force.

2.7.2 TCS Triangle Configuration

Three-axis stiffness of a two-node TCS is achievable using a configuration with multiple tethers.
The two-node configuration is considered the worst case scenario. Adding additional nodes in-
creases the stiffness. A configuration examined here is a three-node TCS configuration in an
equilateral triangle distribution. This three-node configuration was simulated with two nodes hav-
ing initial asymmetric rotations as shown in Figure 2.37.

The configuration in Figure 2.37 was simulated for various initial asymmetric spin rates about all
three axes. The maximum rotation of the initially rotating nodes results are shown in Figure 2.38.
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Figure 2.36: TCS mother child relative position and rotation with control considering a mother
craft with a fixed/controlled orientation

Additionally, the figure shows the maximum rotations for a similar two-node configuration.
As one would expect from the geometry of the three-node TCS the rotational stiffness is in-

creased relative to the two-node TCS for rotations about the X-axis. However, the Z-axis rotational
stiffness is decreased, relative to the two-node configuration. The important thing to note from
Figure 2.38 is that there is now three dimensional rotational stiffness. A two-node single-tether
TCS with rotation about the Y-axis has no restoring torque, but with an additional node now there
is a restoring torque. This simulation shows that additional nodes can increase rotational stiffness
depending tether orientation. Future work could look at multiple tether configurations with more
than two nodes as well as TCS configurations with more than three nodes.

2.7.3 Two Node Damping Control

From the results of the previous sections it can be seen that there is no natural damping of trans-
lation or rotation for a TCS. In reality there may be loss of energy in the tether or other structure
deformations which leads to damping of motion. This section examines a control to damp out
rotations of a two node TCS undergoing initial asymmetric rotations. Since the translational and
rotational motion of a TCS are coupled, both will damp out as long as the system is always remov-
ing energy.

For this work it is assumed that the nodes have a means of applying an internal torque with a
momentum wheel or other control device. A control to damp out rotations of a single spacecraft is
given in Reference 44 and is:

Ui = − [P ]ωi (2.58)

where [P ] is a symmetric, positive-definite feeback gain matrix and ωi is the rotation rate of node
i. Combining this control with Equation 2.22 yields the following rotational equation of motion.

[I]ω̇i = −ωi × ([I]ωi) + Γi +Ui (2.59)

Figure 2.39, shows the results of the control in Equation 2.58 applied to both nodes of the TCS
scenario in Figure 2.6 with the parameters of Table 2.9. Figure 2.39 shows that initial rotations can
be quickly nullified and leave minimal translational motion.
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Figure 2.37: Three-node equilateral triangle configuration

The control in Equation 2.58 is useful in that is shows that TCS systems can cope with rota-
tions. However, TCS nodes should be as simple as possible and it is not desirable to have a control
mechanism on each node. Figure 2.40 shows the results of an identical simulation to that of Fig-
ure 2.39, but with only one node implementing the control of Equation 2.58. Figure 2.40 shows
that the rotation of the node with the control device is reduced and remains low. The rotation of the
other is slowly decreasing as energy is transfered and then removed by the node with a control.
Additionally, the translational motion is also being reduced by the control. If this control is com-
bined with a charge control to dampen out translational motion, it is believed the rotation of both
nodes will quickly diminish. The results of this simulation show that a control mechanism does not
need to be on every node. However, the control used has not been optimized and improvements
should be considered in future work.
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Figure 2.38: Three-node equilateral triangle maximum rotations
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Table 2.9: Controlled Rotational Simulation Parameters

Parameter Value
Separation Distance 5 m

Node Mass 50 kg
Spring Constant 35.8398 N/m

Node Charge 30 kV
Initial Rotation Rate 30 deg/min

Node Radius 0.5 m
Inertia Distribution Solid Sphere

Gain 0.1
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Figure 2.39: System response to two-node rotation control

2.8 Discussion of TCS Dynamics Modeling

This chapter examines the dynamics of TCS systems. Force models and equations of motion are
given. Simulations are conducted to examine the effects of varying system parameters on trans-
lational and rotational stiffness. It is found that systems with nodes of low mass and high potential
that are close together provide the highest translational and rotational stiffness. Additionally, it is
shown that tether properties have negligible effects on rotational motion.

Rotational analysis of a two-node TCS configuration shows that this configuration can with-
stand moderate initial rotations up to around 1 deg/sec before the tether would become entangle
with the spacecraft. Also, adding additional tethers yields full three-dimensional stiffness and in-
creases the maximum allowable initial rotation by 60-70%. However, tether entanglement will now
occur at lower absolute values of rotation, if the nodes are spherical. Finally, for optimal rotational
stiffness it is found that the ideal node configuration should have most of its mass at the center of
the structure with the largest possible radius for the tether attachment points and if multiple tethers
are used, the optimal connection angle is 45 degrees.

The shape configuration study illustrates how the TCS shape influences the viability for electro-
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Figure 2.40: System response to one-node rotation control

static forces to ensure tether tension at all time. For fully inter-connected systems charge solutions
with equal polarity will result in repulsive nodal forces. However, with more open structures the
study illustrates the existence of shapes where a set of node charges could lead to the loss of
tether tension.

The effects of orbital perturbations caused by differential gravity and solar radiation pressure
are analyzed. Simulations show that differential gravity has minimal effect on the rotations of
two-node TCS. Compression of a TCS system due to solar radiation pressure can be considered
negligible because it only has noticeable effects for low potentials (<10kV) and large separation
distances (>10m). Nodal torques due to SRP shown that only when there is partial shielding of a
node will the torques affect relation position and rotation of TCS. However, SRP can cause TCS
systems to rotate as a whole.

Lastly, advanced TCS concepts are presented to show TCS wide applicability. Mother child
simulations show that a TCS can be used to hold a small craft relatively fixed to a large craft in any
orbit configuration. A three-node TCS shows that larger structures provide full three-dimensional
stiffness. Furthermore, a control was presented to show that basic damping of initial rotations is
feasible for TCS but must be examined further.
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Chapter 3

Finite Element Tethered-Dynamics
Modeling

3.1 Introduction

In this section we refine our tether model and consider a higher-fidelity model that accounts for
large displacements and rotations as well as local structural instabilities. The motion of the tether
is predicted by a nonlinear transient finite element approach. The finite element model accounts
for the inertia of spacecraft and the electrostatic forcing.

The goal of our study is to establish a feasible design space for the tether and to identify
potential failure modes of the TCS caused by undesirable tether behavior and spacecraft-tether
interaction. We study the influence of various design parameters on the TCS dynamics. Based
the observed stress levels in the tether for nominal load scenarios we identify a range of material
suitable for the tether design.

3.2 Structural and Electrostatic Force Modeling

To gain insight into the structural behavior of the tether-spacecraft system we model the motion of
the tethers via a nonlinear two-dimensional elastic model, assume that the spacecraft are perfectly
rigid, and approximate electrostatic forces via a lumped model. Starting with the equations of
motions of the overall system, we describe the individual models.

3.2.1 Equations of Motion of the System

The transient response of the tether-spacecraft system due to electrostatic forcing and initial per-
turbations is modeled in the time domain. The equations of motion of the system are derived from
the kinetic and potential energies using Lagrange’s method.

Assuming a system of NS spacecraft and NT tethers the total kinetic energy is given by:

TSystem =
∑
NS

TS,i +
∑
NT

TT,i (3.1)

where TS,i and TT,i are the kinetic energies of the individual spacecraft and tethers. The total
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potential energy of the system is composed of:

USystem =
∑
NS

US,i +
∑
NT

UT,i + UES (3.2)

where US,i and UT,i are the potential energies of the individual spacecraft and tethers; UES is the
potential energy of the electrostatic field. In the following we neglect gravity. Assuming a rigid
spacecraft the potential energy US,i vanishes and UT,i equals the strain energy of a deforming
tether.

Assuming a conservative system, i.e. TSystem+USystem = const., the equations of motions are
derived via Lagrange’s method as follows:

d
dt

(∂TSystem
∂q̇i

)
− ∂TSystem

∂qi
+
∂USystem
∂qi

= 0, i = 1, 2, . . . , Nq (3.3)

where qi denote the Nq generalized coordinates. Using a finite element method to spatially dis-
cretize the above equations, the generalized coordinates are the degrees of freedom of the finite
element model. The system response is advanced in time via a numerical time integration scheme.

3.2.2 Tether Models

The main goal of the study presented in this section is to capture the dynamics of tethers and their
interaction with the spacecraft. Therefore selecting an accurate tether model is of crucial impor-
tance. Due to the slenderness of the tether, the model needs to account for large displacements
and rotations. Large strain effects are neglected as the TCS operates in a low-force environment
and the tethers are assumed to be designed under small strain requirements.

A literature survey shows that beam models are often used to model tethers for space appli-
cations.45,46,47 However, in contrast to most application scenarios considered in the literature,
the low-force environment of the TCS allows for extreme slenderness. Therefore, we study the
accuracy of both, bar and beam models in the following.

Assuming a linear kinematics and formulating the equations of motions in the undeformed con-
figuration, bar models predict that the tether provides axial stiffness in tension and compression.
Beam models also account for bending stiffness. Limiting the following study to two-dimensional
models, torsion is neglected. To account for the loss of stiffness under compression due to local
buckling, geometrically nonlinear bar or beam models are needed. Nonlinear models formulate
the equations of motions in the deformed configuration. Assuming small deformations, i.e. small
strains, but accounting for large displacements and rotations, we describe the tether kinematics
with a corotational approach.48 This formulation utilizes a corotated frame that is attached to the
rigid body motions of the element base configuration. Element deformations are then defined with
respect to the corotated frame. An explicit representation of the corotated configuration is not nec-
essary but the motion is decomposed into a rigid body and elastic displacement. An illustration
of the base and corotated frames are given in Fig. 3.1. Details on the corotational finite element
formulation of bar and beam models are given in.48

3.2.3 Spacecraft Model

The spacecraft are assumed to be rigid. To facilitate the integration of the resulting rigid body
models into the finite element framework used to analyze the motion of the flexible tethers, two
models are considered: (a) a rigid disk model which allows attaching a single tether, and (b) a
pseudo-rigid beam model which allows for an arbitrary connectivity of tethers and spacecraft.

Schaub, Maute and Moorer University of Colorado/Wacari Group 54/131



Chapter 3: Finite Element Tethered-Dynamics Modeling Tethered Coulomb Structure Final Report

Figure 3.1: Corotational Configuration.48

3.2.3.1 Rigid Disk Model:

The spacecraft is modeled by a rigid two-dimensional disk made of a homogeneous material.
The tether is pinned at an attachment point along the perimeter of the disk. The equations of
motion are derived using Lagrange’s method considering the kinetic energy of the spacecraft. To
facilitate the integration of the spacecraft model into the finite element tether model, the motion of
the spacecraft is expressed in terms of the motion of the attachment point and the rotation of the
spacecraft about this point. The kinematics of the disk model is shown in Fig. 3.2 and is given by:

xp = Xt + r cos(θ)RD cos(α) (3.4)
yp = Yt + r sin(θ)RD sin(α) (3.5)

where RD is the radius of the disk, α defines the location (Xt, Yt) of the attachment point t, and
θ and r are the rotation angle and the distance from the center of an arbitrary point p with the
coordinates xp and yp on the disk.

Figure 3.2: Rigid disk model.

The kinetic energy TD of the disk is:

TD =

∫ 2π

0

∫ RD

0

1

2
ρD hD (ẋ2 + ẏ2) r dr dθ (3.6)

where ρD and hD are the density and thickness of the disk, respectively. Note that since point
t and an arbitrary point p are on a rigid disk, the angular velocities θ and α are equal. Applying
Lagrange’s Method to the kinetic energy defined above yields the contributions of the spacecraft
to the overall equations of motion of the tether-spacecraft system. The disk model is integrated
into the finite element framework via a rigid disk element.
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The disk model presented above allows for attaching tethers only at a single attachment point.
To allow for multiple attachment points additional kinematic constraint equations need to be consid-
ered. However, this complicates the integration of the rigid spacecraft model into a finite element
framework.

3.2.3.2 Pseudo-Rigid Wheel Model:

In order to facilitate the integration of a rigid spacecraft model with multiple attachment points
into a finite element model, the spacecraft is modeled by a spokes-wheel-type structure shown in
Fig. 3.3. Spokes and rim are modeled by corotational beam elements described in section 3.2.2.
The number of beam elements in the structure can easily be varied, allowing different connection
angles for multiple tethers.

The geometry of the spokes-wheel and the density of the beams are chosen such that this
model has identical mass, radius and polar moment of inertia as the rigid disk model. Note, for
a two-dimensional model, only the polar moment needs to be considered and moments about
in-plane axis play no role.

For a given disk radius RD and disk mass mD, the densities of spoke and rim elements are
calculated by solving the following equations:

mD =Np · (mSpoke +mRim) = Np · (ρSpokeASpokeRD + ρRimARimLRim) (3.7)

Iz,D =Np · (Iz,Spoke + Iz,Rim) = Np · (
mSpokeR

2
D

3
+
mRimL

2
Rim

12
+mRimh

2
Rim) (3.8)

with

Iz,D =
1

2
mDR

2

LRim =2R2
D(1− cos(

2π

Np
)) (3.9)

hRim =

√
R2
D −

L2
Rim

4

where Np is the number of sides of the polygon, and mSpoke and mRim are the masses of each
spoke and rim elements. The moments of inertia of the disk, and spoke and rim elements with
respect to the disk or wheel center of mass are denoted by Iz,Disk, Iz,Spoke and Iz,Rim. For given
geometry parameters RD, Np, and disk mass mDisk and setting the areas of spoke and rim ele-
ments, ASpoke and ARim Eqs. 3.8 is solved to obtain the densities.

Figure 3.3: Wheel model with n=8.
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While the spokes-wheel model would be able to capture elastic deformations of the spacecraft,
in this study we assume a rigid spacecraft. Therefore we set the material stiffness and the cross-
sectional areas of the spokes-wheel such that the spacecraft deformations are negligible. Using
a higher stiffness ratio between spacecraft and tether models leads to numerical problems when
time-integrating the transient response (see Section 3.2.6).

3.2.4 Electrostatic Force Modeling

The TCS concept inherently relies on the electrostatic forces acting between spacecraft and tether.
These forces depend on the geometry of the overall system and therefore depend on the motion
of the individual components relative to each other. The electrostatic pressure acting on a body
is proportional to the strength of the electrostatic field surrounding the body. Therefore, to accu-
rately determine the electrostatic forces as the spacecraft and tethers move the electrostatic field
needs to be determined. For complex geometric configurations, such as multi-spacecraft-tether
configurations, this can be done only numerically using boundary or finite element methods.

To bypass the complexity of such an approach we use a simplified electrostatic force model
which is integrated into the finite element framework used to predict the tether and spacecraft
motion. For this model we assume that the charge density on the surface of the spacecraft and
tethers is uniform and does not change as the system deforms. This simplification is appropriate
as long as the distance between bodies is sufficiently large, e.g. larger than the radius of the
spacecraft, but may lead to noticeable errors as the distance is decreases. To understand the
influence of electrostatic forces on the motion of the spacecraft-tether system the approximation
errors are considered acceptable. The components of the simplified force model are summarized
in the following.

3.2.4.1 The Coulomb Force Element:

The electrostatic pressure acting between two charged bodies is approximated by a lumped force
model which is derived from Coulomb’s law for forces between two point charges. The potential
energy of an electrostatic field between two point charges is given by:

U = kc
q1 q2
d

(3.10)

where q1 and q2 are the charges of the two points, kc is the Coulomb’s constant, and d is the
distance between the points. For a spherical body with radius Ri, the charges are related to the
electric potential, Vi by the following equation:

qi =
ViRi
kc

(3.11)

Applying Lagrange’s Method to the potential energy defined above yields the contributions of the
Coulomb forces to the overall equations of motion of the tether-spacecraft system. The resulting
force term is integrated into a finite element model via a Coulomb Force (CF) element.

3.2.4.2 Spacecraft Charging:

The electrostatic pressure acting on a charged spacecraft is approximated by a force acting on
the spacecraft area center. Accounting for the kinematic of the rigid disk model, a specialized CF
element is developed. Given a spacecraft potential VS the charge QS of a spherical spacecraft wit
radius RS is given by Eq. (3.11) with Vi = VS and Ri = RS .
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3.2.4.3 Tether Charging:

In the case of charged tethers, electrostatic forces between the spacecraft and tether and be-
tween tether segments are accounted for. The forces are approximated with the CF computing the
equivalent nodal charges as follows:

For a straight tether with a circular cross-section the capacitance is given as:49,50,51

CT =
4πεLT

Λ

[
1 +

1

Λ
(1− ln(2)) +

1

Λ2

{
1 + (1− ln(2))2 − π2

12

}]
, (3.12)

with

Λ = ln

(
LT
RT

)
, (3.13)

where LT and RT are the length and radius of the tether, respectively. Setting the permittivity ε of
the surrounding medium to that of vacuum (i.e. ε = ε0), Eq. (3.12) can be written as follows:

CT =
LT
Λkc

[
1 +

1

Λ
(1− ln(2)) +

1

Λ2

{
1 + (1− ln(2))2 − π2

12

}]
, (3.14)

The total charge QT on the tether is given by:

Qt = VT CT (3.15)

where VT is the potential of the tether which is assumed to be constant along tether.
The total charge of the tether is distributed to the nodes of the tether elements. Note that the

charge of end nodes is half of charge of the mid nodes.
To model the forces between spacecraft and tethers CF elements connect each charged node

(including the spacecraft central node) to every other charged node in the model. This model
can be broken down to 3 components, as shown in Fig. 3.4 in the case of charged spacecraft
and tethers. Note that the nodal charges along the tether differ from the charge values for the
spacecraft.

(a) (b)

(c)

Figure 3.4: Electrostatic force model: (a) CF element between spacecraft, (b) CF elements be-
tween spacecraft and tether nodes, and (c) CF elements between tether nodes.
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3.2.5 Inelastic Strain Effects

Environmental effects, material processing, and material aging are likely to generate inelastic
strains in the tether. Inelastic strains are often referred to as eigenstrains; this expression is used
in the following. Owing to the slenderness of the tether these eigenstrains may cause large dis-
placements and rotations of the tether and the spacecraft.52 Accurately predicting the magnitude
and distribution of eigenstrains along tether requires precise knowledge of the space environment,
manufacturing processes, and storage of the tether before deployment. In the absence of such
information, we develop a simplified model to study the effects of eigenstrains on the motion of
the spacecraft-tether system. Our model is built upon a thermal strain analogy, i.e. we assume
that all eigenstrains are caused by a fictitious thermal gradient in the tether. Note that the thermal
strain analogy is used only for modeling purposes and all mechanisms generating eigenstrains
are approximated via this model.

The thermal strain is given by:
εthermal = αthermal T (3.16)

where αthermal is the coefficient of thermal expansion and T is the temperature measured with
respect to an arbitrary reference temperature. Assuming that the temperature varies across the
cross-section, the thermal strains generate a bending moment which is calculated by:

Mz =

∫
AT

ET αthermal T (y) y dA. (3.17)

where AT and ET are the tether cross-sectional area and modulus of elasticity. The spatial coor-
dinate y is pointing in thickness direction; the origin of the associated coordinate system is in the
neutral axis and the x-axis is aligned with the axial direction of the tether. For simplicity reasons,
we assume that the temperature varies linearly across the cross-section of the tether and that the
tether has a cross-section that is symmetric with respect to the y-axis. For a circular cross-section,
the bending moment Mz is:

Mz =

∫ RT

−RT
ET β

y2

RT

√
R2
T − y2 dR = ET IT

β

2 RT
. (3.18)

where RT is the radius of the tether, and IT is the second area moment of inertia about the
z-axis. The differential eigenstrain between the hot and cold face of the beam is denoted by
β = αthermal (Thot − Tcold).

3.2.6 Numerical Solution Procedure

The tether, spacecraft, and electrostatic force models are implemented into an in-house finite ele-
ment platform. The system response is analyzed in time via a numerical time integration scheme.
The key components of the numerical analysis procedure are outlined in the following.

Applying a finite element approach to spatially discretize the spacecraft-tether system, the
equations of motion in semi-discrete form are given by:

Mü + R(u, u̇) = 0 (3.19)

where ü, u̇, u denote the acceleration, velocity and displacement vectors; M is the mass matrices
and R is the residual of internal and external forces.

Given initial conditions for displacement and velocities, the system response is integrated in
time by the Newmark - β method. In each time step, this scheme approximates the displacements
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by a cubic polynomial and solves a nonlinear problem via Netwon’s method.53 The size of the time
step is selected such that all oscillatory modes that effect the transient response of the system
are computed accurately.54 As the systems considered in this study exhibit strong nonlinearities,
numerical stability requirements impose further constraints on the size of the time step.

In the present study, numerical stability issues are significant as the tether undergoes large dis-
placements and rotations, including buckling, and the spacecraft-tether model consists of flexible
and (pseudo-)rigid components leading to wide spectrum of modes. Resolving the contributions
of all modes in the time response of the system would require an impractically small time step;
omitting high-frequency contributions may cause the time-integration scheme to diverge. To be
able to use a larger time-step while mitigating numerical stability issues, we introduce numerical
damping via algorithmic parameters of the Newmark - β method.55

3.3 Model Verification

To study the robustness and accuracy of the tether, spacecraft and electrostatic models introduced
above, we perform numerical simulations with bar and beam tether models. This study provides
insight into the conceptual mechanical behavior of the system and guides the selection of the
tether model. In particular, we study whether bending effects are of any relevance for the tether
dynamics. The slenderness of the tether may suggest that its bending stiffness is negligible and
a bar model is sufficient. However, as the external forces are also small, bending may still play a
role.

The following simulations are preformed for a two spacecraft / single tether configuration whose
parameters are defined in Table 3.1. Note that this configurations differs from the nominal tether
design studied later (see Section 3.5).

Table 3.1: Two spacecraft / single tether configuration – Verification study.

Spacecraft mass 50 kg

Spacecraft radius 0.5 m

Spacecraft potential 30 kV

Distance between spacecraft centers 5 m

Tether cross-sectional area 5.60 10−7 m2

Tether area moment of inertia 2.46 10−13 m4

Tether density 1.56 g/cm3

Tether modulus of elasticity 9.5 GP

To gain insight into to the dynamics of the spacecraft-tether system we perturb the system
which is initially in static equilibrium. We impose initial angular velocities of the spacecraft. Two
cases are studied (see Fig. 3.5): in the asymmetric case the spacecrafts are rotating in opposite
directions, in the symmetric case the spacecrafts are rotating in the same direction.

3.3.1 Comparison of Eigenfrequencies

In order to obtain conceptual insight into the dynamics of a slender tether we first compare the
lowest eigenfrequencies of the axial mode of a linear bar model and the bending mode of a linear
beam model with the first eigenfrequency of a string pre-stressed by the electrostatic force T acting
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Figure 3.5: Asymmetric and symmetric perturbations.

between the two spacecraft. Here, the tether is assumed to be uncharged. The eigenfrequencies
for the three models are:

wbar =
π

LT

√
ET
ρT

=1.9382 · 103 rad/s

wbeam =(
π

LT
)2

√
ET IT
ρAT

=1.0095 rad/s

wstring =
π

LT

√
TT
ρTAT

=0.8403 rad/s (3.20)

where IT is the tether area moment of inertia, AT is the tether area, LT is the tether length, ET is
the modulus of elasticity, and ρT is the tether density. The results show that the eigenfrequency of
the bar is significantly higher than the eigenfrequency of the string and the beam. The string and
the beam vibrate in bending-type modes, while the bar vibrates in axial modes. This result points
out the inaccuracy of a linear bar model for slender tethers.

3.3.2 Dynamic Response

To further down select the tether model, the displacements at the spacecraft attachment point are
compared for linear and nonlinear bar and beam models. The simulations are performed with the
spacecraft represented by the disk model and the parameters given in Table 3.1. The system is
perturbed by imposing initial angular rotations of 40◦/min such that spacecraft rotate in opposite
directions. The displacements are monitored over a time period of 2000 s.

Figure 3.6 shows the displacement and forces for different models. Here, the tether is dis-
cretized by 25 elements in the case of beam and nonlinear bar models. Only one element is
used in the case of a linear bar model. Both linear models predict similar forces. As the lin-
ear models cannot capture instabilities, in particular buckling of the tether due to compression,
the compressive forces in the tether are over predicted. Both nonlinear models predict a similar,
rapidly oscillating response and higher tensile forces. The prediction of noticeable compressive
forces is due to insufficient mesh refinement. This issue is illustrated in Fig. 3.7 and Fig. A.3.

Increasing the number of tether elements reduces the magnitude of the compressive forces
as local buckling is better resolved. Both models predict that the tether can resist a small amount
of compressive forces due to inertia effects. While nonlinear bar and beam models show similar
trends as the mesh is refined there remains a distinct difference between both models which
suggests that bending effects play some role in the tether dynamics.

The above numerical studies suggest that the motion of the tether is dominated by geomet-
rically nonlinear phenomena, such as large displacement and rotations as well as local buckling
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(a) (b)

(c) (d)

Figure 3.6: Forces at the tether attachment point for linear and nonlinear bar and beam models.

(a) (b) (c)

Figure 3.7: Mesh refinement study for nonlinear bar model - Reaction forces at attachment point
over time.

phenomena. Nonlinear bar and beam models yield similar results. As the beam model, which
also accounts for axial deformation, features an overall greater accuracy, we model the tether by
nonlinear beam elements in the following.

3.3.3 Mesh Refinement Study

To determine the number of nonlinear beam elements needed to predict accurately the motion of
the spacecraft-tether system, a detailed mesh refinement study is performed. We consider the
asymmetric and symmetric perturbations with an initial angular velocity of 30o/min and simulate
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the response of the system for 500 s.
The displacements of the spacecraft center in x-direction and the rotation of the left spacecraft

are shown in Figs. 3.8 and 3.9 for the asymmetric and symmetric perturbation scenarios, respec-
tively. These figures compare simulations with n = [1, 5, 25, 30, 40, 50, 100] tether elements. The
simulations agree well for number of elements larger than 25. The results for both perturbation
scenarios show that the simulations are well converged for 30 elements. Using more elements
has little effect on the displacements.
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(a) x-displacement of left spacecraft center
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(b) rotation of the spacecraft
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(c) x-Displacement - magnified
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(d) rotation - magnified

Figure 3.8: Mesh Refinement for asymmetric perturbation.

3.3.4 Accuracy of Spacecraft Models

In our numerical simulations we use two models to represent the spacecraft inertia. Here we
demonstrate the equivalence of these spacecraft models and validate it with analytical results. We
analyze two cases with forces and moments applied to the spacecraft respectively.

In the first case, we apply a moment Mz to the center node of the spokes-wheel model and the
attachment node of the disk model, and observe the rotation of the spacecraft. Fig. 3.11a com-
pares the rotation angle over time of the disk model, a quadrilateral spokes-wheel, an octagonal
spokes-wheel, and the analytical solution. Relative errors with respect to the analytical solution
are given in Table 3.2. The solutions of all numerical models agree well with the analytical solution.
The errors of the spokes-wheel models are slightly larger than for the disk model and are caused
by the oscillations in the spokes-wheel due to the finite stiffness of the beam elements.

In the second case, we apply a force in x-direction to the center node of the wheel and the
tether attachment point of the disk, as shown in Fig. 3.10. As the attachment point and the center
of the disk are both on the x-axis the force does not generate a moment about the z-axis. Fig. 3.11b
shows the translation in x direction versus time of the disk model, a quadrilateral spokes-wheel, an
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(a) x-displacement of left spacecraft center
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(b) rotation of the spacecraft
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Figure 3.9: Mesh Refinement for symmetric perturbation.

(a) (b)

Figure 3.10: Force and moment application points (blue) on disk and wheel models.

Table 3.2: Relative Errors for different models at time t = 100 s.

Model \ Motion Rotation εRelative X-displacement εRelative
Wheel 4 1.4176 · 10−2 6.9780 · 10−6

Wheel 8 1.9836 · 10−2 6.9771 · 10−6

Disk 6.6326 · 10−3 6.6320 · 10−3

octagonal spokes-wheel, and the analytical solution. Relative errors with respect to the analytical
solution is given in Table 3.2. Again the numerical results are in good agreement with the analytical
solution.

The above study suggests that both spacecraft models used in the present study are accurate.
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Figure 3.11: Comparison between Analytical, Quadrilateral Wheel, Octagonal Wheel and Disk
models.

As the spokes-wheel model allows for configurations with multiple tethers this models is used in
the following numerical studies.

3.4 Tether Material Consideration

3.4.1 Material Selection

The simulations results presented above are used to identify a class of materials suitable for the
design of tethers. Although the expected force levels are small (≤ 100mN ), high-strength materials
are desirable as they allow for small tether cross-sections which aid in mitigating eigenstrain effects
(see Section 3.7). A high material stiffness is beneficial to reduce the motion of the system.
Properties of existing high-strength, high-stiffness materials, such as Spectra 1000, Zylon, and
Magellan M5, are given in Table 3.3.

Table 3.3: Candidate Materials56,57,58,59

Material Density ρ Strength σu Young’s Modulus E
kg/m3 GPa GPa

Magellan M5 1700 5.7 271
Zylon HM 1560 5.8 270

Spectra 1000 970 2.57 120
T1000G 1810 6.37 294
Kevlar 49 1440 3.6 120

Besides mechanical considerations effects of space environment on materials need to be ac-
counted for. At low earth orbits, atomic oxygen (AO) reacts with most materials and protective
coatings are needed to protect the tether against deterioration under AO exposure.60 Ultra-violet
light affects in particular polymers and may cause mass and strength loss as discussed in.61,62 A
study by56 shows that, after being exposed to visible and UV light for 100 hours, Zylon fibers lost
35% of the fiber strength, while Magellan M5 fibers retained their original strength. Again protec-
tive coatings exist to reduce radiation effects. Materials may also experience significant changes in
strength with exposure to high temperatures. It is shown in Reference 56 that after being exposed
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to 180 degrees Fahrenheit for 11 weeks, a 20 % loss in strength was observed in Zylon yarns,
while Magellan M5 yarns retained their original strength.

The above studies render Magellan M5 a promising candidate material for TCS tethers. It
combines good mechanical properties, such as high stiffness and strength, with high damage
tolerance, low specific weight and good temperature resistance. Therefore the mechanical prop-
erties of Magellan M5 are used in the following studies. The properties of M5 listed in Table 3.4
are conservative estimates and are subject to change as the Magellan M5 is still in development.

Table 3.4: Magellan M5 properties.56,57

Density 1700 kg/m3

Fracture strain 1.4 (%)
Tensile Modulus 271 GPa
Tensile Strength 5.7 GPa

For the studies on charged studies we assume that tethers made of Magellan M5 can be
modified to be electrically conductive. Such modification exist, for example, for AmberStrand-Z-
series fibers with nickel, copper, silver or gold plated Zylon.

3.4.2 Tether Dimensioning

Using Magellan M5 as candidate material for the tether design, we determine the cross-sectional
area of the tether via the following procedure. For simplicity reasons, a uniform cross-section along
the tether is used.

Neglecting bending stress the cross-sectional area is determined based on the maximum axial
stress and the ultimate strength of the material:

AT = nsafety
Fmax
σu

with nsafety = 4. (3.21)

where Fmax is the maximum axial force in the tether observed for asymmetric and symmetric
perturbations with an initial angular velocity of ω = 40◦/min. The geometric parameters of the
two spacecraft / single tether configuration and the spacecraft potential considered in the design
study are given in Table 3.1. A safety factor of nsafety = 4 is used to account for the technology
readiness level of Magellan M5.

Due to inertial effects, the forces in the tether implicitly depend on the cross-sectional area.
Therefore, an iterative design process is used to determine the cross-sectional area. The design
process converges to A?T = 5.2878 ·10−12 m2. Assuming a circular cross-section, this corresponds
to a diameter of about 2.6µm.

As storing and deploying a tether with such a small cross-section may impose significant chal-
lenges, for the following studies we increase the cross-section by a factor of 100, i.e. AT =
5.29 · 10−10m2 and a diameter of about 26 µm. Furthermore, the increased tether cross-section
amplifies potential issues due to eigenstrains and thus is a conservative choice.

3.5 Nominal Configuration

In the previous subsections, we have presented and verified models for analyzing the dynamics of
a spacecraft-tether system. We have further identified candidate tether materials and dimensioned
the tether cross-section. In the following, we study the behavior of spacecraft-tether systems.
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Figure 3.12: Nominal TCS configuration for finite element tether response study.

The geometric and material parameters of the nominal configuration for these studies are de-
fined in Table 3.5. The tether is assumed to have a uniform circular cross-section and is discretized
by 30 nonlinear beam elements. The tethers are uncharged. The spacecraft are models by an
octagonal spokes-wheel model with 8 rim and 8 spoke nonlinear beam elements. The modulus
of elasticity of the spokes-wheel is 100 that of the tether and the cross-sectional area of the rim
and spokes elements is 104 times that of the tether. The system is initially at rest in static equilib-
rium. The motion of the spacecraft tether system is not constraint, i.e. no boundary conditions are
imposed. Unless otherwise stated, this configuration is used for the following studies.

Table 3.5: Geometric and material properties of nominal configuration.

Spacecraft mass 50 kg

Spacecraft radius 0.5 m

Spacecraft Surface Potential 30 kV

Distance between spacecraft centers 5 m

Tether area 5.29 10−10 m2

Tether density 1700 kg/m3

Tether modulus of elasticity 271 GP

Initial angular velocity 30◦/min

3.6 Influence of Spacecraft Potentials

The TCS concept fundamentally relies on the electrostatic force between the spacecraft to main-
tain shape and control the relative position of the spacecraft. The earlier chapter 2 discussed a
nonlinear simulation model which uses spherical rigid nodes, and linear tether spring models with
nonlinear end-point displacements. The benefit of this simulation is that parametric sweeps can
be readily performed in much less time than it takes to perform a single FEM simulations (minutes
versus multiple hours). However, any nonlinear tether deformations such as buckling and twisting
cannot be modeled with such a simulation setup. Instead, the FEM approach is taken to study the
complex tether dynamics in more detail in this chapter.

Here, we study the influence of the flexibility of the tether in dependence of the spacecraft
potential. We predict the system response of the nominal configuration for the symmetric and
asymmetric perturbation scenarios for VS = [0, 1, 10, 30, 50, 100] kV spacecraft potentials over
500 s. In Figs. 3.13 and 3.14 the horizontal displacements and rotation of the left spacecraft as
well as the distance between the spacecraft centers and the vertical displacement of the tether
center over time are shown. Note that the results for 0kV and 1kV coincide. Snapshots of the
system motion at t = 250s and t = 500s are shown in given in Fig. 3.15.
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(c) distance between spacecraft centers
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(d) y-displacement of tether center

Figure 3.13: Effects of spacecraft potentials on the system motion for asymmetric perturbation
scenario.
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(a) x-displacement of left spacecraft center
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(b) rotation of left spacecraft

0 100 200 300 400 500
2.5

3

3.5

4

4.5

5

5.5

Time [s]D
is

ta
n

ce
 b

et
w

ee
n

 s
p

ac
ec

ra
ft

 c
en

te
rs

 [
m

]

 

 

0 kV
1 kV
10 kV
30 kV
50 kV
100 kV

(c) distance between spacecraft centers
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(d) y-displacement of tether center

Figure 3.14: Effects of spacecraft potentials on the system motion for symmetric perturbation
scenario.
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(a) t = 250s, asymmetric (b) t = 250s, symmetric

(c) t = 500s, asymmetric (d) t = 500s symmetric

Figure 3.15: Snapshots of spacecraft-tether motion for different spacecraft potentials: 0kV (blue),
10kV (red), 30kV (cyan), and 50kV (purple).

The results suggest that for the perturbation scenarios considered the spacecraft undergo
undesirable large displacements and rotations for spacecraft potentials below 30kV . The snapshot
plots show that for spacecraft potentials of 10kV and below the rotation of the spacecraft exceed
90o and the tether would wrap around the spacecraft. Note that since contact is not modeled in our
simulations, the tether passes through the spacecraft. A spacecraft potential of 30kV is sufficient to
generate a low-amplitude oscillation about the static equilibrium. The amplitude decreases as the
spacecraft potential is increased. This overall behaviors compare well with the earlier simulation
results in chapter 2.

3.7 Influence of Eigenstrains

If the external forces on a slender structure are small, eigenstrain may have a significant effect on
the dynamics of the structure. Space tethers have been observed to undergo large displacements
and rotation due to eigenstrains.52 However, unlike most other architectures the electrostatic
forces between the spacecraft apply a tensile force to the tether which is expected to reduce the
motion caused by the eigenstrains.

Here we study the effect of eigenstrains on the motion of the spacecraft-tether system. We
employ the thermal strain analogy described in Section 3.2.5 to model eigenstrains. As the mag-
nitude and distribution of the eigenstrain can only be approximated roughly, we consider a range
of eigenstrain magnitudes. First we assume a uniform eigenstrain distribution. Bending moments
due to eigenstrains increase with the radius of the circular cross-section of the tether, so do the
tether stiffness and inertia. Thus the influence of eigenstrains on the system dynamics may be
non-intuitive and we therefore perform a study of the spacecraft-tether dynamics for a range of
tether cross-sections. Finally we impose a non-uniform eigenstrain distribution to gain insight into
the effect of spatially varying eigenstrains on the system dynamics.

To obtain an initial estimate of the magnitude of eigenstrains that one may expect in a tether,
we set the temperature difference between hot and cold faces to 250 K (see63) and assume a
thermal expansion of αthermal = 6 · 10−6 K−1. This yields a differential eigenstrain of β = 0.0015.
Note that this magnitude about 10 % of the fracture strain of Magellan M5 (see Table 3.4).
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(d) y-displacement of tether center

Figure 3.16: System response to uniformly distributed eigenstrains.

3.7.1 Variation of Eigenstrain Magnitude

As the eigenstrain model is based on several assumptions we consider a range of values: β =
[0.001, 0.0015, 0.002, 0.005, 0.01]. Note the maximum value is about 70 % of the fracture strain and
can be considered a conservative estimate.

In order to study the effect of eigenstrains on the system dynamics, we analyze the system
response for the range of eigenstrain values specified above assuming a uniform eigenstrain dis-
tribution. Starting from a spacecraft-tether system at static equilibrium we impose the bending
moments generated by the eigenstrains at time t = 0 and observe the system response for 500 s.

Figure 3.16 shows the effects of different residual strains on the system. The system oscillates
as the electrostatic forces between the spacecraft counteract the bending moments due to eigen-
strains. The graphs show that even for the largest eigenstrain considered the overall motion is
rather small: the maximum x-displacement of the spacecraft is 3.8 · 10−4 m meters, the maximum
y-displacement of the tether center is 2.2 · 10−2 m, and the maximum rotation of the spacecraft is
4.2 · 10−4 o. Thus the simulation results suggest that the effects of residuals strains can be ignored
for the given configuration.

3.7.2 Variation of Tether Cross-Sectional Area

The bending moments caused by eigenstrains depend strongly on the tether cross-sectional area.
Therefore we perform simulations with the maximum strain value of β = 0.01 for a range of tether
cross-sectional areas: AT = [5.6 · 10−7, 5.6 · 10−8, 5.6 · 10−9, 5.6 · 10−10, 5.29 · 10−10]m2. The simu-
lation results are given in Fig. 3.17. As the tether area increases, the eigenstrains generate larger
moments, which cause larger displacements in the system. Eventually, the electrostatic force be-
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tween the spacecraft is insufficient to counteract the bending moments and the system undergoes
a large, non-oscillatory motion.

Figures 3.17a and b show that tether cross-sectional areas of A = 5.6 · 10−8m2 and larger
cause severe displacements and rotations. Figure 3.17e illustrates that in these cases the distance
between the spacecraft falls below 1 m, i.e. the spacecraft collide. Reducing the cross-sectional
area to A = 5.6 · 10−9m2 and lower leads to acceptable displacement and rotations levels (see
Figs. 3.17c and d).

These results illustrate the strong influence of the tether cross-sectional area on the dynamics
of the system in the presence of eigenstrains.

3.7.3 Non-Uniform Eigenstrains

In the above studies on eigenstrains we assumed a uniform eigenstrain distribution. In the absence
of measurements on the eigenstrain distribution in space tethers, we study the influence of non-
uniform eigenstrain distributions on the tether dynamics by assuming that eigenstrains are present
only in the center section of the tethers. We consider two cases with the length of the center
section being Lc = [0.66, 0.80] LT (see Fig. 3.18). Within the center section the eigenstrain is
assumed to be uniform. Using the thermal strain analogy, the eigenstrain distributions generate
bending moments that act at a distance of [0.17, 0.10] from the tether end points. Note that the
magnitude of the bending moment does not change in comparison to eigenstrains are present
along the entire tether.

For a cross-sectional area of A = 5.29 10−10 m2 we apply bending moments for two eigen-
strains magnitudes, β = [0.01, 0.001], and observe the system response over 500 s, starting from
system at static equilibrium. The results are shown in Fig. 3.19 for Lc = [0.66, 0.80] LT . Note that
the results for β = 0.001 coincide in sub-figures (a), (c) and (d).

The responses for the non-uniform eigenstrain distributions are comparable to the ones ob-
tained for the uniform case and suggest that also the effect of eigenstrains on the nominal config-
uration are negligible, independent of their spatial distribution.

3.8 Tether Charging

The TCS architecture allows for using electrically conductive and non-conductive tethers. In the
studies presented above we considered only uncharged tethers and electrostatic forces acting
between the spacecraft. If the tether is charged electrostatic forces are acting also between the
spacecraft and tether as well as between points on the tether.

Here we study the dynamics of the nominal configuration assuming that the tether is electrically
conductive and at the same potential as the spacecraft. First we analyze the response of the
system due to initial perturbations. Then we study the influence of tether charging in the presence
of eigenstrains.

3.8.1 Influence on Nominal Configuration:

In Fig. 3.20 we compare the system response due to initial perturbations for a charged and un-
charged tether. The results show that tether charging decreases the motion of the spacecraft.
However, the systems response is less smooth and the spacecraft are subject to larger acceler-
ations if the tether is charged. Note the kinks in the time evolution of the displacements. More-
over, Fig. 3.20d shows that tether charging increases the displacement of the middle tether node.
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Figure 3.17: System response to non-uniform residual strains.
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(a)

(b)

Figure 3.18: Non-uniform eigenstrains. a)Lc = 0.66 LT . b) Lc = 0.80 LT
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Figure 3.19: System response to non-uniform residual strains.

These effects are due to the nonlinearity of the electrostatic force model whose impact on the
system dynamics is stronger when considering electrostatic forces between spacecraft and tether
and between points along the tether.

To illustrate the transient response of the system, snapshots of the system are shown in
Fig. 3.21. The series of snapshots in Fig. 3.21a show a snap-through-type motion.
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Figure 3.20: System response to asymmetric and symmetric perturbations for uncharged and
charged tether.

3.8.2 Tether Charging in the Presence of Eigenstrains

The previous study has shown that tether charging reduces the spacecraft motion and, thus, may
aid in counteracting the influence of eigenstrains. Here we investigate the combined effects of
tether charging and eigenstrains. Considering a uniform eigenstrain of β = 0.01, we compute the
system responses for a charged tether with VT = VS = 10, 30, 50, 100] kV potentials, and compare
these results again the nominal configuration with an uncharged tether. The results are given
in Fig. 3.22. For the same potential tether charging reduces slightly the motion of the tether in
comparison to the uncharged tether.

Due to simplified electrostatic force model these results on tether charging should be used
only in a qualitative fashion. A higher-fidelity force model is needed to more accurately predict the
influence of tether charging on the spacecraft-tether dynamics in the presence of perturbations
and eigenstrains.

3.9 Conclusions

In this Section we have used a high-fidelity finite element model to study the transient response
of a two-spacecraft / single tether system. We have identified models to adequately describe
large displacements and rotations of spacecraft and tether and to approximate electrostatic forcing
between the components of the overall system. Comparing the simulation results of this section
with the results presented in Section 2 suggests that inertia and bending stiffness of the tether
play a minor role for the overall motion of the spacecraft-tether system. However, eigenstrains due
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t= 200 s
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(a)

t= 135 s
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Figure 3.21: Snapshots of system motion with charged and uncharged tethers: (a) asym-
metric perturbation – uncharged tether (red) and charged tether (blue) at t = 135s (top) and
t = 245s, 300s, 500s (bottom), and (b) symmetric perturbation – uncharged tether (cyan) and
charged tether (green) at t = 200s (top) and t = 345s, 346s, 500s (bottom).
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Figure 3.22: System Response for combined tether charging and eigenstrain effects. UT – Un-
charged Tether with Charged Spacecraft; CT – Charged tether with Charged Spacecraft.

to fabrication, storage, and environmental effects, such as partial heating, radiation, may lead to
large undesirable displacements and rotations. Our study suggests that the electrostatic forces
between the spacecraft and the tether can mitigate eigenstrain effects if a sufficiently small tether
diameter and the sufficiently large potential are chosen.

In regards of material selection, the above numerical studies suggest that high-performance
fibers should be used for the tether. While the forces in the tether are small, eigenstrain issues
require using tethers with smaller cross-sectional areas which, in turn, requires a larger strength
of the tether material. Furthermore, electrically conducting, charged tethers aid in mitigating large
displacements.

While the models for spacecraft and tether are sufficient to accurately capture the motion of the
spacecraft-tether system in two-dimensions, further studies are needed to study three-dimensional
phenomena. The simple lumped Coulomb model used to approximate the electrostatic forces be-
tween different components relies on several assumptions, such as displacement-independent,
uniform charge distribution. Higher-fidelity models are needed to predict more accurately electro-
static force effects. The above study indicates that eigenstrains may play an important role in the
motion of the overall system. Refined eigenstrain models need to be developed.
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Chapter 4

Space Environment Impact

The space environment that the tethered Coulomb spacecraft will operate in is a highly variable
plasma. This plasma plays two key effects on the functionality of the TCS nodes. Firstly, the
plasma directly interacts with the nodes inducing natural spacecraft charging that can either hin-
der or aid the desired charge levels required to maintain TCS tether tensions and resistance to
deformation. The second environmental impact is the partial charge shielding of the repulsive
Coulomb forces from the local plasma.

In this chapter the space environmental parameters and impact on TCS operations are ex-
plored. This includes characterization of the plasma at Geosynchronous Earth Orbit (GEO), an
envisioned application altitude, and modeling of the current interaction with the nodes. Also stud-
ied is the extent of Coulomb force partial shielding as well as the additional effects of over-lapping
charge sheaths. These effects are then extended to analyze the electrostatic zones of influence
and the impact on rotational stiffness. Finally, an investigation into the required power and fuel
estimates to maintain the required charges in a plasma environment are performed.

4.1 Space Weather Parameters

The GEO plasma environment will affect the functionality of the charged nodes of a TCS system.
The intent here is to characterize the GEO plasma environment. The free-flying charged particles
of the plasma impact the nodes and result in a net current flow as illustrated in Figure 4.1. This
current flow leads to natural spacecraft charging. The extent of charging is dependent on the
plasma temperature, density, and the spacecraft potential and material properties.

A spacecraft, such as a TCS node, operating at GEO will experience a highly dynamic plasma
environment. The local GEO magnetosphere is typically dense and hot, but can undergo quiet
periods or experience rapid fluctuations where it is flooded with high energy particles (mean values
as high as a few tens of keV).64 The local plasma conditions are heavily dependent on the local
time as well as the geomagnetic levels which are driven by solar activity. The highest levels of
natural charging occur during eclipse and between the local hours of midnight through 6 am.65

However, at GEO the TCS nodes may only be in eclipse for up to minutes at a time during an orbit
and a charge control device can overcome these naturally occurring charge scenarios.

4.1.1 Debye Length

The attraction of oppositely charged particles to a charged spacecraft node results in a net shield-
ing effect that screens the apparent potential of the spacecraft. A measure of this electric field
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Figure 4.1: Illustration of spacecraft/plasma environmental current interactions

reduction, and consequently local plasma environment activity, is the Debye length (λD). For
the plasma conditions analyzed here it is assumed that there is a equal density of electrons and
protons (H+), a good assumption at GEO.

The Debye length is calculated with the single-Maxwellian densities of the plasma electrons
and singly ionized species (ne & ni [m−3]), as well as their respective temperatures (Te & Ti [K]),
using the general expression:66

λD =

√
ε0κ
e2c

ne
Te

+
∑

i
ni
Ti

(4.1)

where ε0 = 8.854187817 × 10−12 [C2N−1m−2] is the permittivity of vacuum, κ = 1.38065 × 10−23

[JK−1] is the Boltzmann constant, and ec = 1.602176 × 10−19 [C] is the elementary charge. Due
to the large mass of ions in comparison to electrons, their acceleration is significantly less in the
presence of a charged object. For this reason it is common to neglect the influence of ions species
altogether and have a Debye length that is purely a function of the local plasma electrons, which
is used in this study:

λD =

√
ε0κTe
ne2c

(4.2)

4.1.2 Representative GEO Plasma Environment

Three representative plasma conditions will be used for this TCS analysis (quiet, nominal, and dis-
turbed). These three plasma conditions define the extreme bounds and nominal operating regimes
TCS spacecraft will encounter on-orbit. The single-Maxwellian parameters used to describe each
of these GEO plasmas along with the corresponding Debye lengths (λD) are shown in Table 4.1.
These values are based on models and data interpreted from measurements obtained on-orbit
from the SCATHA and ATS-6 spacecraft during the 1970-80s.65,67,68,69,70

The nominal plasma conditions represent the typical operating environment for the TCS sys-
tem. The disturbed plasma conditions corresponds to injections of low density, highly energetic
particles. The quiet plasma (λD = 4 m) coincides to a cold and dense plasma that can occur dur-
ing times of low solar activity when the Earths magnetosphere expands raising the outer plasma-
sphere to synchronous altitudes.37 The resulting drastic temperature reductions can significantly
decrease the Debye length to multiple meters at times as illustrated in Figure 1.9.

Schaub, Maute and Moorer University of Colorado/Wacari Group 78/131



Chapter 4: Space Environment Impact Tethered Coulomb Structure Final Report

Table 4.1: GEO Representative Single-Maxwellian Plasma Parameters and Debye Lengths

Conditions Te ne Ti ni λD
[keV] [cm−3] [keV] [cm−3] [m]

Quiet 0.003 10 0.003 10 4
Nominal 0.9 1.25 0.9 1.25 200
Disturbed 10 1 10 1 743

These rare, quiet plasma bound the ’worst-case’ conditions the TCS will encounter at GEO.
The quiet plasma conditions result in the maximum net plasma currents and consequently high
natural charging events. In order to maintain a charged spacecraft node in this plasma will require
the highest charge control current and electrical power. This quiet plasma also corresponds to the
most detrimental Coulomb force shielding for TCS applications.

4.2 Debye Shielded Force Evaluation

This section describes the physics of the interaction between the geosynchronous orbit plasma
environment, the magnetosphere, and a charge-conducting sphere. If the spherical TCS node po-
tential is small compared to the local plasma temperature, than the Debye charge shielding can be
modeled through an exponentially decaying function as shown in Eq. (2.4). At GEO this condition
is exceeded with kilo-Volt levels of potentials, depending on the plasma temperature and density
properties. Of interest to this study is how the electrostatic shielding changes if the potentials
exceed this simplifying analytical assumption. To study this, the force computation focuses on an
elemental 2-node interaction. These results are incorporated into the force computations of the
nonlinear TCS simulation.

The symmetric potentials around a sphere satisfy Poissons equation in 1-D:

1

R2

∂

∂R
R2 ∂

∂R
V = −Nec

ε0
(4.3)

where the net number density, N , is the difference between the ion and electron densities:

N = ni − ne (4.4)

For simplicity in all the equations, we assume that plasma ions are singly charged. This is a
good approximation in the GEO magnetosphere, where most of the ions are H+. In order to write
Poisson’s equation in a non-dimensional form, the following definitions are required:

ζ =
R

ρ

φ =
V

Te

n =
N

N∞

γ =

(
ρ

λD

)2

(4.5)
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Where N∞ is the electron density at infinity under no influence of foreign charges. Using these
definitions, the non-dimensionalized Poisson equation is as follows:

1

ζ2
∂

∂ζ
ζ2

∂

∂ζ
φ = −γn (4.6)

This non-dimensional Poisson’s equation in Equation (4.6) is in general used to analyze both the
range of potentials and electric fields, and also to calculate the currents collected by a sphere. To
find the potentials it is necessary to solve Poissons equation along with the collision-less Vlasov
equation for ions and electrons, shown in Equation (4.7), over the range of plasma parameters
found in the GEO magnetosphere.

v · ∇xf − qE · ∇vf = 0 (4.7)

where the distribution function depends on both position and velocity:

f = f (x,v)

∇x =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
∇v =

(
∂

∂vx
,
∂

∂vy
,
∂

∂vz

) (4.8)

The particle densities are given by:

ni (x) =

∫
fi (x,v) d3v

ne (x) =

∫
fe (x,v) d3v

(4.9)

The solution of the Poisson-Vlasov system of equations for the special case of a charged sphere
in an isotropic Maxwellian plasma has been studied extensively and reported in literature.71,72 In
spherical symmetry, the distribution functions depend only on the radius, the kinetic energy, and
angular momentum. As reported by Laframboise, the solution depends strongly on the ratio of the
sphere size to the Debye length. When γ is much less than unity (large Debye lengths) the motion
of charged particles is limited by the angular momentum, Orbit Motion Limited (OML). The OML
limit provides an upper bound on the charge density surrounding and the current collected by a
conducting sphere. For this study, a computer code was written that solves the Poisson-Vlasov
equations in the OML limit. In the OML limit for a positively charged sphere collecting electrons,
the charge densities of the electrons and ions species are respectively:

ne =

(
1− 1

2ζ2

)(
eφ
(

1− erf
(√

φ
))

+
2√
π

√
φ

)
ni =

(
1− 1

2ζ2

)
e−φ

(4.10)

This computer code allows for the electrostatic forces to be computed for a range of plasma
conditions and TCS node potentials. Compared to the earlier analytical results, a key aspect of
this study is that the small node potential assumption is not required. Instead, the full, coupled
nonlinear field equations about a sphere are solved subject to the plasma interactions. For the
scope of this project, the complexity of the simulation runs is reduced by looking only at spherical
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Figure 4.2: Comparison of analytical and numerical predictions of electrostatic force experienced
in a cold plasma at GEO due to a 0.5 m radius sphere, V = 30 kV, λD = 4.1 m

bodies for which the field equation can be solve in a 1-D fashion. This is sufficient to provide an
improved electrostatic force model for high TCS potentials to be used in the nonlinear TCS simula-
tion. Potentials as a function of density are found by solving the dimensionless Poissons equation,
Eq.(4.6), with the expressions in Eq.(4.10) for the dimensionless electron and ion densities. The
ambient plasma densities and temperature in Eq.(4.6) enter through γ, the square of the sphere
radius divided by the Debye length. The spheres in this study have diameters between 0.5 m and
1 m. For most magnetospheric conditions, the Debye length is much greater than the radius of the
largest sphere. Only for a combination of the lowest plasma temperature and the highest plasma
density, does the Debye length approach the sphere radius. For those cases, the calculations
performed in this study are conservative; that is, they overestimate both the plasma shielding and
the currents needed to maintain the potentials on the system.

4.2.1 Effective Debye Length

4.2.1.1 Effective Debye Length Modeling

The analytical solution to Poisson’s equation is based upon the assumption that (eV � κT ). This
condition is quickly violated as craft potentials become large, especially in the cold plasma con-
ditions of LEO. The full numerical solution of Poisson’s equation yields electrostatic forces larger
than predicted by Equation (2.5). Equation (2.5) therefore serves as a lower bound for the actual
force that will be experienced in a plasma. The vacuum force model, which was given in Equation
(2.1), is the largest amount of force that can be produced. The actual electrostatic force is close to
the vacuum force values for a larger range of separation distances. The end result is an increased
effective sphere of influence of an electrostatic object. These effects are illustrated in Figure 4.2
for cold GEO conditions. This figure also illustrates the concept of the effective Debye length, the
length at which the numerical solution for the electrostatic force has been shielded to the amount
of shielding analytically predicted at one Debye length. The effective Debye length, λ̂D, is defined

Schaub, Maute and Moorer University of Colorado/Wacari Group 81/131



Chapter 4: Space Environment Impact Tethered Coulomb Structure Final Report

0
10

20
30

0
1

2
3
0

5

10

15

20

25

Craft Voltage [V]Craft Diameter [m]

Al
ph

a 
Pa

ra
m

et
er

Figure 4.3: Alpha parameter for effective Debye lengths in a plasma, λD = 4

by a scaling parameter, α, as shown:
λ̂D = αλD (4.11)

An analytical relationship of the partial charge shielding is desirable for quick modeling of this
phenomena. One approach is to model the nonlinear plasma force function using the effective
Debye length through the relationship:

F = kc
q1q2
r2

e−r/λ̂D
(

1 +
r

λ̂D
+ f1(r, ρ, λ̂D)

)
(4.12)

where the term f1 is depends on the separation distance r, TCS node radius ρ, as well as the ef-
fective space plasma Debye length λ̂D. The later parameter is a scaled parameter which indicates
the true influence range of a large potential in a plasma. Here f1 → 0 if the potentials are small.

Murdock et. al discuss the effective Debye length for the electrostatic astroid tug application in
Reference 40. For their application of electrostatic astroid deflections, the effective Debye lengths
can reach values 100 times greater than the Debye length. This result is especially useful for cold
plasma conditions which can limit the feasibility of using electrostatics for tensioning a tethered
Coulomb structure. Trends of the effective Debye length as a function of the plasma conditions,
craft size, and craft voltage are discussed in the following subsections.

4.2.1.2 Effective Debye Length Trends

Factors that affect the effective Debye length include the plasma Debye length, craft radius, and
the voltage level on craft. Numerical simulations were performed using ranges of each of these
parameters to understand the trends. Curve fitting was used on the numerical solutions of electro-
static forces from charged craft to determine the approximate α parameter for each solution. Note
that α(V, d, λD) is a function of three parameters, namely the voltage V , the TCS nodal diameter
d, as well as the local space weather’s actual Debye length λD. The following study will illustrate
the α values by studying cross-sections of the three-dimensional parameter sub-space.

Figure 4.3 displays the variation of the α factor over a range of TCS node sizes and voltages.
These important results will allow more realistic values to be used for partial charge shielding
modeling in the numerical TCS simulations. Figure 4.3 clearly illustrates that larger craft radii and
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Figure 4.4: Alpha parameter for effective Debye lengths in a plasma, 1m craft diameter

higher potentials yield larger effective Debye lengths. The craft voltage trend occurs because as
the assumption (eV � κT ) is further violated, the shielding is reduced. There exist limitations on
craft voltage due to power requirements and limitations of craft size due to launch constraints, but
this study shows that electrostatic tensioning of a tethered structure is more effective with larger
craft and higher potentials.

Figure 4.4 shows the variation of the effective shielding parameter as a function of Debye length
and craft voltage for a sphere with a 1 m diameter. The extreme case of a cold GEO plasma Debye
length near 10 m and a high craft voltage of 30 kV, the effective Debye length is more than 5 times
the predicted Debye length. As the Debye length approaches the order of 100 m, the effective
Debye length is nearly the analytically predicted Debye length, therefore α approaches a value of
one. With a Debye length of 100 m, the Debye shielded force is nearly the same as the vacuum
force at distances on the order of a few tens of meters. The effective Debye length, therefore, is
approximately one Debye length. Interpolation of the data shown on these plots can be used to
determine the effective Debye lengths for different combinations of craft voltage, Debye lengths,
and craft sizes.

4.2.1.3 Linear Regression Analysis

Using data from numerical solutions of the Poisson-Vlasov equation, linear regression was used
to find a parametric relationship between the effective Debye length alpha parameter and each
input parameter: Debye length, craft voltage, and craft diameter. The coefficient of determination,
R2, was used to measure the goodness of fit for each regression performed on the data. Due to
large sensitivities in the Debye length, a logarithmic transformation was performed on this data for
the fitting. The benefit of this transformation was clear in examining a linear fit to the raw data and
the transformed data, which had R2 values of 0.562 and 0.916, respectively. Using the logarithm
of the craft radius also improved the fit, but transforming the craft voltage data had a negligible
effect on the goodness of fit.

To illustrate the effect of the logarithmic transformation on the data, plots are shown in Figure
4.5 for linear fits of the transformed data (represented by the white surface) versus raw data (shown
by the colored surface). Figures 4.5(a) and 4.5(b) of the transformed data show a fit which is clearly
a closer match to the data than the fit to the raw data shown in Figures 4.5(c) and 4.5(d).
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Figure 4.5: Illustration of the effect of the logarithmic transformation alpha parameter data with a
Craft Diameter of 0.5 m

A cubic fit of the alpha parameter data is shown in Equation (4.14) as a function of Debye
length, λD, craft voltage, V , and craft diameter, d. The R2 value of this fit is 0.968, which is very
near the maximum value of 1, therefore this model was considered a satisfactory prediction of the
alpha parameter for effective Debye lengths. For comparison, theR2 value for the linear, quadratic
and cubic fit models are: 0.916, 0.947, and 0.968 respectively.

The following variables are defined for the parameters on which the logarithmic transformation
was performed:

λ̄D = ln(λD)

d̄ = ln(d)
(4.13)

Using these variables, the regression equation is as follows:

α = exp[1.47− 0.566λ̄D + 0.242λ̄D
2 − 0.406λ̄D

3
+ 0.0987V − 0.0337λ̄DV

+ 0.00283λ̄D
2
V − 0.00102V 2 + 0.000202λ̄DV

2 + 2.90e−6V 3 − 2.37e13d̄

− 0.361λ̄Dd̄+ 0.0538λ̄D
2
d̄− 0.00112V d̄+ 0.0000236V 2d̄

− 0.741d̄2 + 0.185λ̄Dd̄
2 + 0.00354V d̄2 + 4.94e13d̄3]

(4.14)
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4.2.2 Illustration of Results of Effective Debye Length

To illustrate the results of the cubic parametric relationship of Equation (4.14), surface plots are
shown in Figures 4.6, 4.7, and 4.8 for three fixed values of craft diameter: 0.5, 1.0, and 2.0 m.
These plots display the alpha parameter data as a colored surface, with the fit model shown as
a white mesh surface. In Figures 4.6 - 4.8, it can be seen that the model closely matches the
behavior of the data.

4.2.3 Discussion of Effective Debye Length Results

These results are used for obtaining a more accurate value of the effective Debye length in a range
of plasma conditions and craft scenarios. There are limitations in the applicability of the determined
regression relationship due to the assumptions made. The numerical simulation assumes that the
two tethered craft are of the same size and same voltage. Also, the solutions do not take into
account effects of overlapping Debye sheaths. If the assumptions are satisfied, such as for the
tethered Coulomb application, these results provide an improved representation of the effects of
the plasma environment.

4.3 Over-Lapping Plasma Sheath Study

A charged spacecraft immersed in a plasma will generate a local sheath of charged particles.
SPEAR-1 is one such experimental spacecraft that demonstrated, on-orbit, the accumulation of
local charges, producing over-lapping plasma sheaths.73 For a single spacecraft with even charge
distribution, this natural effect has minimal consequences. However, for charged spacecraft in
close proximity, such as the TCS application, this may cause the sheaths to over-lap and that alters
the local plasma interaction and produced Coulomb force. The intent here is to investigate any
electrostatic force and associated power changes due the local over-lapping of plasma sheaths of
closely separated charged spacecraft. This force change is computed in addition to the plasma
shielding, using finite element type particle-in-cell numerical simulations. In particular, of interest
if the GEO space weather plasma environment and the TCS related nodal separation distance will
yield appreciably different results if over-lapping Debye sheaths are considered.

4.3.1 Numerical Simulation Parameters

An analytic expression of the Coulomb force between two charged spheres with partial shielding
from the plasma environment is derived from the Debye-Hückel potential model and shown in
Eq. (2.5):

|Fc| = kc
q1q2
r212

e−r12/λD
(

1 +
r12
λD

)
This Coulomb force model is most appropriate when the combinations of spacecraft charge

and the plasma conditions abide Eq. (2.3):

eVsc1 � κTe

In addition to this natural shielding, when charged spheres are in close proximity, the force can
be further reduced due to the over-lapping of the local plasma sheaths. In order to calculate the ex-
tent of this over-lapping plasma sheath shielding a 3D electrostatic numerical solver is used. The

Schaub, Maute and Moorer University of Colorado/Wacari Group 85/131



Chapter 4: Space Environment Impact Tethered Coulomb Structure Final Report

Out[333]=

(a)

Out[335]=

(b)

Figure 4.6: Alpha parameter values of regression (Equation (4.14)) for Diameter = 0.5 m
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Figure 4.7: Alpha parameter values of regression (Equation (4.14)) for Diameter = 1.0 m
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Figure 4.8: Alpha parameter values of regression (Equation (4.14)) for Diameter = 2.0 m
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Figure 4.9: Electric potential distribution for 2 m and 5 m separated spheres (0.25 m radii) charged
to 15 kV in a representative plasma (λD = 74 m) using VORPAL.

numerical computations are performed using Tech-X’s plasma simulation code VORPAL1. VOR-
PAL is designed as a highly flexible and computationally efficient modeling tool for computational
electromagnetics and plasma physics.

A two-node TCS example is used to determine the over-lapping Debye sheath effects on re-
pulsive Coulomb forces. For the simulation, spheres with radii 0.25m are placed in a grounded
rectangular box with 40 m side along tether axis and 20 m by 20 m in perpendicular directions.
The grid size for the simulations is 0.1 m in each direction and time step equal to 2 ns. The effect
of the plasma is obtained by comparing the force between the spheres for both vacuum conditions
and two extreme GEO plasma conditions.

For the plasma simulation cases, the electron and ion densities are ramped up during the
1000 time-steps to GEO plasma values and then the simulated plasma evolution runs for 9000
time-steps. The ramp-up of the density is used to avoid unnatural triggering of plasma oscillations.
All particles that impact the boundaries are reflected off the walls.

4.3.2 Two-Node Simulation Potentials and Densities

A preliminary simulation for VORPAL electric potential verification is performed. The simulation
placed two spheres in a ground 10x10x10 m box, containing a representative GEO plasma. The
plasma conditions are; electron and ion temperatures of 100 eV, and densities of 1 cm−3, which
equates to a Debye length λD = 74 m. Two cases are simulated with 2 m and 5 m separations,
with the spheres charged to a surface potential of 15 kV. The distribution of the electric potential
of the local plasma around the spheres is shown in Figure 4.9.

Figure 4.10 shows the ion number density during the simulation. This is a snapshot of the
plasma conditions between the two charged spheres 60 ns and 80 ns after simulation start, for the
2 m and 5 m sphere separations respectively. These figures show the development of the local
plasma sheaths and their over-lapping characteristics for the 2 m separation case.

For this two-node example the electric potential solution in the λD = 74 m plasma is very
similar to the vacuum numerical solution as there is ultimately minimal plasma (shielding) between
the spheres. In order to verify the limits of the VORPAL solution an extremely dense plasma is

1VORPAL Product Page, Tech-X Corporation, http://vorpal.txcorp.com
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Figure 4.10: Ion number density for 2 m (left) and 5 m separated spheres (0.25 m radii) charged
to 15 kV in a representative plasma (λD = 74 m) using VORPAL. This is a simulation snapshot at
60 ns (left) and 80 ns after simulation start.

simulated. This plasma has properties of electron and ion temperatures of 100 eV, and densities
of 1×105 cm−3, which equates to a Debye length λD ≈ 0.2 m. This is well beyond the worst case
conditions anticipated at GEO, however it is used to push the limits of the numerical solution for
comparison purposes. The two dimensional (along the tether axis) electric potential around the
two spheres charged to 15 kV and separated by 2 m is shown in Figure 4.11.

Figure 4.11 also shows the electric potential numerical solutions for the alternate plasma case
(λD = 74 m) and vacuum case as well as the analytic solutions. The analytic solution of the electric
potential to first-order is given by the Debye-Hückel equation (Eq. (2.4)):

V = kc
q1
r
e−(r−ρ)/λD

The analytic electric potentials match the numerical solutions well, however offer a conservative
reduction in the electrical potential from the spheres. This is due to the sphere potential of 15
kV violates the conditions of Eq. (2.3) that is the basis of the Debye-Hückel approximation as
well as including the increased force shielding from the over-lapping Debye sheaths. In addition,
the boundaries of this plasma box are grounded in the simulation which is lower than the true
potentials at these distances. This indicates that the VORPAL Coulomb force that is derived from
the electric potential solution is a viable comparison tool.

4.3.3 Two-Node Numerical Coulomb Force Calculation

In order to use VORPAL to compute the Coulomb force acting on the spheres in a vacuum the fol-
lowing technique is implemented. First, the electric potential distribution from one charged sphere
is computed, as shown in Figure 4.12. From this simulation, the electric field at the projected cen-
ter of the second sphere (coordinates [4 5 5] here) is given. The Coulomb force is computed by
multiplying the electric field at this location by the charge of the sphere. The charge of the sphere
is computed using Eq. (2.7) that accounts for close sphere charge effects:

q∗i =
Vi
kc

(
ρr

ρ+ r

)
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Figure 4.11: Electric potential distribution along tether axis between two spheres (0.25 m radii)
charged to 15 kV using VORPAL. Blue corresponds to zero-order accurate analytical solution.
Green first order accurate analytical solution. Black numerical solution for vacuum case. Red
numerical solution for low-density ( λD = 74 m) plasma case. Yellow numerical solution for extreme
high-density (λD ≈ 0.2 m) plasma case.

Extending this Coulomb force calculation to a simulation with a plasma requires a more com-
plex procedure.

First, the plasma is evolved in the presence of the two charged spheres. This plasma distri-
bution is then frozen and one of the spheres is removed from the simulation domain. The electric
potential and the electric field is obtained at the projected center of the removed sphere based on
the plasma distribution and contribution from another sphere. The Coulomb force is computed by
multiplying the electric field at this location by the charge of the sphere. Figure 4.13 shows both
the distribution of the electric potential (left) and electric field (right) from one charged sphere. In
order to highlight the plasma distribution effects this is shown for the extremely dense plasma with
a 0.2 m Debye length.

The challenge here is the computation of the sphere charge. In an electrostatic simulation, the
potential of the sphere is a boundary condition on the charge. An indirect method of computing
the sphere charge to maintain the required potential on the sphere is required. In the presence of
a plasma, the potential of each sphere is defined as:

V = kc
q

ρ
+ kc

q

r
+
∑
i

kc
qi
ri

(4.15)

where the summation accounts for the potential contribution from each plasma particle in the
simulation box. With the removal of one sphere an expression for the remaining spheres potential
(that is kept constant) is given by:

V = kc
q̃

ρ
+
∑
i

kc
qi
ri

(4.16)
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Figure 4.12: Electric potential distribution about a single sphere (0.25 m radius) charged to 15 kV
in a vacuum using VORPAL.

where q̃ is the charge required on the remaining sphere to maintain the potential V constant. The
potential at the center of the removed sphere is computed numerically in VORPAL using:

Ṽ = kc
q̃

r
+
∑
i

kc
qi
ri

(4.17)

Solving Equations (4.16) and (4.17) for the required charge q̃ gives the two equations:

q̃ =
(V − Ṽ )ρr

kc(r − ρ)∑
i

kc
qi
ri

=
Ṽ r − V ρ
(r − ρ)

(4.18)

which can be substituted into Eq. (4.15) to give the numerically-solved charge on the spheres in
the plasma:

q́ =
r2ρ(V − Ṽ )

kc(r2 − ρ2)
(4.19)

With this expression for the sphere charges it is possible to compute the correction to the electric
field at the center of the removed sphere. The correction is equal to:

∆E = kc
q̃ − q́
r2

(4.20)

The resulting numerical solution Coulomb force acting on the spheres is given by:

Fnumeric = (E + ∆E)q́ (4.21)

where E is the electric field component in the tether axis direction, located at the center of the
removed sphere. In addition, by modeling the charge evolution on the spheres, it is possible to
compute the necessary current to the sphere in order to keep the potential constant.
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Figure 9. Distribution of electric potential (left) and electric field (right) from one 
charged sphere when in the presence of high-density plasma (1011 m-3). 
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Figure 4.13: Distribution of electric potential (left) and electric field (right) from one charged sphere
(0.25 m radius) in the extreme high-density plasma λD = 0.2 m using VORPAL.

The numerical force solution computed in a plasma with VORPAL gives the total force with
plasma shielding and over-lapping plasma sheath effects. Of interest here is solely the reduc-
tion in force due to the over-lapping plasma sheath. In order to isolate this effect the numerical
force solution of Eq. (4.21) is subtracted from the charged close sphere analytic force model in a
vacuum:

Fclose = kc
q∗1q
∗
2

r212
(4.22)

to give the numerical force reduction percentage:

%FNreduce =
(Fclose − Fnumeric)100

Fclose
(4.23)

This force reduction is directly compared to the force reduction due to the plasma shielding from
the Debye-Hückel model which is computed as:

%FMreduce =

[
1− e−r12/λD

(
1 +

r12
λD

)]
100 (4.24)

The difference between the numeric and model force reductions gives a measure of the shielding
due to the over-lapping Debye sheaths (%FNreduce −%FMreduce).

4.3.4 Numerical Force Calculation Results

The analytical model shielding that results in the force reduction of Eq. (4.24) is only valid for com-
parison if Eq. (2.3) is not violated. It is therefore necessary to select both the plasma conditions
and spacecraft charges that will abide Eq. (2.3). Two representative plasma conditions (λD = 33
m & λD = 50 m) are used for this study with parameters shown in Table 4.2. Both these example
plasma conditions are colder and more dense than the quiet (worse-case) plasma conditions of
Table 4.1, indicating an extreme and unexpected GEO environment. This is used purely to identify
the effects of over-lapping Debye sheaths.

With these two plasma conditions defined the corresponding spacecraft potentials that violate
Eq. (2.3) are 0.5 kV and 0.9 kV for the λD = 33 m & λD = 50 m plasmas respectively. For this
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Table 4.2: Plasma Properties for Over-Lapping Debye Sheath Study

Debye (m) Temperature [eV] Density [cm−3]
33 500 25
50 900 20

Table 4.3: Analytic Plasma Shielding Based on Debye-Hückel Force Model (Eq. (4.24))

Debye (m) 5 m separation 10 m separation
33 1.02 % 3.71 %
50 0.47 % 1.76 %

reason the selected potentials used in this study will be [-10, -1, -0.5, 0.5, 1, 10, 25] kV. The
two-node example features spacecraft with 0.25 m radii and separations of 5 and 10 m. At these
separations the expected Coulomb force reduction based on the analytic Debye-Hückel plasma
shielding model is shown in Table 4.3.

The model force reduction due to plasma shielding and the numerical total force reduction
between the two nodes is shown in Figure 4.14. The discrepancy between the two solutions
for each plasma and spacecraft potential gives an indication of the effects of the over-lapping
plasma sheath. For low magnitude potentials [-1, -0.5, 0.5, 1] kV in these dense/cold plasmas the
over-lapping plasma sheaths cause a slight increase in the force reduction (except for the 10 m
separation in the λD = 33 m plasma). This stronger shielding is an expected result as there is an
enhanced plasma interaction between the closely separated nodes and their over-lapping plasma
sheaths.

For the higher level potentials [-10, 10, 25] kV the force reduction from the numerical solution
is lower than the model prediction, indicating that the over-lapping Debye sheaths have little effect.
However, at these operating potentials the analytic model properties violate Eq. (2.3), reducing the
validity of comparing these solutions and also suggesting there are numerical computation limita-
tions in these regions. What is important is that the numerical solution demonstrates similar force
magnitudes and reductions at these operating potentials and extreme GEO plasma environments.
The final conclusion drawn from this comparison is that the force shielding due to over-lapping
plasma sheaths are minimal in comparison to the plasma shielding and close sphere finite effects.
The over-lapping plasma sheaths are an important and real characteristic of multiple craft charg-
ing, however the net result has minimal consequence on the overall production of TCS repulsive
forces.

4.4 Electrostatic Zones of Influence Study

In the analysis of the six craft TCS in the shape configuration study (see Figure 4.15), the tether
expressions are found to be functions of inter-craft Coulomb forces which occur between nodes not
connected by any tethers. Some of these electrostatic forces actually act to cause compression in
the tethers, an undesirable consequence of the geometry of the structure. Naturally, it is of interest
to determine whether or not certain TCS sizes may decouple some of the electrostatic forces from
the tethers. As an illustrative example, we will examine the forces in tether T34 of the six craft TCS.
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Figure 4.14: Coulomb force reduction comparing analytic model, Eq. (2.5) to the VORPAL numer-
ical solution. This is computed for spheres of 0.25 m radii. The analytic model captures only the
close finite sphere and Debye shielding effects, while the numeric model also captures the effects
of over-lapping plasma sheaths.
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Figure 4.15: Six-Node TCS System

The expression for the tether tension is

T34 = F34 +
F24√

2
+ L

[
F14

S
− F56

S
− 1

2

(
F16

h
+ 5

mµ

r3c

)]
. (4.25)

It is immediately apparent due to Fij > 0 that compressive forces components result from the
electrostatic forces F16 and F56. What we would like to ascertain is whether or not increasing
the length of h relative to the local plasma environment may cause these electrostatic forces to
become so small relative to F34 that they no longer affect the tension in T34. Note that tether T34 is
not the only tether that experiences electrostatic compressive forces; it is arbitrarily chosen from
the TCS to serve as the example.

Before proceeding further, we must first define a force component, denoted as Fcij . The force
component provides an expression for the contribution to the tether tension of electrostatic and
gravitational forces, including all scaling factors present in Eq. (4.25). As an example, the force
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Table 4.4: Charges Used for Decoupling Simulations

q1 = q2 = q6 q3 q4 = q5

5 µC 1.2q1 0.5q1
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Figure 4.16: Force components for λD = 4 m. The magnitude of the negative force components
is plotted.

components for F16 and F56 are

Fc16 = − L

2h
F16

Fc56 = −L
S
F56, (4.26)

while the force component due to gravity is

Fcg = −5mµL

2r3c
(4.27)

Because Debye shielding effects are the primary reason for electrostatic force decoupling, the
Debye length will be used to define TCS lengths for the investigation. Returning to Figure 2.23,
the length L will be set at λD; the 6-node TCS height measure h in Figure 4.15 will be varied
linearly as a function of the Debye length so that

h = αλD

The scaling parameter α will be varied to demonstrate the decoupling effect. To provide an illus-
tration of how the decoupling can directly affect tether tension, the charges on the craft will be held
constant as α is varied. The charges used for the simulations are presented in Table 4.4. The TCS
is assumed to be located at GEO, with rc = 42, 164 km.
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The results for the change in force components as α is varied are presented in Figure 4.16 for
the case where λD = 4 m. Note that for the negative force components Fc56 , Fc16 , and Fcg the
magnitudes are plotted. This enables a clear picture of which force components are influencing
the tether tension the most. Up to around α = 1, the compressive force component Fc16 is the
dominating force. Indeed, the tether will experience compression up until this point. It is not until
the distance h has been increased enough and the tensile force component F34 dominates that
the tether experiences tension. It is clear that as α is increased further, the magnitudes of the force
components which incorporate the length h drop off to orders of magnitude several times lower
than the dominating force component. This is what is meant by force decoupling. Essentially, these
tether components have become so small as to be insignificant. In this case, the gravitational force
component Fcg is also at an order of magnitude that is insignificant. As α increases, the tether
tension approaches the value of Fc34 + Fc24 , as these are the only remaining significant force
components.

This illustrates that for large structures that may consist of tens of nodes, the Coulomb forces
between two craft at either ends of the structure will have a minimal impact on tether tensions in the
structure due to the effects of Debye shielding. Consider a large truss structure that is 100 meters
long. In an environment with a Debye length of 4 m, the force between two nodes spaced 100
meters apart would be very small. While the force would appear in expressions for tether tensions
in the structure, it would be multiple orders of magnitude smaller than forces generated between
nearer neighbors. Ultimately, we would expect that the expressions for tether tensions connected
to a single node would be dominated by the Coulomb forces generated between craft separated
by distances on the order of the Debye length. This is in fact what we see in Figure 4.16 as α
increases. When the distance h becomes large relative to λD, the tether tension T34 is influenced
only by Fc34 and Fc24 . The separation distance between craft 3 and 4 is 2λD, and the separation
distance between craft 2 and 4 is 2

√
2λD. If we consider the case when α = 5, the separation

distance between craft 1 and 6 is 10λD, while the separation distance between craft 5 and 6 is
5.1λD.

To illustrate the effects these separation distances have on the amount of Debye shielding that
occurs, let us introduce a shielding coefficient υij , defined as

υij = e−rij/λD
(

1 +
rij
λD

)
. (4.28)

This coefficient allows us to directly compare the magnitude of Debye shielding effects as a func-
tion of separation distances. The lower the shielding coefficient, the more the force between two
craft has been reduced due to the Debye length. The values of the shielding coefficients for the
case when α = 5 are presented in Table 4.5. The amount of shielding between craft 2 and 4 is
on the same order of magnitude as that between craft 3 and 4. It is these two force components
that dominate the tether forces when α = 5. The reason why is clear when examining the values
of υ16 and υ56. The amount of shielding between craft 1 and 6 is three orders of magnitude more
intense than that between craft 3 and 4. Similarly, the shielding effects between craft 5 and 6 are
a full order of magnitude below that between craft 2 and 4. This illustrates the manner in which
the TCS dimensions relative to the Debye length can reduce intercraft Coulomb forces to the point
that they no longer influence tethers in the structure.

Thus far, we have examined the case of a fixed Debye length with varying structural dimen-
sions. Alternatively, we may consider the case of fixed structure dimensions with a varying Debye
length, which is more applicable to what a real structure would experience while in orbit. For this
simulation, we will set the TCS dimensions to L = 4 m and h = 8 m and vary the Debye length.
The results are shown in Figure 4.17. All of the force components decrease as λD decreases, but
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Table 4.5: Shielding Coefficient Values for α = 5

rij r34 = 2λD r24 = 2
√

2λD r16 = 10λD r56 = 5.1λD
υij 4.06× 10−1 2.26× 10−1 4.99× 10−4 3.72× 10−2

the rate of decrease is not the same for all components. If we compare Fc16 to Fc34 , we see that
the force component Fc16 decreases more rapidly than Fc34 . This is evidenced by the fact that the
separation in orders of magnitude between the force components grows as λD decreases. At the
upper bound on the Debye length, the force components are separated by slightly more than an
order of magnitude. At the lower end of the Debye length, however, the craft are separated by four
orders of magnitude. This large difference between the force components means that at the lower
Debye lengths Fc16 has minimal influence on the tether relative to Fc34 . Practically, the influence of
the Coulomb force between craft 1 and 6 has decoupled from the tether.

These cases illustrate what is meant by a zone of influence. Beyond some certain dimensions
of the TCS or Debye lengths of the surrounding environment, certain force components grow so
small that they negligibly affect the tether tension. Once they no longer significantly impact the
tether forces, they have exited the zone of influence of the tether. Because this is the first time
this effect has been noted and analyzed, it is appropriate to formalize a definition for the idea of
a zone of influence. Providing a geometric based definition does not make sense in this case,
because the geometry of each TCS is different; the definition would need to be reworked for each
particular configuration. Rather, the definition will be based on force component magnitudes, and
is provided as follows:

Zone of Influence - A force component is said to be within the zone of influence of a particular
tether at some instant in time, t0, if its magnitude is greater than one percent of the largest
positive (tensile) force component in said tether for a particular TCS geometric configuration,
charge configuration, and Debye length of the local plasma environment.

Thus, a force component may be within the zone of influence for a tether at time t0, but not within it
at some later time t0 + ∆t. This effect is illustrated in Figure 4.17 where decoupling due to Debye
length changes is demonstrated. Because the Debye length is a time variant quantity, decoupling
may exist at one point in time but not at another.

If we return to the two cases examined here, we can illustrate how the change in parameters
causes force components to enter or exit the zone of influence of T34. For both cases the largest
positive force component is Fc34 . Thus, the zone of influence is defined based on the magnitude
of this force component. If we compare the magnitudes of the two compressive electrostatic force
components Fc16 and Fc56 to Fc34 , we can see clearly at which points they are within the zone
of influence of tether T34. The results for the first case where α is varied are presented in Fig-
ure 4.18(a). The results for the second case, where the dimensions are fixed as the Debye length
varied, are shown in Figure 4.18(b). For the first case, we see that Fc16 exits the zone of influence
at α ≈ 2.3, while Fc56 remains within the zone of influence until α ≈ 3.9. This particular case
illustrates the importance of considering TCS dimensions relative to anticipated Debye lengths.
At certain dimensions, the compressive electrostatic force components significantly impact the
overall forces in T34. However, the magnitude of these compressive elements can be rendered
insignificant if the dimension h is chosen to be large enough. With a smaller magnitude of com-
pressive elements in the tether force expression, less charge would be needed on the nodes to
maintain tension.

In the second case, only the force component Fc16 exits the zone of influence over the range
of Debye lengths investigated. This exit occurs around λD = 2.8 m. This case illustrates how
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Figure 4.18: Illustration of zones of influence for a) case where α is varied and b) case where λD
is varied.

different force components could enter or exit the zone of influence over time. If at some point in
time the Debye length is 6 meters, Fc16 would be within the zone of influence of T34. At a later
time the Debye length could be 2 m, in which case Fc16 would no longer be within the zone of
influence for the tether. As Figure 4.18(b) clearly illustrates, the magnitude of the compressive
force elements in this particular TCS is much more significant for larger Debye lengths.

The concept of zones of influence is important for structures which may have overall distances
larger than the local Debye length. While the force between two nodes at either end of the structure
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Figure 4.19: Maximum absolute principal rotation as a function of environmental conditions (De-
bye length)

may appear in many tethers throughout the structure, the magnitude of this force may be so small
that it does not noticeably impact the tensions in said tethers. Additionally, the decoupling effects
observed as the Debye length varies provide a clear picture of why space weather variations
must be carefully considered when designing a TCS. While a structure may be properly inflated
under large Debye lengths, one or more tethers could shift into compression if the Debye length
decreases. Consider a case where a certain force component is being used to ensure tension in
some tether Tij . If the Debye length decreases such that the tensile force component is no longer
within the zone of influence of Tij , the tether could go slack. These results indicate that a structural
design must be simulated across the range of all expected Debye lengths, from large to small, to
ensure that inflation can be maintained during all space weather conditions.

4.5 Space Weather Impact on Rotational Stiffness

Analyzed here is the plasma effect of charge shielding which reduces the inflationary Coulomb
force and stiffness capabilities of the system.2 The charge reduction is examined for a range
of Debye lengths from nominal to worst-case conditions. Figure 4.19 shows the effect of these
plasma conditions on the rotational stiffness of a single-tether TCS configuration with disturbance
about the X-axis. The results shown are for the conservative partial charge shielding force model
of Eq. (2.5). For spacecraft charges to these magnitudes the effective Debye length will in fact be
larger improving the rotational stiffness results.

Figure 4.19 shows that environmental conditions have minimal impact on the dynamics of
a closely-operated TCS system until Debye lengths on the order of 10 meters or smaller are
considered. The maximum absolute rotation lines in the figures converge to the maximum rotation
values with no plasma shielding. Nominal values of Debye lengths (far right of figure) have no
effect, but as the plasma Debye length reduces to the worst case value the rotational stiffness
decreases. When designing for the worst case plasma conditions consideration must be made for
TCS nodal separations larger than 5 meters. Considering a TCS system with a large number of
nodes spanning 100 meters, the shorter Debye length plasma shielding will also impact the overall
rigidity of this system. The results in Figure 4.19 are specific to a simple two-node system and
short separations.
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4.6 TCS Power Requirements

The goal of this section is to compute the power required for a single TCS node to maintain a
fixed potential as it operates in the representative GEO plasma conditions given in Table 4.1.
Firstly, the net plasma current flow to the node (that is charged to a fixed potential) is computed.
It is necessary to emit the equivalent current to offset the plasma and maintain the desired node
potential, and the power required is the product of these two values. In addition, the resulting fuel
(electron/ion ejection current) is estimated for these charging conditions.

4.6.1 Net Plasma Current Flow

Without charge control the GEO plasma environment will cause the spacecraft potential to vary
uncontrolled between positive (sunlit) and negative (shaded) values. The resulting currents drive
the spacecraft to charge equilibrium with the local plasma where the net current is zero, which can
occur at kiloVolt-level potentials. For a TCS node, an active charge control device is implemented
to enhance or offset this natural equilibrium and drive the node to desired charge levels regardless
of the local plasma conditions. Presented here is a model of the current flow between a spacecraft
and its operating plasma. The plasma interaction to the spacecraft is modeled with the net current
flow equation, (with the notation that all currents to the spacecraft are negative):

Inet = Ie − Ii − [IPe + ISe + ISi + IBSe]± Icc (4.29)

where

Ie = incident electrons
Ii = incident ions
IPe = photoelectrons
ISe = secondary emitted electrons due to Ie
ISi = secondary emitted electrons due to Ii
IBSe = backscattered electrons due to Ie
Icc = charge control (electrons or ions)

4.6.2 Primary Electron and Ion Current Density

It is assumed the plasma is comprised of two populations (electrons, protons) that are modeled
with single-Maxwellian distributions. A spacecraft at GEO is stationary relative to the plasma
(no ram currents) and the two primary current contributions are from electron and ion bombard-
ment. The net current density Jnet [Am−2], is developed for both positive and negatively charged
spacecraft with a Boltzmann factor representation and exponential repulsion and Mott-Smith and
Langmuir attraction:74,75

Jnet(Vsc < 0) = J0e exp
[−ec|Vsc|

κTe

]
− J0i

(
1 +

ec|Vsc|
κTi

)
(4.30a)

Jnet(Vsc > 0) = J0e

(
1 +

ecVsc
κTe

)
− J0i exp

[−ecVsc
κTi

]
(4.30b)

where Vsc [V] is the spacecraft potential and J0e & J0i are the electron/ion saturation currents:

J0e = ecne

√
Te

2πme
(4.31a)
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Table 4.6: Example Photoelectron Current Densities and Particle Energies

Source J0pe TPe
[µA/m2] [eV]

Grard76,77 4-42 3.9-4.8
Whipple39 7.2-48 1-2

King14 10 4.5
Nakagawa78 85 2.1
DeForest79 8.2 -

Samir80 30 -

J0i = ecni

√
Ti

2πmi
(4.31b)

A spacecraft will reach current equilibrium with the plasma when Jnet = 0. Depending on the
plasma conditions this solution exists for a specified spacecraft potential, known as the floating
potential. With a single Maxwellian plasma distribution and no photoelectron or secondary particle
effects the equilibrium will occur at a negative potential.

4.6.3 Inclusion of Photoelectron Current

In sunlight a spacecraft is hit with solar radiation that leads to a net outflow of photoelectrons.
This occurs during sun-lit conditions when the photons impacting the spacecraft surfaces cause
an electron to be emitted. This is an important contributor to the net current flow for a GEO
spacecraft as this is the majority of on-orbit conditions and the magnitude of the current can be
relatively high. The photoelectron current is modeled using:

JPe(Vsc < 0) = −J0pe (4.32a)

JPe(Vsc > 0) = −J0pe exp
[−ecVsc
κTPe

](
1 +

ecVsc
κTPe

)
(4.32b)

where TPe [K] is the mean energy of the photoelectrons leaving the spacecraft surface and J0pe
[Am−2] is the constant photoelectron current density for a spacecraft at zero potential. The photo-
electron current is dependent on the surface materials of the spacecraft. Emitted photoelectrons
leave the spacecraft surface isotropically with a Maxwellian energy distribution that has a mean
energy TPe. This mean energy value is computed both with space and laboratory experiments and
is constant regardless of the incoming photon spectrum.65 Table 4.6 lists a range of representative
photoelectron currents (J0pe) as well as the mean energy TPe of emitted photoelectrons.

The photoelectron current is computed at a distance of 1 AU and with a impact trajectory that is
normal to the surface. Torkar in Reference 81 presents the use of an active charge control device
emitting a current of 10-50 µA to overcome the photoelectron current of the TC-1 spacecraft. Samir
in Reference 80 demonstrates that the photoelectron current on the Ariel 1 satellite was as high
as 300 µA/m2 but reduced as a result of changing surface conditions such as outgassing.

For this study a photoelectron current of J0pe = 20 µAm−2 will be used along with a mean en-
ergy, TPe = 2 eV.76,77,39,14 These values are chosen to represent typical spacecraft materials and
give a conservative indication of the effect of photoelectron currents on TCS power requirements.
The photoelectron current is computed from only the sun-lit surface (half-sphere).
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Figure 4.20: Current flows to spacecraft during quiet plasma conditions, λD = 4 m (worst-case)

4.6.4 Inclusion of Secondary Electrons and Backscattering

Additional current sources considered are the outgoing electrons from secondary emissions and
backscattering.82 The secondary yield (that can be higher than the incoming primary particle
flux)83 is a function of the surface material and the primary particle energy. The mean energy of
the secondary electron leaving the surface is very low, TSe ≈ 2-3 eV65,84,85 and will return to the
surface of a positively charge craft (no net current effect).

The electron current Ie is low for a negatively charge craft, so the secondary electron and
backscattered current from electron impacts is omitted in this study. The backscattering of ions is
generally very low and is also omitted.65,79 The secondary electron yield from ion impacts is only
larger than unity for high primary energies (> 10 keV)65 and will only be considered for the higher
energy plasmas of the nominal and disturbed conditions. A simple linear model of the secondary
electron current is given by Francis in Reference 84:

JSe(Vsc < 0) = −b|Ji| (4.33)

where b ≈ 3 is computed from a study of ATS-5 and ATS-6 data.84

4.6.5 Dominant Plasma Currents

The natural net current flow between the plasma and a spacecraft operating at a given potential is
computed. The range of spacecraft potentials used in this analysis is -30 to 30 kV, a reasonable
range that is anticipated for TCS operations. The currents impacting the spacecraft during the
quiet plasma conditions (λD = 4 m) is shown in Figure 4.20.

The currents are shown for a single spherical craft of 0.25 m radius. In this cold and dense
plasma a negatively charged spacecraft will attract a current of ions. During positive charging
electrons will be attracted to the craft and the relative ion current is zero.

The plasma currents for nominal conditions (λD = 200 m) is shown in Figure 4.21. In this
plasma, the dominant current for a negatively charged spacecraft are the escaping photoelectrons.
For a positively charged spacecraft the electron current bombardment dominates both the ion
current and the low energy photoelectrons that are attracted back to the craft.

The plasma currents for the hotter and sparser disturbed plasma conditions (λD = 743 m) is
shown in Figure 4.22. The dominant current for negative charge is the escaping photoelectrons
while a positive charge has a dominant electron current bombardment.

The consequence of these resulting charging schemes in all environments is that to maintain
a negative spacecraft potential it will be necessary to emit ions to compensate for either the ion
impacts and/or escaping photoelectrons. Alternatively, to maintain a positive spacecraft potential
it will be necessary to emit electrons to compensate for the impacting electrons from the plasma.
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Figure 4.21: Current flows to spacecraft during nominal plasma conditions, λD = 200 m
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Figure 4.22: Current flows to spacecraft during disturbed plasma conditions, λD = 743 m

4.6.6 Net Plasma Current

The plasma current levels shown in Figures 4.20-4.22 can be summated to compute the net
plasma current and dictate the equilibrium potential each craft will reach in each plasma envi-
ronment. The net current flow to a spacecraft that is in eclipse (no photoelectrons) is shown in
Figure 4.23 for each of the plasma conditions. The maximum net current occurs in a quiet plasma
for a positively charged spacecraft.

The net current flow to a spacecraft that is in sun light (includes photoelectron current) is shown
in Figure 4.24, for each of the plasma conditions. The addition of the photoelectron current has
minimal affect on the quiet plasma (λD = 4 m) however does contribute to a negatively charged
craft in the nominal and disturbed plasmas as predicted from Figures 4.21 & 4.22.

4.6.7 Net Plasma Current Verification

The VORPAL 3D electrostatic numerical simulation code is also used to compute the net plasma
current to two nodes. This allows comparison to the analytic current models, providing a means of
verification. The current to the charged spheres is computed in VORPAL by tracking the number of
electrons in the simulation domain at each time step. The average current is computed by taking
the total number of electrons lost to the craft divided by the corresponding simulation time interval.

The plasma conditions used are the extreme cold/dense properties given in Table 4.2 that are
used for the over-lapping plasma sheath study. These properties along with spacecraft potentials
of [-10, -1, -0.5, 0.5, 1, 10, 25] kV cover the ranges of validity of Eq. (2.3). The comparison of
the plasma current model to the numerical solution for a single node of 0.25 m radius is shown in
Figure 4.25.

Overall, the comparison of the net current flow to a single craft indicates the analytic model
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Figure 4.23: Net current flow to spacecraft in eclipse for each plasma
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Figure 4.24: Net current flow to spacecraft in sun light for each plasma
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Figure 4.25: Net current flow to one spacecraft in eclipse comparing analytic model to VORPAL
numerical solution

matches the numerical solution well for the positive potentials. In the low positive potentials [0.5,
1] kV the numeric solution yields slightly larger currents as a result of the increased force shielding
due to the over-lapping plasma sheath, (an effect that is not captured in the analytic model). At
higher positive potentials [10, 25] kV it is harder to make a direct comparison due to the violation
of Eq. (2.3), however the numerical results still agree well with the analytic model current.

The numerical current solution of VORPAL also captures the equilibrium currents and floating
potentials close to the model predictions. The numeric solutions indicate equilibrium occurs at
potentials of ≈-0.5 kV and ≈-0.85 kV for the 33 m and 50 m plasma conditions respectively. This
is close to the model prediction of -1.2 kV and -2.3 kV.

4.6.8 Net Power Requirements

The net current is used to compute the power necessary to maintain a fixed potential. It is assumed
that the charge control current can be either positive or negative charge and equal the net plasma
current Inet = Icc. For a given spacecraft potential the power is calculated using P = |VscInet|.

For a spacecraft in eclipse (no photoelectrons) the power required to maintain a fixed potential
is shown in Figure 4.26 for each plasma condition. The nominal (λD = 200 m) and disturbed
plasma conditions require realistic Watt-levels of power, while the quiet plasma power remains
less than 100 W.

For a spacecraft in sun light the power required to maintain a fixed potential is shown in Fig-
ure 4.27 for each plasma condition. The inclusion of photoelectrons has very little effect on the
power for a quiet plasma (λD = 4 m). The inclusion of photoelectrons and ion secondary emis-
sions for negative potentials in nominal and disturbed plasmas slightly raises the required power,
however the magnitude is still an order of magnitude lower than the quiet plasma.

The net current and consequent power required by an onboard charge control device to main-
tain a fixed potential is computed for three representative plasma conditions. A summary of the
maximum power requirements for each plasma condition and spacecraft potential polarity is shown
in Table 4.7. Each of the maximum power requirements occurs at the maximum potential level
studied (|30| kV), except for the eclipse case, in the disturbed environment that occurs at -8 kV.

For the nominal TCS GEO plasma conditions the power requirements for this single 0.25 m
radius craft is less than 1 W to charge between ± 30 kV. This power requirement increases linearly
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Figure 4.26: Power required in eclipse to maintain fixed spacecraft potential for each plasma
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Figure 4.27: Power required in sun light to maintain fixed spacecraft potential for each plasma

with the number of Nodes in the TCS configuration. Operations in a quiet (worst-case) requires at
least an order of magnitude greater power than the nominal conditions. The TCS spacecraft con-
cept can use either charge polarity, however a negatively charged craft (emitting ions) will require
less power than a positively charged spacecraft. This is because the electrons that have the same
temperature as the ions (model assumption), but significantly smaller mass, are attracted and im-
pact the charged craft during positive charging. Therefore for the same magnitude of charge the
electron current will be higher than the ion current if the same particles have the same temperature
(i.e. energy).

4.6.9 Plasma Equilibrium Currents and Floating Potentials

The low magnitude dips in the net current flow and power figures correspond to natural equilibrium
conditions where Inet = 0. The location of this root occurs at the spacecraft floating potential. For
a single-Maxwellian plasma there is a single root to the net current equation and consequently a
sole equilibrium condition. At GEO this solution will typically produce a spacecraft floating poten-
tial that is slightly negative for sun-lit conditions and can go highly negative during eclipse. The
single-Maxwellian floating potentials are shown in Table 4.8 for each of the plasma environment
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Table 4.7: Maximum Power [W] for Each Plasma and Spacecraft Potential Polarity Between the
Range of Charging (-30 kV to 30 kV)

Conditions Quiet Nominal Disturbed
Polarity (λD = 4 m) (λD = 200 m) (λD = 743 m)

Eclipse
negative 2.55 0.02 0.007
positive 109 0.81 0.25

Sun-lit
negative 2.67 0.14 0.12
positive 109 0.81 0.25

Table 4.8: Spacecraft Equilibrium Floating Potentials for Each Plasma Condition

Conditions Eclipse Sun-lit
[V] [V]

Quiet (λD = 4 m) -8 5.3
Nominal (λD = 200 m) -2250 6.0
Disturbed (λD = 743 m) -25000 3.2

conditions studied here. These equilibria are advantageous to the TCS concept that can utilize
these naturally occurring spacecraft potentials for very low power requirements.

It is also possible to have multiple roots (and floating potential solutions) with the inclusion of
additional plasma currents. Using a single-Maxwellian plasma that includes secondary electron
currents produces two roots that are a function of the plasma electron temperature and the material
properties. The low temperature plasma root is typically not experienced at GEO.65 As the plasma
temperature increases to the second root (critical temperature) the spacecraft will go from slight
positive charge to high negative potentials.65,86 This occurs in eclipse with no photoelectrons and
is a potentially hazardous scenario for a TCS application as the nodes could abruptly change
charge polarity and magnitude losing required repulsive forces.

A double-Maxwellian can also be used to represent a GEO plasma. Although more complex,
this can be more advantageous as it provides a more accurate fit to GEO plasma data and allows
for analysis of high energy charging affects.87 A double-Maxwellian is also more accurate in rep-
resenting a GEO spacecrafts floating potential characteristics as it allows for multiple equilibrium
roots to the net current equation.

With a double-Maxwellian plasma it is possible to have one, two or three roots depending on
the plasma conditions. The low energy plasma determines the number of roots and the respective
spacecraft charge.65 A changing single-Maxwellian plasma will cause the spacecraft potential to
change continuously. With the presence of a triple root represented with a double-Maxwellian it is
possible to capture the abrupt spacecraft potential jumps that can occur in a changing plasma.88,87

This is also an undesired charging situation for a TCS, that must be considered during future
design and implementation stages.
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Figure 4.28: Force generated and power required in sunlight [Solid = Power, Dashed = Force] as
a function of sphere potential and radius. This is computed in a nominal plasma (λD = 200 m).

4.6.10 Effect of Spacecraft Radius on Force Generation and Power Requirements

The power requirements of a TCS spacecraft also has an impact on the selection of the nodes
radial size. A larger node will generate a greater Coulomb repulsive force (for a given potential
level) while also requiring a larger power requirement due to a larger surface area interacting with
the plasma. Analyzed here is the relationship between spacecraft radius and the magnitudes of
force generation and power requirements to determine if there is an optimal TCS nodal size.

The Coulomb force generated between two spherical TCS nodes of potential Vsc is computed
using the force of Eq. (2.1). This is an ideal force that ignores plasma shielding and true charge
interactions of close spheres, however it is appropriate for the scaling comparison performed here.

The net power required for a spherical node is computed for the nominal plasma condition (λD
= 200 m) in sunlight (photoelectrons included). The force and power is shown as a function of
spacecraft potential for a range of possible spacecraft radii and shown in Figure 4.28. In this figure
the solid lines represent the required power, the dashed lines are the Coulomb force generated.

Both the force and power are a function of f(r2), hence at a given voltage the proportional
increase between each radial line is equivalent. Ultimately, there is no optimal radii, TCS nodal
size should be selected based on total power limitations, mass and size constraints or minimum
force required for a given potential.

The Coulomb force is a function F = f(V 2
sc) which dictates the shape of the curves, and

is equivalent magnitude for both positive and negative potentials. The power required during
positive charging is a function P (Vsc > 0) ≈ f(V 2

sc) and hence has a similar profile to the force.
However during negative charging in this nominal plasma, the dominant current is the constant
photoelectrons and the resulting power is a function P (Vsc < 0) ≈ f(Vsc). The result is that for
negative charging lower power is required to achieve the equivalent force at a given potential.

To demonstrate the relationship between force and power, Figure 4.29 shows the ratio F
P . A

large ratio value indicates more force is obtained per power required. This figure shows that for
positive charging the ratio is constant. Figure 4.29 also shows that it is more advantageous to use
negative charge as an equivalent force can be generated for less power than the same positive
charge. This ratio value is independent of the craft radii used as force and power values are a
function of f(r2).
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Figure 4.29: Ratio between force generated and power required in sunlight and a nominal plasma
(λD = 200 m) for a sphere of radius 0.25 m

4.7 TCS Propellant Mass Estimates

An important consideration for a TCS node using a charge control device is the mass flow rate
(ion emission) and total propellant mass required to maintain the desired surface potentials. Given
an example two-node TCS with 0.25 m radii spheres operating in sunlit conditions in three rep-
resentative plasma conditions (quiet, nominal, disturbed) the propellant mass requirements are
computed. The propellant mass requirements of a Coulomb charge control system are compared
to the propellant requirements of alternate electronic propulsion systems. An important consider-
ation that is also analyzed here is the momentum exchange force from the emission of the charge
control device.

4.7.1 Coulomb Thrust Propellant Mass Flow Rate

For a TCS maintaining a fixed potential in a plasma, the required propellant is the charged particles
emitted as a current to offset the net plasma current. To charge to negative potentials positive ions
from an onboard propellant source are emitted. For positive nodal charging, electrons that are
either stored or obtained from solar energy are emitted.

The mass flow rate of propellant is the charge control emission current. For this study the mass
flow rate, during negative charging, is computed using Xenon gas ions (Xe+). For charge control
emission it is most advantageous to use the lowest mass particles (ideally H+ ions), however
Xenon is used as it is a common hollow cathode propellant (See Appendix B) and it results in the
largest (worst-case) mass flow rate, with a higher ion mass than Indium (a common field emission
propellant).75,89 The mass flow rate, during negative charging, is computed using:14

ṁ =
|Inet|mion

ec
(4.34)

where mion is the mass of the emitted ion species assuming it has a single charge. For positive
charging, mion is replaced with melectron, the mass of an electron, which is 5 orders of magnitude
less than Xenon gas ions. An advantage of using electrons is that they are essentially free propel-
lant as they can be obtained on-orbit from solar energy. Figure 4.30 shows the total mass flow rate
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Figure 4.30: Charge control mass flow rate in sunlight for a sphere of 0.25 m radius

Table 4.9: Maximum Mass Flow Rate [µgs−1] for Each Plasma at a Given Spacecraft Potential

Spacecraft Quiet Nominal Disturbed
potential (λD = 4 m) (λD = 200 m) (λD = 743 m)

-30 kV 0.24 0.012 0.011
+30 kV 4.2×10−5 3.1×10−7 9.6×10−8

required by the two-node example TCS operating a charge control device(s) in sunlight. During
eclipse, the mass flow rate is equivalent for positively charged craft and lower magnitudes for neg-
atively charged craft, due to the lower net current. Table 4.9 lists the maximum mass flow rates for
each of the plasma conditions. The maximum rates correspond to the extremes of the analyzed
spacecraft potentials of ±30 kV.

The maximum mass flow rate occurs during the worst case, quiet plasma conditions (λD = 4
m) as the net plasma current to the craft is at its highest level then. In a nominal plasma (λD = 200
m) mass flow rates are reduced by at least an order of magnitude. The mass flow rates are orders
of magnitudes lower for positive charging as low mass electrons are emitted. The currents here
are still higher, so a higher electrical power is required compared to the negative charging.

The highest expected mass flow rate for this two node system are below 0.24 µg/s for all
expected plasma conditions. The current spacecraft charge control technology can produce mass
flow rates as high as 0.1 A at 100 µg/s and 10 A at 200 µg/s.90,91 The fact that the mass flow
rates required by a TCS system are significantly lower, indicates that they can be achieved with
current technology. Also, the mass flow rate analysis conducted here does not account for any
inefficiencies in the charge control device. In addition, the charge control accuracy for a TCS node
system is not important, rather that the overall charge is significant to maintain tether tension and
overcome external disturbances. For this reason, a higher mass flow rate will increase the nodal
charge and ultimately stiffness of the system.

4.7.2 Total Propellant Mass Comparison

For the two-node TCS example case it is beneficial to estimate the total propellant mass required
by the charge control system. The propellant mass is compared to the mass requirements of al-
ternate electric propulsion systems performing an equivalent node repulsive force. The example
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Table 4.10: Propellant Mass Requirements for a Two Node System Operating in a Orbit Normal
Configuration at GEO for Ten Years; [10 m Separation, 0.25 m Radii, Nominal Plasma]

Propulsion Isp Propellant
technology (s) mass (g)
PPT 500 684
Colloid 1000 342
FEEP 10000 34.2
Coulomb (Xe+) 2×106 3.9
Coulomb (e−) ∞ 9.8×10−5

used is the two-node TCS with spheres of 0.25 m radii. The nodes are operating in an orbit normal
configuration at GEO with a desired separation of 10 m. Under these conditions a differential grav-
ity force of 5.32 µN is compressing the 100 kg craft. In this naturally compressive orbit scenario,
the repulsive Coulomb force maintains a taut tether.

To achieve this force in a nominal plasma requires the nodes to be charged to |9.0| kV. Charging
to negative potentials occurs by emitting Xenon ions, while positive charging is achieved with
electron emission. Both these propulsion emission options for the Coulomb system are computed.
The first is negative spacecraft charging that emits Xenon ions (Xe+) and the alternate is for
positive spacecraft charging that emits electrons (e−).

This two-node configuration could also be implemented with free-flying craft that utilize contin-
uous electric propulsion with a thrust opposing the compressive differential gravity. The three elec-
tric propulsion methods analyzed are a micro Pulsed Plasma Thruster (PPT), a Colloid thruster,
and a Field Emission Electric Propulsion (FEEP) thruster. An important implementation consid-
eration with all of these propulsive methods is that they have possible plume contamination given
the close operating proximity for this two-node example.

The total propellant mass requirements for each electric propulsion system is computed for a
single node using the relationship:

mpropellant =
t|T |
gIsp

(4.35)

where t is the duration of propulsive maneuver, g is the gravitational constant and T is the de-
sired thrust from a single node, which is equal to the differential gravity force. Table 4.10 gives a
representative value of the specific impulse (Isp) of each of the propulsion systems.

The propellant mass is calculated based on the propulsive system applying a continuous thrust
to oppose the differential gravity force. This is computed to maintain a 10 m separation for 10
years. The required propellant mass of each of the propulsive methods for this two-node example
is shown in Table 4.10. For the Coulomb system, the propellant mass flow rate is computed
for a nominal plasma, λD = 200 m, in sunlit conditions from Figure 4.30. The propellant mass
requirements of each of the propulsion systems is also shown in graphical form in Figure 4.31.

As shown in the Figure 4.31, the total propellant mass requirements are extremely low for
a Coulomb system. If operating in a nominal GEO plasma environment, the TCS system re-
quires less than 4 g of Xenon propellant for positive charging. This propellant mass will increases
considering inefficiencies of the system and variable plasma environments, however it is still a
significantly low requirement that is very competitive compared to alternate systems.

Another important consideration is the inert mass requirements of the charge control system.
As an example, charge control devices for current space missions have masses ranging from 19
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Figure 4.31: Propellant mass estimates for each propellant system operating in an orbit normal
configuration at GEO for ten years; [10 m separation, 0.25 m radii, nominal plasma conditions]

kg on ATS-694 through to the more recent CLUSTER devices weighing only 1.85 kg each.75,36

4.7.3 Emission Current Net Force

The charge current required to maintain a fixed potential is emitted under electrostatic acceleration.
An emission current of ions (negative craft potential) will result in a net momentum exchange and
consequently force on the TCS nodes that feature charge control. In the earlier studies this force
was shown to be negligible for the free-flying charged spacecraft study where the Debye lengths
were assumed to be at least 80 meters or larger.14 However, as Section 4.1 illustrates, these
Debye length values are not sufficiently conservative, hence the use of the worst case plasma
conditions of this study (λD = 4 m). This section investigates the magnitude of the charge-thrust
force and compares it to the electrostatic force for the TCS application.

The charge-thrust force is computed for each of the plasma conditions and compared to the
magnitude of the Coulomb force produced for a given two node system. The force on a single
node from the emission current is computed using:95

Fcc = ṁuion (4.36)

where ṁ is the mass flow rate and uion is the emission speed of the ions. The mass flow rate is
computed using Eq. (4.34) the emitted ion species is assumed to be Xenon here. The emission
speed is proportional to the spacecraft potential Vsc and is calculated using electrostatic repul-
sion:95

uion =

√
2ecVsc
mion

(4.37)

Combining Equations 4.34-4.37 the net charge control force is computed with:

Fcc = Ip

√
2mionVsc

ec
(4.38)

The extent of the charge emission force is compared to the Coulomb force of the two node
system, separated by 2 m in Figure 4.32. The charge emission force (solid) is shown as a function
of spacecraft nodal potential for each of the three representative plasma conditions (designated
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by Debye length). The emission force is computed for a single node of 0.25 m radius. Each node
would require this calculated emission force to maintain equivalent potentials. The Coulomb force
magnitude (dashed) is computed between two craft in each plasma and includes shielding and
close sphere effects using the model of Eq. (2.13). The partial shielding is minimal for spacecraft
in a nominal and disturbed plasma and the resulting Coulomb forces are approximately equal.

For a spacecraft to charge to negative potentials positive, ions are emitted. For this study the
emission force is computed using Xenon gas ions, a common propellant that results in the largest
(worst-case) mass flow rate. For positive charging, electrons are used as the emission charge as
they are readily and freely obtainable from solar power in space.

Due to the lower power requirements to charge to negative potentials the Coulomb force is
approximately three orders of magnitude greater than the charge emission force for the nominal
(λ = 200 m) and disturbed (λ = 743 m) plasmas (a desired attribute). For the worst-case plasma
(λ = 4 m) the Coulomb forces still dominate but with a lower margin. For a positively charged node
the emission force is significantly reduced due to the emission of low-mass electrons. Only in the
worst-case plasma is the charge emission force high, but still at least two orders of magnitude less
than the corresponding Coulomb force. During the nominal and disturbed plasmas the charge
emission force is below 2 µN .

As the separation distance between the spacecraft increases the Coulomb force magnitude
reduces. For this two-node example, Figure 4.33 compares the force magnitudes for a center to
center separation of 5 m. The results shown in this figure indicate that the Coulomb forces domi-
nate the potentially disturbing charge emission forces. For all charge polarities and environments
the Coulomb forces are at least two orders of magnitude larger, except for negative charging in a
worst-case (quiet) plasma where there is approximately an order of magnitude difference.

Extended the two nodes out to 10 m separation causes the Coulomb forces reduce again to the
levels shown in Figure 4.34. In this case, the Coulomb forces dominate in all regimes except for
conditions of negative charging in the worst-case plasma environment. Here the charge emission
force is slightly larger magnitude than the charge emission force from a single-stream current.

4.7.4 Discussion on Propellant and System Mass Requirements

The propellant mass flow requirements for a TCS system charge control device are low (µA levels)
and easily achievable with space proven technology. A list and small description of charge control
technology is given in Appendix B. The charge control device inert mass is estimated to be low,
in the low kg range, which matches well with current charge control technology. The Coulomb
propellant mass is also estimated to be very low, being hundreds of grams for a 10 year mission,
with two nodes in a nominal plasma.

An advantage of the Coulomb thrust technique for a TCS is that the required inert system
mass and propellant mass are estimated to be lower than the three electric propulsion methods
analyzed. The overall propulsion mass requirements will be in the low kilogram level, which could
be easily implementable on small TCS nodes. The Coulomb concept also eliminates the concern
for exhaust plume impingement that is present with the alternate electric propulsion methods.

The two node example used for the comparison does not distinguish how the TCS system
achieves and maintains charge. Depending on the mission application and number of nodes it
is possible to have a single large charge control device that conducts charge to all nodes in the
configuration through conducting tethers or use a small device on each node.

One consideration for the implementation of a charge control device to a TCS configuration
is the force from the momentum of the charge emission current. Depending on the relative ori-
entation of the charge emission current from the node, this may apply a perturbation to the TCS
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Figure 4.32: Force magnitude comparison for two craft of 0.25 m radius and 2.5 m separation in
each plasma. Charge control emission forces (solid) and Coulomb forces (dashed).
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Figure 4.33: Force magnitude comparison for two craft of 0.25 m radius and 5 m separation in
each plasma. Charge control emission forces (solid) and Coulomb forces (dashed).
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Figure 4.34: Force magnitude comparison for two craft of 0.25 m radius and 10 m separation in
each plasma. Charge control emission forces (solid) and Coulomb forces (dashed).
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Figure 4.35: Illustration of bi-directional charge emission

configuration. The magnitude of the charge emission current is compared to the Coulomb infla-
tion force for an example two node system with separations of 2.5, 5, and 10 meters. It is shown
that for all plasma conditions and charging polarities for the close separations (2.5 and 5 m) the
Coulomb forces will dominate the charge emission force. However, separations as great as 10 m
are approaching the limits of separation that maintain dominant Coulomb forces. This is however
only for the rare worst-case plasma operating environments.

This study indicates that consideration for the placement and direction of the charge control
device on the nodes should be made. If a single charge control device on a node is used to charge
a whole TCS the emission force can be close or even greater than the Coulomb force magnitudes
during negative charging and worst-case plasma conditions. With appropriate placement and the
use of multiple emitters the emission force can be directed to create zero net force on the node
and not interfere with Coulomb inflation forces. An conceptual example of a charged node with
zero net force charge emission plumes is shown in Figure 4.35.
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Chapter 5

Conclusions and Future Work

5.1 TCS Study Conclusions

This study expands the developments of the TCS concept and highlights the feasibility as a future
space structure concept. A TCS uses a unique combination of very thin tethers and electrostatic
inflation to maintain a spacecraft formation to a desired size and shape. Electrostatic repulsion
is employed to maintain tether tensions and overall structural stiffness. It is demonstrated in this
study that this unique spacecraft design combination offers a practical, stable space platform that
can overcome perturbations such as GEO differential gravity, solar radiation pressure, and initial
rotations. Applications for such TCS systems include interferometry sensing missions, local situa-
tional awareness, primary spacecraft inspections, and variable or large baseline sensing missions.

Nonlinear three-dimensional simulations provide insight into how well the TCS is able to reject
initial angular rate disturbances and avoid tether/node interaction issues. Here the TCS nodes are
modeled through six degrees-of-freedom (translation and rotation), and the tethers are modeled
with proportional stiffness components and nonlinear end-point displacements. This nonlinear
simulation can simulate hours of TCS dynamic response in a few minutes, and is suitable for
doing parametric sweeps. The study is performed for a single-, double- and triple-tether configura-
tion. Additional tethers can increase the rotational stiffness, while reducing the resulting absolute
angular node deflection by up to 75%. While the absolute maximum rotation is reduced with multi
tethers, the nodes are still susceptible to entanglement as the tether attachment points are ini-
tially closer to the maximum rotation angle. With a triple-tether configuration rotational control is
achieved about all axis. This assumes potentials in the range of 10-50kV. As a comparison, current
GEO spacecraft can naturally charge up at times to levels as high as 20kV. This study indicates
that a TCS system can be stiffened under Coulomb forces to resist deployment or external rota-
tional disturbances on the order of 30-60 degrees per minute. While these are small rotational
rates, they provide an indication of how smoothly the TCS nodes must be separated and deployed
if no force field controls or damping are considered.

To study the motion of the tether itself, a sophisticated nonlinear finite element solver is em-
ployed. The TCS nodes are modeled as rigid components, while the fixed length tether is sub-
partitioned into a set of finite elements. Such finite element simulations can take many hours
for a single test run. However, this increased computation cost provides insight into the conditions
where the simpler tether model of the nonlinear TCS dynamics simulation is justified. Several tests
are performed to investigate how the tether thickness, mass, and charge can influence the TCS
nodal motion. The research shows that the simpler TCS model is sufficient to obtain coarse pre-
dictions of the overall TCS motion, and to study the primary effects of tether attachment location
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choices, TCS node parameters, etc. The more complex finite element TCS dynamics simulation
performed a minimum tether strength study to determine what tether thickness is required to be
able to withstand initial TCS nodal rotations of 30 degrees per minute. The result was a thin tether
with only about 2.6µm diameter. A tether 10 times larger is then used to study the impact of
residual strain on the tethered system. Even assuming very conservative worst case strain (i.e.
maximum possible thermal difference, strains close to the material yield), the impact on the TCS
nodal motion is very small, often only fractions of a degree.

The tether thickness has a strong influence on whether the tether dynamics will impact the TCS
nodal dynamics. A sweep is performed with the finite element simulations which show that if the
tether cross sectional area is less than 10−8m2 for the nominal TCS configuration, then the eigen-
strains will have negligible influence. Even considering non-uniform eigenstrain distributions, the
results indicate that the sufficiently thin tether can avoid impacting the TCS motion in a significant
way.

A preliminary TCS tether finite element study is performed to investigate the impact of having
the tether itself be charged to the same potential as the TCS nodes. The results indicate that the
charged tether can help increase the shape stiffness, and reduce the relative motion of the nodes.
The tether charging can also help prevent excessive deformation of the tether as the tether begins
to self-repel.

With the development of the TCS concept it is beneficial to understand the effect of TCS node
inertia, size, and tether attachment angle (for multiple tethers) on the rotational stiffness. The
advantages of a lower inertia are quantified along with the increased moment arm from larger
node sizes. Two- to three-fold increases in rotational stiffness can be achieved by moving the
node mass towards its center. Further, the impact of the TCS shape on the minimum charge
requirements to maintain tether tension in the presence of differential gravity is explored. It was
found that adding additional nodes with equal charge polarity does not necessarily increase the
tether tensions. In particular, the study fund a case where having charge nodes in a non-fully-
interconnected TCS setup can cause some tethers to be in compression. As a result, this study
illustrates how care must be taken when designing the TCS nodal spacing and configuration to
increase the tether tension.

Larger nodes have to consider space plasma interaction and power requirements which is
also investigated in this study. Using representative GEO plasmas it is shown that Coulomb force
shielding is minimal in a nominal GEO space plasma environment. In addition, it is demonstrated
that the power levels required to maintain a fixed potential using a charge emission device are fea-
sible (Watt levels) with current space proven technology. The required propellant and dry system
mass for an example two-node TCS is only kilograms and offers savings over comparable electric
propulsion systems.

Of particular interest are the worst-case GEO space weather conditions that must be consid-
ered. While nominal plasma Debye lengths are on the order of 200 meters, occasionally the colder
plasma-pause region can get pushed into the GEO region. This study adopts worst case GEO
Debye lengths on the order of 4 meters. While such low Debye lengths do impact the electrostatic
force and associated power computations, the power levels can remain in the 10’s of Watt range if
ions are emitted and the nodes are charged to negative potentials. Further, numerical simulations
of the full Poisson-Vlaslov equations are performed to illustrate that the TCS potentials considered
in this study yield effective Debye lengths that are multiple times larger than the regular Debye
lengths. As a result, the rotational stiffness of a multi-meter length TCS system only changes by
up to 20% during such worst case plasma conditions. Further, advanced numerical particle-in-cell
simulations were performed to investigate if having overlapping Debye sheaths will cause our an-
alytical force and power predictions to change. It was found that even with very dense and cold
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GEO plasma the overlapping Debye sheaths only caused a very percent change in forces thanks
to the relatively large potentials being considered.

5.2 Future Work Considerations

The prospects of the TCS concept are strengthened with these findings and will lead to further
developments. Key areas of future investigation could include the feasibility of nodal relative
motion damping, controlling initial nodal deployment motions, investigating the TCS deployment
challenges, as well as the ability to reconfigure nodal relative positions for TCS shape morphing
considerations.

Advanced charge and TCS attitude control laws should be investigated to dampen out both
translational and rotational shape deformations. One possibility is consider having a combined
Coulomb momentum control law.

The process of how to deploy a TCS system has not been explored in this study, and should
be considered in future TCS research. The non-autonomous (time dependent) tether dynamics
greatly complicate the associated dynamical systems study. Further, larger TCS systems with
more than three nodes are of interest because these system could increase TCS sizes to 100+
m. However, modeling such systems will lead to interesting macro-scale structural stability and
stiffness investigations.

To consider the challenges of deployment, the complex electrostatic interactions between close
components must be considered in more detail. The induced charge effects can cause repulsive
electrostatically force to be reduced significantly when the bodies are almost touching. The current
tether finite element simulations assume a fixed charge distribution for a given potential level. A
more general multi-physics simulation code would be able to solve the electrostatic field equations
simultaneously with the structural continuum mechanics equations to yield higher fidelity TCS
simulations. Such complex simulation software would then also be able to simulate the expected
response for TCS deployment, reconfigurations, and provide better predictions of any TCS shape
damping methods being proposed. Another future research direction is the question on how to
do orbit corrections or changes with a TCS system. Due to the small inflationary forces, low
thrust options must be considered, and the resulting TCS shape deformation studies. To perform
an orbit correction, it is envisioned that the TCS shape will deform considerably during the orbit
maneuver, but would then resume its original equilibrium shape after the thrusting. Of interest
is how large such deformations would be. Having an effective TCS shape damping mechanism
would be critical to assist reduce the final settling times.
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Appendix A

TCS Dynamic Model Verification
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Figure A.1: Asymmetric two-node system with two degrees of freedom

A.1 Linearized Equations of Motion

Figure A.1 depicts the prototype benchmark two-node TCS system which is the baseline con-
figuration for many studies. This appendix outlines how the numerical codes were verified. First,
analytical equations of motion are obtained for small departure motion cases about the equilibrium
configurations. The linearized equations of motion for two-node TCS are2

δr̈ ≈ − 1

m

[
2kcQ

r3e(Q)
+ ks

]
δx (A.1)

for translation and
θ̈ ≈ −ρks

I
[re(Q)− ro] θ (A.2)

for rotation where re(Q) is the equilibrium separation distance, ro is the TCS separation distance
with no tension in the tension, Q is the charge product of the two nodes. The tether is modeled as
proportional spring with nonlinear displacement model. This setup does not consider any tether
inertial or mass properties. The linearized equations of motion yield a translational frequency of

ωT =

√
1

m

[
2kcQ

r3e(Q)
+ ks

]
(A.3)

and a rotational frequency of

ωR =

√
ρks
I

[re(Q)− ro] (A.4)
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Figure A.2: Frequency comparison between simulation and analytics

Figure A.2 shows a comparison of the 6 degrees of freedom TCS simulation translational and ro-
tational frequencies as compared to the analytical frequencies. For the translational frequencies,
the TCS was set with each node offset from equilibrium by an equal distance. For the rotational
case, the nodes were set at TCS and then given an initial rotation. Figure A.2 shows that both
translational and rotation frequencies agree with the analytically predicted response for small de-
flections. However, it can be seen that the linearization begins to break down at a translational
offset of more than 10−4m and an initial rotation of more that 1 deg/min. Even so, the figure further
validates the use of the nonlinear TCS numerical simulation.

A.2 Tether Model Comparison

The numerical simulation (called TCS Sim) for the dynamic modeling of TCS systems models a
tether as a proportional spring with non-linear end displacements. This simplified tether model
is used to allow for a significantly increased speed in simulation runs. A higher fidelity finite ele-
ment model (FEM) was used to model TCS tethers as well. Nearly identical simulations for the
benchmark system in Figure A.1 were run using both models. The differences are due to the finite
element model accounting for small tether inertia and mass terms, as well as abilities to handle
compression. The simpler TCS Sim assumes the tethers are massless and cannot handle any
compression. The single-element tether model used in these verification runs are only for the
purpose of comparing the two code sets. The resulting TCS dynamics should be very similar in
both cases. For the detailed structural tether analysis much larger numbers of tether elements are
employed, allowing the FEM to simulate tether wrinkling and buckling.

A comparison of the two simulation results for position and rotation states is given in Figure A.3.
The simpler TCS Sim models the tether response through a proportional stiffness model, and the
FEM case is the result of the finite element code where a single element is used to model the
tether. The simulations were conducted with the single-tether two-node rotational TCS configura-
tion in Figure 2.6 with the parameters of Table 2.3. However, the inertia of the craft is modeled as
a disk and the initial rotation is 30 deg/min. Additionally, for this comparison a simplified charge
model of

Vi =
qikc
ρ
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(c) Axial forces on the tether at spacecraft attachment
point - Symmetric case
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(d) Axial forces on the tether at spacecraft attachment
point - Asymmetric case

Figure A.3: Comparison between nonlinear TCS simulation with proportional tether stiffness
model, and the finite element simulation using a single tether element.

is used because the FEM model is not currently incorporating Equation 2.7.
From the figure it can be seen that both models provide very similar rotational and transla-

tional TCS dynamics. The main differences arise with the asymmetric test case where stronger
compressive components are encountered, and the differences in handling compression between
the two simulations is more noticeable. These plots illustrate that the basic 6-DOF TCS nodal
dynamics is being implemented correctly in both sets of numerical simulations. The small oscilla-
tion response of the TCS sim was also confirmed with analytical linearized response predictions,
providing further confidence in the validity of the numerical simulations.
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Appendix B

Charge Control Hardware Options

Charging of spacecraft in a space plasma is a natural process that can be regulated or enhanced
for TCS purposes using a charge emission device. Two primary charge control devices that have
been proven in space is the use of hollow cathodes to emit noble gas ions and with the field
emission technique using metal ions. Documented here is an overview of these technologies
used on space missions with the intent that these are similar devices to what is to be used by a
TCS system.

Hollow cathode emission uses an electric field to bombard a noble gas with electrons, causing
ion generation. The ions are then accelerated away from the spacecraft. Typical gases are Argon,
Krypton or Xenon that are typically stored in tanks up to 1000 psi.96 Table B.1 gives a summary of
technologies currently available or in planning or have been used on space missions.

Table B.1: Hollow Cathode Space Technology Examples

Mission Technology Description
SCATHA97 Electron gun and Xenon ion beam for positive and negative charging.

ISS98,99 Features a plasma contactor to prevent large structure charging in LEO.
It features an electron emitter based on FEEP neutralizer technology.
ISS unit mass is 21 kg and uses an idle power of 80 W, peak 180 W.
A similar unit with 5 kg mass and 5 W idle, 10 W peak also developed.

ProSEDS91 Was intended to be launched in 2003 to test an electrodynamic tether.1

Stores 245 g of Xenon gas at 8-10 MPa in 0.3 L volume. Emission currents
of 0-10 A. At 10 A gas consumed at 0.2 mg/s. The system is 20x30x13 cm
in size and weighs 6 kg with a 30 W operating power.
A smaller version <1 A max output weighs 5.6 kg and operates on 5 W.

POLAR81 Emits Xenon plasma to obtain operating potentials as low as 1.8 V
relative to plasma.

- In 2000, a ’state of the art’ system is considered a 8W system with Xenon
emitted at 100 mA at a rate of 0.1 mg/s.90

The alternate charge control device used in space is field emission with metal ions. This
technique emits ions from a needle apex that are evaporated from a metal liquid source using field
evaporation. Table B.2 gives a summary of field emission technologies used on space missions.

A miniaturized current collection device that operated on a CubeSat project is an alternate
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Table B.2: Field Emission Space Technology Examples

Mission Technology Description
ATS - 694,100 Uses Xenon neutralizing current >1 mA at energies < 50 eV.

Total instrument mass with plasma measurement devices is
19 kg. Total power of 28 W, storing Xenon gas at 800 psi in a
2 L tank. Also featured Cesium attitude thrusters that were
shown to neutralize charging. Ions accelerated under the
magnetoelectrostatic concept with an emission current of
0.1A at 550 eV.

ATS - 5101 Cesium ion engine with filament neutralizers.
CLUSTER75,36 Indium ion emitter with feedback control to maintain zero

potential relative to the environment. Emission currents of
10-15 µA at energies of 5-8 keV. Liquid indium is kept at
520 K (247 ◦C) with an instrument mass of 1.85 kg and
total power < 2.7 W. Only a ion emission source is used as
spacecraft is always in sunlight.

Geotail89,35,102 Two instruments each containing 4 Indium ion emitters, with
a mass of 1.8 kg, measuring 19 x 16 x 17 cm. Ion current of
≈ 15 µA at ≈ 6 keV with a beam divergence less than 30
degrees. Electrodes operate at ≈ 6 kV with a heater power
of 0.55 W.

Equator-S89,35 Indium ion emitter inherited from Geotail and CLUSTER
and designed as test for CLUSTER-II. Instrument mass of
2.7 kg and max power of 2.7 W, with max potential of 8.3 kV.
Heaters take 15 mins to heat Indium from 200 mg reservoir
to operating liquid temperatures.

Double Star (TC-1)103,81 Improved version of CLUSTER Indium ion instrument. A
potential of 4-9 kV emits ions between 10-50 µA. Instrument
mass is 2.54 kg, max power is 2.9 W and operational life is
extended to 16000 hr.

method of performing charge control. The miniaturized electrodynamic experiment was flown on
the Calpoly CP-6 spacecraft to measure the collection of electrons from the LEO plasma. At the
end of a 1.1 m insulated tape is a tungsten wire that is resistant heated and used to emit electrons.
Two collector tapes are then uncoiled and used to collect electrons from the plasma.104 Ultimately,
the hardware required for charge control of the TCS nodes is space-proven technology. In addition,
the potential levels anticipated for effective TCS repulsive forces have been demonstrated to date
in space with this technology.
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