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1 Introduction

In controlling satellites, one viable method of stabilization and control is the use of Earth’s magnetic
field. There are obvious advantages and disadvantages to this method. The controllers can be small
and do not deteriorate over time, but they also can only produce torques perpendicular to the local
magnetic field. An in depth analysis of this problem can be found in the thesis “A Nonlinear
Magnetic Controller for Three-Axis Stability of Nanosatellites” by Kristin Makovec.1 The purpose
of this paper is to present a model of Earth’s magnetic field such that further analysis of this
method of control could be completed.

The Earth’s magnetic field generally resembles the field around a magnetized sphere, or a tilted
dipole seen in Figure 1 below. As of 1999, the dipole axis was tilted approximately 11.5◦ from
the spin axis, and drifting approximately 0.2◦/yr. Its strength at the Earth’s surface varies from
approximately 30000nT near the equator to 60000nT near the poles. Further, there exists a low
magnetic intensity field at approximately 25◦S and 45◦W known as the Brazilian Anomaly. A high
exists at 10◦N and 100◦E, and the two of these together suggest that not only is the dipole axis
tilted, but it does not quite pass through the center of the Earth.1

CHAPTER 2. EARTH’S MAGNETIC FIELD 10

2.2 Origin and Effects of the Earth’s Magnetic Field

The geomagnetic field is described in detail in NASA Technical Report SP-8017,1 as well
as by Wertz,46 Campbell,6 and Thompson.42 A description of the geomagnetic field, its
characteristics, and variations follows.

2.2.1 Geomagnetic Field

The magnetic field around the Earth resembles that of a uniformly magnetized sphere, or a
dipole, which is tilted as shown in Figure 2.2. The fact that it approximates a tilted dipole
was discovered in 1600 by William Gilbert, and was published in his treatise De Magnete.13

In 1635, Gellibrand was the first to show that the geomagnetic field is both time and position
dependent.42

m̂

Spin Axis

11.5◦

Magnetic Axis

Magnetic
Field Lines

Figure 2.2: Magnetic Field Model

The strength of the magnetic field is approximately 30000 nT at the equator and 60000 nT
at the poles on the surface of the Earth, as mentioned in the Geological Survey of Canada.12

The magnetic dipole axis, designated as m̂ in Figure 2.2, is located at 79.8◦ N latitude
and 107.0◦ W longitude, in the year 1999. This location is near the Ellef Rignes Island in
Canada, and is approximately 700 miles from the geographic North Pole. The magnetic
dipole axis is currently at an inclination angle of 11.5◦ with the equatorial plane. The axis
is drifting westward at about 0.2 ◦/year, and the strength is decreasing by 0.05% per year.

Figure 1: Magnetic Field Model1

1.1 Modeling the magnetic field

The accepted model for Earth’s magnetic field is the International Geomagnetic Reference Field,
put forth by the International Association of Geomagnetism and Aeronomy (IAGA), and is the
central topic of this paper. An overview of this model can be found on the website of the IAGA’s
Working Group V-MOD.2
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The IGRF is essentially a set of Gaussian coefficients, gm
n and hm

n , that are put forth every 5
years by IAGA for use in a spherical harmonic model. At each of these epoch years, the group
considers several proposals and typically adopts a compromise that best fits the data available. The
coefficients for a given epoch year are referred to by IGRF and then the year, as in IGRF2000. The
model includes both the coefficients for the epoch year and secular variation variables, which track
the change of these coefficients in nanoTessla per year. These secular variation coefficients are used
to extrapolate the Gaussian coefficients to the date in question. Once data becomes available about
the actual magnetic field for a given epoch year, the model is adjusted and becomes the Definitive
Geomagnetic Reference Field, or DGRF.2

Typically the IGRF consists of 120 coefficients for each epoch year, with 80 secular variation
coefficients. However, due to unprecedented geomagnetic data available, the IAGA released a new
set of values for IGRF2000 in July 2003 in the 9th-generation IGRF. This new model expanded
to increase the precision of the coefficients to one-tenth of a nanoTessla (up from one nanoTessla),
and increased the number of coefficients to degree 13 (rather than 10).2

1.2 Random variation in the magnetic field

The many variations in the magnetic field around the Earth that can not be accurately modeled due
to their random nature are thoroughly described in Reference 1, while a brief overview is provided
here. It is important to be aware of these variations when considering spacecraft design. First,
there are temporal variations that occur about every 27 days when the active solar area of the Sun
faces the Earth. These variations last between seconds and days, and are particularly bad when
the Earth is near equinox in March-April and September-October.

The second type of variation is diurnal variations which occur due to partical movement within
the ionosphere. These polar (auroral) and equatorial electrojets can have significant impact on the
magnetic field. The auroral electrojet can cause changes on the order of 1000nT to 1500nT at the
Earth’s surface, while the equatorial electrojets cause disturbances on the order of 220nT between
the altitudes of 96 and 130 kilometers.

The last variation is a result of magnetic storms, which occur during solar flares. Solar flares
are very closely related to Sun activity and so magnetic storms generally follow the same 27 day
pattern seen in the general temporal variations, although they occur less frequently. During the
first phase of the magnetic storm the effect is around 50nT, however, during the main phase, which
lasts several hours, the variation is as much as 400nT.

1.3 Breakdown of this paper

This paper is broken down as follows. Section 2 gives the equations used to formulate the spherical
harmonic model used in the IGRF. Section 3 provides recursive formulations of the formulas in
Section 2 that can be used in computer modeling. Section 4 concludes with specific information
about this computer model, including its limitations and possible improvements.

2 Mathematics of the IGRF

According to physics, the magnetic field, B, is defined as the negative gradient of the scalar potential
function V , such that
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B = −∇V (1)

Although a simple dipole model gives a good approximation of the geomagnetic field, it can be
modeled more closely using a spherical harmonic model of the scalar potential as given in Equation
(2). This is the equation about which the IGRF is based.

V (r, θ, φ) = a

k∑
n=1

(a

r

)n+1
n∑

m=0

(gm
n cos mφ + hm

n sinmφ)Pm
n (θ) (2)

Here, a is the reference radius of the Earth (a = 6371.2km), r, θ, and φ are the geocentric coordi-
nates (r is the radius in kilometers, θ is the co-latitude (θ = 90◦− latitude), and φ is the longitude.
The coefficients gm

n and hm
n are Gaussian coefficients put forth by the IAGA for the IGRF, and

Pm
n (θ) represents the Schmidt quasi-normalized associated Legendre functions of degree n and or-

der m. The input to this function is actually cosθ, rather than θ, but this has been dropped for
brevity.

2.1 Derivatives of the scalar potential function

Since the magnetic field strength is calculated by taking the partial derivatives of V , the following
equations are necessary from Wertz.3

Br =
−∂V

∂r
=

k∑
n=1

(a

r

)n+2
(n + 1)

n∑
m=0

(gm
n cos mφ + hm

n sinmφ)Pm
n (θ) (3a)

Bθ =
−1
r

∂V

∂θ
= −

k∑
n=1

(a

r

)n+2
n∑

m=0

(gm
n cos mφ + hm

n sinmφ)
∂Pm

n (θ)
∂θ

(3b)

Bφ =
−1

r sin θ

∂V

∂φ
=

−1
sin θ

k∑
n=1

(a

r

)n+2
n∑

m=0

m(−gm
n sin mφ + hm

n cos mφ)Pm
n (θ) (3c)

where Br, Bθ, and Bφ represent the field strength in local tangential coordinates, and the other
variables defined as before.

2.2 Legendre polynomials

In order to calculate the magnetic field, one must first calculate the associated Legendre polyno-
mials. Legendre polynomials are a set of orthogonal polynomials that also satisfy the zero mean
condition. The following equations for the Legendre polynomials and associated Legendre polyno-
mials come from Schaub.4

Regular Legendre polynomials Pn(v) are calculated to satisfy the following equation:

(1− 2vx + x2)−1/2 =
∞∑

n=0

Pn(v)xn (4)

When solved, this becomes Rodrigues’ formula:
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Pn(v) =
1

2nn!

(
d

dv

)n (
v2 − 1

)n (5)

For reference, this equation yields the following first four Legendre polynomials:

P0(v) = 1 (6a)
P1(v) = v (6b)

P2(v) = (3v2 − 1)/2 (6c)

P3(v) = (5v3 − 3v)/2 (6d)

2.3 Associated Legendre polynomials

2.3.1 Calculating associated Legendre polynomials

The above Legendre polynomials are related to the associated Legendre polynomials through the
following equation:

Pn,m(v) = (1− v2)1/2m dm

dvm
(Pn(v)) (7)

Note that for all m greater than n, the associated Legendre polynomial is equal to zero. Following
are the associated Legendre polynomials through the third degree, which can be verified using
equations 6 and 7.

P1,1(v) =
√

1− v2 P2,1(v) = 3v
√

1− v2 P3,1(v) =
3
2

√
1− v2(5v2 − 1) (8a)

P2,2(v) = 3(1− v2) P3,2(v) = 15v(1− v2) (8b)

P3,3(v) = 15(1− v2)3/2 (8c)

In the case of the magnetic field model, v is replaced by cos θ, such that the above equations
become

P1,1(v) = sin θ P2,1(v) = 3 cos θ sin θ P3,1(v) =
3
2

sin θ(5 cos2 θ − 1) (9a)

P2,2(v) = 3 sin2 θ P3,2(v) = 15 cos θ sin2 θ (9b)

P3,3(v) = 15 sin3 θ (9c)

2.3.2 Note about proper notation

The formulas in Equation (9) represent traditional associated Legendre polynomials that have not
been normalized in any way, and they are represented by Pn,m. There are two commonly used
normalizations that must also be accounted for as described by Jacobs.5 The first is the Gaussian
normalized associated Legendre polynomials, Pn,m. These are related to the non-normalized set
by the equation
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Pn,m =
2n!(n−m)!

(2n)!
Pn,m (10)

In magnetic field modeling, the Schmidt quasi (semi) - normalized form, Pm
n is used, related by

the equation

Pm
n =

[
2(n−m)!
(n + m)!

]1/2

Pn,m (11)

The recursive formulas for the Gaussian normalized associated Legendre polynomials are given
by Wertz3 and used in this model, so the relationship between the Gaussian normalized and Schmidt
quasi-normalized polynomials is explained in detail in the next section.

2.4 Schmidt quasi-normalization

The relationship between the Gaussian normalized associated Legendre polynomials and the Schmidt
quasi-normalized is given by Wertz3 as

Pm
n = Sn,mPn,m (12)

where Pn,m is the Gaussian associated Legendre polynomial, and Sn,m is defined by

Sn,m =
[
(2− δ0

m)(n−m)!
(n + m)!

]1/2 (2n− 1)!!
(n−m)!

(13)

The Kronecker delta is defined as δj
i = 1 if i = j and δj

i = 0 otherwise. Further, (2n − 1)!! ≡
1 · 3 · 5 · · · (2n− 1).

Due to the fact that these normalization values can be calculated irrespective of the value of θ at
which the associated Legendre polynomials are calculated, it is much simpler to instead normalize
the model coefficients, gm

n and hm
n , recognizing that

gn,m = Sn,mgm
n (14a)

hn,m = Sn,mhm
n (14b)

This allows the normalization to only occur once, and then use those new coefficients can be
used to compute the field strength at whatever location is desired.

2.5 Final result

In order for the results of Equation (3) to be effective in satellite work, they must be converted to
geocentric inertial components, using the following equation:

Bx = (Br cos δ + Bθ sin δ) cos α−Bφ sinα (15a)
By = (Br cos δ + Bθ sin δ) sinα + Bφ cos α (15b)
Bz = (Br sin δ + Bθ cos δ) (15c)

Where δ is the latitude measured positive North from the equator, and α is the local sidereal
time of the location in question.
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3 Recursive formulas for computation

In order to produce efficient computer code, the preceding formulas must be decomposed into
recursive formulas as seen in Wertz.3 This section provides those recursive relationships for use in
coding.

3.1 Associated Legendre Polynomials in Recursive Form

The Gaussian normalized associated Legendre polynomials are given in recursive form as

P 0,0 = 1 (16a)

Pn,n = sin θPn−1,m−1 (16b)

Pn,m = cos θPn−1,m −Kn,mPn−2,m (16c)

where Kn,m is defined as follows:

Kn,m = 0, n=1 (17a)

Kn,m =
(n− 1)2 −m2

(2n− 1)(2n− 3)
, n > 1 (17b)

3.2 Schmidt quasi-normalization factors in recursive form

The Schmidt quasi-normalization factors can be found recursively using the following formulas:

S0,0 = 1 (18a)

Sn,0 = Sn−1,0

[
2n− 1

n

]
(18b)

Sn,m = Sn,m−1

√
(n−m + 1)(δ1

m + 1)
n + m

(18c)

Again, it is important to realize that the efficiency of the code can be increased by computing
these normalization factors only once and applying them to the g and h coefficients to be stored as
the values input into the code actually computing the magnetic field.

3.3 Recursive derivatives of associated Legendre polynomials

In order to calculate Bθ, one must calculate the derivaties of the associated Legendre polynomials,
which can be done recursively using the following three equations:

∂P 0,0

∂θ
= 0 (19a)

∂Pn,n

∂θ
= sin θ

∂Pn−1,n−1

∂θ
+ cos θPn−1,n−1, n ≥ 1 (19b)

∂Pn,m

∂θ
= cos θ

∂Pn−1,m

∂θ
− sin θPn−1,m −Kn,m ∂Pn−2,m

∂θ
(19c)
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4 Model implementation in MATLAB code

4.1 General explanation

The MATLAB script, ‘magnet.m’, written to implement this model is shown in Appendix A.1.
The implementation was fairly straight-forward, using the recursive formulas shown above and
looping through the values of n and m to create the appropriate sums. Currently the inputs to
this model are radius, in kilometers from the center of the Earth, latitude, measured in degrees
from the equator, longitude, also measured in degrees positive East from Greenwich, and time in
decimal days since January 1, 2000. Inputting the time allows the secular variation coefficients
to be accounted for in the code. The output is the local tangential components of the magnetic
field. The script also reads in the values of the IGRF coefficients that have already been Schmidt
quasi-normalized and placed in two files called ‘igrfSg.txt’ and ‘igrfSh.txt’, which are the output of
the Schmidt quasi-normalization code, ‘ghnorm.m’, shown in Appendix A.3. The input and output
text files from ‘ghnorm.m’ are shown in Appendix B. Two other subroutines are shown in Appendix
A.2. The first, ‘msph2cart.m’ relates the local spherical coordinates output by ‘magnet.m’ to local
Cartesian coordinates through Equation (20) shown below. The second subroutine, ‘msph2inert.m’
relates the local spherical coordinates to geoventric inertial coordinates through Equation (15).

4.2 Model validation

This model was validated using the magnetic field calculator available through the British Geological
Survey website listed in Reference 6. This calculator uses the 9th generation coefficients, and takes
the same inputs as the MATLAB script. Several different locations and dates were tested, and all
were found to be in exact agreement. The output of this website and other programs available on
the internet are in local tangential Cartesian coordinates, X (North), Y (East), and Z (Down).
Here X, Y , and Z relate to Br, Bθ, and Bφ through the equations

X = −Bθ cos ε−Br sin ε (20a)
Y = Bφ (20b)
Z = Bθ sin ε−Br cos ε (20c)

where ε is a term used to correct for the oblateness of the Earth.3 In the programs online, this
term is set to zero and it is also not used in determining the geocentric inertial components, so its
precise definition was irrelevant for the purpose of this paper.

To further validate the model, a visualization was done using MATLAB’s isosurface function
to create a representation of the magnetic field for a field strength magnitude of 25000nT, seen
in Figure 2. In that figure, the blue sphere represents the surface of the Earth, the red surface
represents an isosurface where the magnitude of the magnetic field strength is 25000nT, and the
green spot shows the location of the Brazilian Anomaly. As one can see, the surface is continuous,
and a dimple is clearly visible near the Brazilian Anomaly, further verifying the accuracy of the
code.
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Figure 2: Magnetic Field Visualization

4.3 Model limitations

The accuracy of IGRF2000 8th generation was 50nT root mean square, while the secular variation
could introduce error of 20nT/year.7 With the increase in the number of coefficients and the increase
in precision of those coefficients with the 9th generation model, the error should be significantly
reduced, however, no estimate of that is available. In addition, the error decreases as one moves
away from the surface of the Earth, as the magnetic field becomes smoother and approaches the
simple tilted dipole distribution. By a distance of four Earth radii, the error has decreased by a
factor of 3 or 4.1

As with all approximations, the IGRF model has a few significant limitations. First, it fails to
take into account the temporal variations that occur due to factors such as solar activity. Distur-
bances in the ionosphere or magnetosphere can cause variations up to 1000nT during a magnetic
storm.7 Second, it only applies up to a radius of approximately 6.6 Earth radii, beyond which point
the magnetic effects of the solar wind can no longer be neglected.1 Lastly, the secular variation
coefficients are used to linearly extrapolate the magnetic field model. While this provides a good
approximation and does not significantly increase the error, it is important to understand that the
instantaneous time rate of change of the magnetic field is not linear.7
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4.4 Improvements

Due to the fact that most new code is being written in the C language in the aerospace industry, the
first improvement would be converting the MATLAB script into C. Towards that end, Appendix
C contains tables of the values of Pn,m and ∂P n,m

∂θ for all n and m at the location θ = 30◦, which
can be used for debugging. To further improve this model for satellite work, it may be helpful
to implement code that would allow for random variation of the magnetic field in accordance to
some of the factors listed in Section 1. In addition, since the tilted dipole model is simply the first
degree spherical harmonic model (n = 1), it would be helpful to be able to specify the order of the
harmonic that one wishes to use if calculation time is of importance.
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A MATLAB code

A.1 magnet.m - calculates magnetic field strength in local spherical coordinates

function [Br,Bt,Bp] = magnet(r,theta,phi,days)
% Inputs
% r Geocentric radius
% theta Latitude measured in degrees positive from equator
% phi Longitude measured in degrees positive east from Greenwich
% days Decimal days since January 1, 2000
%
% Outputs - magnetic field strength in local tangential coordinates
% Br B in radial direction
% Bt B in theta direction
% Bp B in phi direction

% Checks to see if located at either pole to avoid singularities
if (theta>-0.00000001 & theta<0.00000001)

theta=0.00000001;
elseif(theta<180.00000001 & theta>179.99999999)

theta=179.99999999;
end

% The angles must be converted from degrees into radians
theta=(90-theta)*pi/180;
phi = phi*pi/180;

a=6371.2; % Reference radius used in IGRF

% This section of the code simply reads in the g and h Schmidt
% quasi-normalized coefficients
[gn, gm, gvali, gsvi] = textread(’igrfSg.txt’,’%f %f %f %f’);
[hn, hm, hvali, hsvi] = textread(’igrfSh.txt’,’%f %f %f %f’);
N=max(gn);
g=zeros(N,N+1);
h=zeros(N,N+1);
for x=1:length(gn)

g(gn(x),gm(x)+1) = gvali(x) + gsvi(x)*days/365;
h(hn(x),hm(x)+1) = hvali(x) + hsvi(x)*days/365;

end

% Initialize each of the variables
% Br B in the radial driection
% Bt B in the theta direction

12



% Bp B in the phi direction
% P The associated Legendre polynomial evaluated at cos(theta)
% The nomenclature for the recursive values generally follows
% the form P10 = P(n-1,m-0)
% dP The partial derivative of P with respect to theta

Br=0; Bt=0; Bp=0;
P11=1; P10=P11;
dP11=0; dP10=dP11;

for m=0:N
for n=1:N

if m<=n
% Calculate Legendre polynomials and derivatives recursively
if n==m

P2 = sin(theta)*P11;
dP2 = sin(theta)*dP11 + cos(theta)*P11;
P11=P2; P10=P11; P20=0;
dP11=dP2; dP10=dP11; dP20=0;

elseif n==1
P2 = cos(theta)*P10;
dP2 = cos(theta)*dP10 - sin(theta)*P10;
P20=P10; P10=P2;
dP20=dP10; dP10=dP2;

else
K = ((n-1)^2-m^2)/((2*n-1)*(2*n-3));
P2 = cos(theta)*P10 - K*P20;
dP2 = cos(theta)*dP10 - sin(theta)*P10 - K*dP20;
P20=P10; P10=P2;
dP20=dP10; dP10=dP2;

end

% Calculate Br, Bt, and Bp
Br = Br + (a/r)^(n+2)*(n+1)*...

((g(n,m+1)*cos(m*phi) + h(n,m+1)*sin(m*phi))*P2);
Bt = Bt + (a/r)^(n+2)*...

((g(n,m+1)*cos(m*phi) + h(n,m+1)*sin(m*phi))*dP2);
Bp = Bp + (a/r)^(n+2)*...

(m*(-g(n,m+1)*sin(m*phi) + h(n,m+1)*cos(m*phi))* P2);
end

end
end

[Br,Bt,Bp] = [Br;-Bt;-Bp/sin(theta)];
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A.2 MATLAB code for coordinate transformations (uses output from mag-
net.m as input)

A.2.1 msph2cart.m - converting from spherical to Cartesian coordinates

function [X,Y,Z] = msph2cart(Br,Bt,Bp)
% Inputs - magnetic field strength (B) in local tangential coordinates
% Br B in radial direction
% Bt B in theta direction
% Bp B in phi direction
% Outputs - magnetic field strength (B) in local tangential coordinates
% X B in "north" direction
% Y B in "east" direction
% Z B in down direction
% Variables
% e epsilon, the term used to correct for the oblateness of the
% Earth. In all programs online, e=0
e = 0.0*pi/180;
X = -Bt*cos(e) - Br*sin(e);
Y = Bp;
Z = Bt*sin(e) - Br*cos(e);

A.2.2 msph2inert.m - converting from tangential spherical to geocentric inertial
Cartesian coordinates

function [Bx,By,Bz] = msph2inert(Br,Bt,Bp,LST,lat)
% Inputs
% Br B in radial direction | Magnetic field strength (B)
% Bt B in theta direction | in local tangential coordinates
% Bp B in phi direction |
% LST Local sidereal time of location (in degrees)
% lat Latitude measured positive north from equator (in degrees)
% Outputs
% Bx B in x-direction | Magnetic field strength (B)
% By B in y-direction | in geocentric inertial coordinates
% Bz B in z-direction |

% Angle conversion to radians
lat=lat*pi/180; LST=LST*pi/180;

% Coordinate transformation
Bx = (Br*cos(lat)+Bt*sin(lat))*cos(LST) - Bp*sin(LST);
By = (Br*cos(lat)+Bt*sin(lat))*sin(LST) + Bp*cos(LST);
Bz = (Br*sin(lat)+Bt*cos(lat));
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A.3 ghnorm.m - Schmidt quasi-normalization code

function ghnorm()
[gh, n, m, val, sv] = textread(’igrf.txt’,’%s %f %f %f %f’);
N=max(n);
g=zeros(N,N+1);
h=zeros(N,N+1);
hsv=zeros(N,N+1);
gsv=zeros(N,N+1);
for x=1:length(gh)

if strcmp(gh(x),’g’)
g(n(x),m(x)+1) = val(x);
gsv(n(x),m(x)+1) = sv(x);

else
h(n(x),m(x)+1) = val(x);
hsv(n(x),m(x)+1) = sv(x);

end
end
count=1;
S = zeros(N,N+1);
for n=1:N

for m=0:n
if m>1

S(n,m+1) = S(n,m)*((n-m+1)/(n+m))^0.5;
elseif m>0

S(n,m+1) = S(n,m)*(2*(n-m+1)/(n+m))^0.5;
elseif n==1

S(n,1) = 1;
else

S(n,1) = S(n-1,1)*(2*n-1)/(n);
end
gS(count,1) = n; gS(count,2)=m;
gS(count,3)=g(n,m+1)*S(n,m+1); gS(count,4)=gsv(n,m+1)*S(n,m+1);
hS(count,1) = n; hS(count,2)=m;
hS(count,3)=h(n,m+1)*S(n,m+1); hS(count,4)=hsv(n,m+1)*S(n,m+1);
count=count+1;

end
end
dlmwrite(’igrfSg.txt’,gS,’\t’)
dlmwrite(’igrfSh.txt’,hS,’\t’)

15



B Coefficient text files

B.1 IGRF coefficients before normalization

g/h n m 2000.0 SV g/h n m 2000.0 SV g/h n m 2000.0 SV
g 1 0 -29619.4 13.3 g 6 0 72.3 0.4 g 8 4 -16.6 -0.4
g 1 1 -1728.2 11.6 g 6 1 68.2 0.3 h 8 4 -21.5 0.4
h 1 1 5186.1 -21.2 h 6 1 -17.4 -0.7 g 8 5 9.1 0.2
g 2 0 -2267.7 -14.4 g 6 2 74.2 0.7 h 8 5 15.5 0.1
g 2 1 3068.4 -3.7 h 6 2 63.7 -1.8 g 8 6 7.0 0.5
h 2 1 -2481.6 -22.7 g 6 3 -160.9 1.9 h 8 6 8.9 -0.3
g 2 2 1670.9 -3.6 h 6 3 65.1 -0.2 g 8 7 -7.9 -0.7
h 2 2 -458.0 -11.1 g 6 4 -5.9 -1.7 h 8 7 -14.9 0.4
g 3 0 1339.6 -1.1 h 6 4 -61.2 -0.4 g 8 8 -7.0 0.4
g 3 1 -2288.0 -3.5 g 6 5 16.9 -0.5 h 8 8 -2.1 0.4
h 3 1 -227.6 5.6 h 6 5 0.7 -0.2 g 9 0 5.0 0.0
g 3 2 1252.1 -1.2 g 6 6 -90.4 0.7 g 9 1 9.4 0.0
h 3 2 293.4 -4.5 h 6 6 43.8 1.5 h 9 1 -19.7 0.0
g 3 3 714.5 -8.5 g 7 0 79.0 0.2 g 9 2 3.0 0.0
h 3 3 -491.1 -8.0 g 7 1 -74.0 -0.1 h 9 2 13.4 0.0
g 4 0 932.3 -2.7 h 7 1 -64.6 0.7 g 9 3 -8.4 0.0
g 4 1 786.8 2.2 g 7 2 0.0 -0.3 h 9 3 12.5 0.0
h 4 1 272.6 1.7 h 7 2 -24.2 0.3 g 9 4 6.3 0.0
g 4 2 250.0 -8.0 g 7 3 33.3 1.1 h 9 4 -6.2 0.0
h 4 2 -231.9 1.0 h 7 3 6.2 0.1 g 9 5 -8.9 0.0
g 4 3 -403.0 4.5 g 7 4 9.1 0.7 h 9 5 -8.4 0.0
h 4 3 119.8 5.1 h 7 4 24.0 0.3 g 9 6 -1.5 0.0
g 4 4 111.3 -1.9 g 7 5 6.9 0.5 h 9 6 8.4 0.0
h 4 4 -303.8 -0.3 h 7 5 14.8 -0.8 g 9 7 9.3 0.0
g 5 0 -218.8 -1.4 g 7 6 7.3 -0.3 h 9 7 3.8 0.0
g 5 1 351.4 0.7 h 7 6 -25.4 -0.1 g 9 8 -4.3 0.0
h 5 1 43.8 -0.3 g 7 7 -1.2 0.5 h 9 8 -8.2 0.0
g 5 2 222.3 -2.6 h 7 7 -5.8 0.2 g 9 9 -8.2 0.0
h 5 2 171.9 1.5 g 8 0 24.4 0.1 h 9 9 4.8 0.0
g 5 3 -130.4 -1.2 g 8 1 6.6 0.2 g 10 0 -2.6 0.0
h 5 3 -133.1 2.0 h 8 1 11.9 -0.2 g 10 1 -6.0 0.0
g 5 4 -168.6 0.0 g 8 2 -9.2 -0.5 h 10 1 1.7 0.0
h 5 4 -39.3 3.8 h 8 2 -21.5 0.1 g 10 2 1.7 0.0
g 5 5 -12.9 -0.2 g 8 3 -7.9 0.2 h 10 2 0.0 0.0
h 5 5 106.3 -0.5 h 8 3 8.5 0.3 g 10 3 -3.1 0.0
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g/h n m 2000.0 SV g/h n m 2000.0 SV g/h n m 2000.0 SV
h 10 3 4.0 0.0 h 11 10 -1.9 0.0 g 13 4 -0.4 0.0
g 10 4 -0.5 0.0 g 11 11 4.0 0.0 h 13 4 -0.4 0.0
h 10 4 4.9 0.0 h 11 11 -0.9 0.0 g 13 5 1.3 0.0
g 10 5 3.7 0.0 g 12 0 -2.2 0.0 h 13 5 -1.0 0.0
h 10 5 -5.9 0.0 g 12 1 -0.3 0.0 g 13 6 -0.4 0.0
g 10 6 1.0 0.0 h 12 1 -0.4 0.0 h 13 6 -0.1 0.0
h 10 6 -1.2 0.0 g 12 2 0.2 0.0 g 13 7 0.7 0.0
g 10 7 2.0 0.0 h 12 2 0.3 0.0 h 13 7 0.7 0.0
h 10 7 -2.9 0.0 g 12 3 0.9 0.0 g 13 8 -0.4 0.0
g 10 8 4.2 0.0 h 12 3 2.5 0.0 h 13 8 0.3 0.0
h 10 8 0.2 0.0 g 12 4 -0.2 0.0 g 13 9 0.3 0.0
g 10 9 0.3 0.0 h 12 4 -2.6 0.0 h 13 9 0.6 0.0
h 10 9 -2.2 0.0 g 12 5 0.9 0.0 g 13 10 -0.1 0.0
g 10 10 -1.1 0.0 h 12 5 0.7 0.0 h 13 10 0.3 0.0
h 10 10 -7.4 0.0 g 12 6 -0.5 0.0 g 13 11 0.4 0.0
g 11 0 2.7 0.0 h 12 6 0.3 0.0 h 13 11 -0.2 0.0
g 11 1 -1.7 0.0 g 12 7 0.3 0.0 g 13 12 0.0 0.0
h 11 1 0.1 0.0 h 12 7 0.0 0.0 h 13 12 -0.5 0.0
g 11 2 -1.9 0.0 g 12 8 -0.3 0.0 g 13 13 0.1 0.0
h 11 2 1.3 0.0 h 12 8 0.0 0.0 h 13 13 -0.9 0.0
g 11 3 1.5 0.0 g 12 9 -0.4 0.0
h 11 3 -0.9 0.0 h 12 9 0.3 0.0
g 11 4 -0.1 0.0 g 12 10 -0.1 0.0
h 11 4 -2.6 0.0 h 12 10 -0.9 0.0
g 11 5 0.1 0.0 g 12 11 -0.2 0.0
h 11 5 0.9 0.0 h 12 11 -0.4 0.0
g 11 6 -0.7 0.0 g 12 12 -0.4 0.0
h 11 6 -0.7 0.0 h 12 12 0.8 0.0
g 11 7 0.7 0.0 g 13 0 -0.2 0.0
h 11 7 -2.8 0.0 g 13 1 -0.9 0.0
g 11 8 1.7 0.0 h 13 1 -0.9 0.0
h 11 8 -0.9 0.0 g 13 2 0.3 0.0
g 11 9 0.1 0.0 h 13 2 0.2 0.0
h 11 9 -1.2 0.0 g 13 3 0.1 0.0
g 11 10 1.2 0.0 h 13 3 1.8 0.0
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B.2 IGRF coefficients after Schmidt quasi-normalization

B.2.1 IGRF g-coefficients after Schmidt quasi-nomralization

n m 2000.0 SV n m 2000.0 SV n m 2000.0 SV
1 0 -29619.40 13.30 8 0 1226.67 5.03 11 5 15.84 0.00
1 1 -1728.20 11.60 8 1 442.41 13.41 11 6 -65.88 0.00
2 0 -3401.55 -21.60 8 2 -515.96 -28.04 11 7 34.72 0.00
2 1 5314.62 -6.41 8 3 -327.21 8.28 11 8 38.69 0.00
2 2 1447.04 -3.12 8 4 -443.82 -10.69 11 9 0.88 0.00
3 0 3349.00 -2.75 8 5 134.96 2.97 11 10 3.26 0.00
3 1 -7005.54 -10.72 8 6 48.06 3.43 11 11 2.32 0.00
3 2 2424.68 -2.32 8 7 -19.80 -1.75 12 0 -1452.43 0.00
3 3 564.86 -6.72 8 8 -4.39 0.25 12 1 -269.11 0.00
4 0 4078.81 -11.81 9 0 474.80 0.00 12 2 159.03 0.00
4 1 4354.14 12.17 9 1 1197.59 0.00 12 3 584.30 0.00
4 2 978.28 -31.31 9 2 325.95 0.00 12 4 -97.38 0.00
4 3 -842.94 9.41 9 3 -697.06 0.00 12 5 300.62 0.00
4 4 82.31 -1.41 9 4 355.17 0.00 12 6 -104.15 0.00
5 0 -1723.05 -11.03 9 5 -299.85 0.00 12 7 35.12 0.00
5 1 3572.54 7.12 9 6 -26.10 0.00 12 8 -17.56 0.00
5 2 1708.42 -19.98 9 7 70.06 0.00 12 9 -10.22 0.00
5 3 -613.69 -5.65 9 8 -11.11 0.00 12 10 -0.94 0.00
5 4 -374.04 0.00 9 9 -4.99 0.00 12 11 -0.56 0.00
5 5 -9.05 -0.14 10 0 -469.11 0.00 12 12 -0.23 0.00
6 0 1043.83 5.78 10 1 -1459.72 0.00 13 0 -253.92 0.00
6 1 1289.19 5.67 10 2 358.18 0.00 13 1 -1557.16 0.00
6 2 1108.86 10.46 10 3 -512.37 0.00 13 2 464.26 0.00
6 3 -1603.02 18.93 10 4 -58.44 0.00 13 3 128.31 0.00
6 4 -32.20 -9.28 10 5 273.49 0.00 13 4 -393.65 0.00
6 5 39.32 -1.16 10 6 41.32 0.00 13 5 904.64 0.00
6 6 -60.72 0.47 10 7 40.09 0.00 13 6 -180.62 0.00
7 0 2118.19 5.36 10 8 34.37 0.00 13 7 187.00 0.00
7 1 -2624.75 -3.55 10 9 0.80 0.00 13 8 -57.12 0.00
7 2 0.00 -8.69 10 10 -0.65 0.00 13 9 20.42 0.00
7 3 681.93 22.53 11 0 930.01 0.00 13 10 -2.84 0.00
7 4 112.38 8.64 11 1 -792.86 0.00 13 11 4.01 0.00
7 5 42.60 3.09 11 2 -777.19 0.00 13 12 0.00 0.00
7 6 17.68 -0.73 11 3 491.95 0.00 13 13 0.06 0.00
7 7 -0.78 0.32 11 4 -23.95 0.00
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B.2.2 IGRF h-coefficients after Schmidt quasi-nomralization

n m 2000.0 SV n m 2000.0 SV n m 2000.0 SV
1 0 0.00 0.00 8 0 0.00 0.00 11 5 142.58 0.00
1 1 5186.10 -21.20 8 1 797.67 -13.41 11 6 -65.88 0.00
2 0 0.00 0.00 8 2 -1205.77 5.61 11 7 -138.89 0.00
2 1 -4298.26 -39.32 8 3 352.07 12.43 11 8 -20.48 0.00
2 2 -396.64 -9.61 8 4 -574.83 10.69 11 9 -10.58 0.00
3 0 0.00 0.00 8 5 229.87 1.48 11 10 -5.17 0.00
3 1 -696.88 17.15 8 6 61.10 -2.06 11 11 -0.52 0.00
3 2 568.17 -8.71 8 7 -37.35 1.00 12 0 0.00 0.00
3 3 -388.25 -6.32 8 8 -1.32 0.25 12 1 -358.81 0.00
4 0 0.00 0.00 9 0 0.00 0.00 12 2 238.54 0.00
4 1 1508.56 9.41 9 1 -2509.85 0.00 12 3 1623.05 0.00
4 2 -907.45 3.91 9 2 1455.91 0.00 12 4 -1265.98 0.00
4 3 250.58 10.67 9 3 1037.29 0.00 12 5 233.81 0.00
4 4 -224.66 -0.22 9 4 -349.53 0.00 12 6 62.49 0.00
5 0 0.00 0.00 9 5 -283.00 0.00 12 7 0.00 0.00
5 1 445.30 -3.05 9 6 146.14 0.00 12 8 0.00 0.00
5 2 1321.09 11.53 9 7 28.63 0.00 12 9 7.66 0.00
5 3 -626.40 9.41 9 8 -21.19 0.00 12 10 -8.49 0.00
5 4 -87.19 8.43 9 9 2.92 0.00 12 11 -1.11 0.00
5 5 74.58 -0.35 10 0 0.00 0.00 12 12 0.45 0.00
6 0 0.00 0.00 10 1 413.59 0.00 13 0 0.00 0.00
6 1 -328.91 -13.23 10 2 0.00 0.00 13 1 -1557.16 0.00
6 2 951.95 -26.90 10 3 661.12 0.00 13 2 309.50 0.00
6 3 648.58 -1.99 10 4 572.67 0.00 13 3 2309.64 0.00
6 4 -333.96 -2.18 10 5 -436.10 0.00 13 4 -393.65 0.00
6 5 1.63 -0.47 10 6 -49.58 0.00 13 5 -695.88 0.00
6 6 29.42 1.01 10 7 -58.13 0.00 13 6 -45.15 0.00
7 0 0.00 0.00 10 8 1.64 0.00 13 7 187.00 0.00
7 1 -2291.34 24.83 10 9 -5.84 0.00 13 8 42.84 0.00
7 2 -700.85 8.69 10 10 -4.39 0.00 13 9 40.84 0.00
7 3 126.97 2.05 11 0 0.00 0.00 13 10 8.52 0.00
7 4 296.37 3.70 11 1 46.64 0.00 13 11 -2.01 0.00
7 5 91.38 -4.94 11 2 531.76 0.00 13 12 -1.42 0.00
7 6 -61.51 -0.24 11 3 -295.17 0.00 13 13 -0.50 0.00
7 7 -3.75 0.13 11 4 -622.74 0.00
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C Intermediate values for debugging purposes

C.1 P n,m at θ = 30◦

m
n 0 1 2 3 4 5 6
0 1.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
1 5.000E-01 8.660E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2 -8.333E-02 4.330E-01 7.500E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3 -1.750E-01 4.330E-02 3.750E-01 6.495E-01 0.000E+00 0.000E+00 0.000E+00
4 -6.607E-02 -7.732E-02 8.036E-02 3.248E-01 5.625E-01 0.000E+00 0.000E+00
5 1.141E-02 -4.897E-02 -3.125E-02 9.021E-02 2.813E-01 4.871E-01 0.000E+00
6 2.239E-02 -5.741E-03 -3.267E-02 -7.381E-03 8.949E-02 2.436E-01 4.219E-01
7 8.322E-03 9.116E-03 -9.342E-03 -2.072E-02 5.409E-03 8.431E-02 2.109E-01
8 -1.465E-03 5.971E-03 2.868E-03 -8.848E-03 -1.244E-02 1.218E-02 7.734E-02
9 -2.821E-03 7.334E-04 3.632E-03 4.592E-05 -7.238E-03 -6.806E-03 1.551E-02
10 -1.043E-03 -1.112E-03 1.132E-03 1.995E-03 -1.116E-03 -5.514E-03 -3.020E-03
11 1.854E-04 -7.381E-04 -3.077E-04 9.871E-04 9.660E-04 -1.478E-03 -3.998E-03
12 3.541E-04 -9.271E-05 -4.282E-04 3.091E-05 7.255E-04 3.571E-04 -1.468E-03
13 1.306E-04 1.372E-04 -1.392E-04 -2.163E-04 1.477E-04 4.844E-04 1.720E-05

m
n 7 8 9 10 11 12 13
0 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
4 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
5 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
6 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
7 3.654E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
8 1.827E-01 3.164E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
9 6.985E-02 1.582E-01 2.740E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00
10 1.683E-02 6.245E-02 1.370E-01 2.373E-01 0.000E+00 0.000E+00 0.000E+00
11 -5.151E-04 1.695E-02 5.546E-02 1.187E-01 2.055E-01 0.000E+00 0.000E+00
12 -2.766E-03 1.106E-03 1.638E-02 4.901E-02 1.028E-01 1.780E-01 0.000E+00
13 -1.298E-03 -1.806E-03 2.115E-03 1.543E-02 4.316E-02 8.899E-02 1.541E-01
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C.2 ∂P n,m

∂θ
at θ = 30◦

m
n 0 1 2 3 4 5 6
0 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
1 -8.660E-01 5.000E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2 -8.660E-01 -5.000E-01 8.660E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3 -1.299E-01 -7.250E-01 -2.165E-01 1.125E+00 0.000E+00 0.000E+00 0.000E+00
4 3.093E-01 -2.857E-01 -5.567E-01 2.220E-16 1.299E+00 0.000E+00 0.000E+00
5 2.449E-01 9.673E-02 -3.067E-01 -4.063E-01 1.624E-01 1.406E+00 0.000E+00
6 3.444E-02 1.600E-01 -8.201E-03 -2.813E-01 -2.805E-01 2.813E-01 1.461E+00
7 -6.381E-02 6.132E-02 9.283E-02 -5.753E-02 -2.405E-01 -1.785E-01 3.654E-01
8 -4.777E-02 -1.663E-02 5.640E-02 4.688E-02 -7.744E-02 -1.969E-01 -9.743E-02
9 -6.600E-03 -2.864E-02 3.873E-03 4.351E-02 1.731E-02 -8.169E-02 -1.558E-01
10 1.112E-02 -1.083E-02 -1.465E-02 1.127E-02 3.051E-02 -8.163E-04 -7.777E-02
11 8.119E-03 2.651E-03 -9.239E-03 -6.018E-03 1.258E-02 1.972E-02 -1.127E-02
12 1.113E-03 4.656E-03 -8.035E-04 -6.476E-03 -1.181E-03 1.130E-02 1.151E-02
13 -1.784E-03 1.749E-03 2.219E-03 -1.852E-03 -4.018E-03 1.261E-03 9.144E-03

m
n 7 8 9 10 11 12 13
0 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
4 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
5 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
6 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
7 1.477E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
8 4.219E-01 1.461E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
9 -3.412E-02 4.567E-01 1.424E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
10 -1.194E-01 1.442E-02 4.746E-01 1.370E+00 0.000E+00 0.000E+00 0.000E+00
11 -6.988E-02 -8.808E-02 5.085E-02 4.795E-01 1.305E+00 0.000E+00 0.000E+00
12 -1.671E-02 -6.042E-02 -6.191E-02 7.744E-02 4.746E-01 1.233E+00 0.000E+00
13 5.589E-03 -1.891E-02 -5.071E-02 -4.042E-02 9.611E-02 4.624E-01 1.157E+00
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