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ROTATING RIGID BODY DYNAMICS ARCHITECTURE FOR
SPACECRAFT SIMULATION SOFTWARE IMPLEMENTATION

João Vaz Carneiro*, Cody Allard† and Hanspeter Schaub‡

Deriving and propagating the equations of motion of a spacecraft is fundamental
to describing its behavior accurately. These equations of motion depend on the
spacecraft’s configuration, which includes any physical subsystem components
such as attitude control devices, solar panels, gimbals, etc. While the contribution
of each subsystem on the space vehicle can be defined independently, most work
has focused on deriving them specifically for each component type. This lack of
generality yields different formulations for components that are identical from a
dynamics standpoint. This paper relaxes the assumptions made in deriving some
subsystem components, yielding a general architecture that uses common equa-
tions of motion for components representing the same physical reality. The result
is a redesigned dynamics architecture along with a set of general equations of mo-
tion common to subsystem components where specific assumptions can be applied
to describe particular components. This general formulation saves on validation
effort and allows for a common software description where inheritance can define
specific components.

INTRODUCTION

Spacecraft simulations are a critical part of any mission, from CubeSats to deep space missions.
They allow for detailed analysis of the spacecraft’s dynamics, ultimately informing how it will
behave and if the mission requirements are met. As missions become more complex, so do the
simulations for the spacecraft’s behavior. For example, whereas many spacecraft use rigid solar
panels, new missions like the Lucy mission to the Trojan asteroids have started to use flexible solar
panels1 to meet higher power needs. Another example of this increased complexity relates to the
main thruster platform. While many spacecraft attach the thruster directly to the system’s hub,
some have opted to use a gimbaled platform instead. This is particularly useful for spacecraft using
ionic thrusters,2 as they tend to thrust for long periods and need to account for offsets between the
thrust vector and the center of mass. Missions like Deep Space 1,3 Dawn,4 and Psyche5 all use this
technology. While both these features are mission-critical, they add a layer of complexity that needs
to be included in spacecraft simulations.

One of the critical steps for these comprehensive, high-fidelity simulations is the derivation of the
spacecraft’s equations of motion. By numerically propagating them, the behavior of the spacecraft
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and its components can be described and analyzed. The equations of motion also need to respect
physical conservation laws, which are used to validate them. Another important aspect is the soft-
ware implementation of these equations. A modular, general software architecture allows for faster
prototyping and guarantees the model’s fidelity with increasing complexity.

Previous work has focused on the derivation of equations of motion in a modular way, separating
each component’s contributions by assuming that each is connected directly to a common space-
craft’s hub.6 Some examples include reaction wheels,7 variable-speed control moment gyroscopes8

and solar arrays.9 The main drawback of this past work is that the equations of motion are specific
to each component, even when different components represent the same reality from a dynamics
standpoint. This means that the equations of motion have to be derived, implemented, and validated
for each element. Moreover, while the problem of creating the architecture that supports these sim-
ulations has been solved in a modular way, the software implementation also relies on specifying
the type of component in the model. The lack of a general formulation and implementation of the
equations of motion means hidden repeated code, which translates into more work for the developer
and potential errors or bugs.

This paper aims to take a more general approach by deriving and implementing the general equa-
tions of motion for rotating body components with one or two degrees of freedom. Rotating bodies
with one degree of freedom include reaction wheels and single-hinged solar panels, while con-
trol moment gyroscopes and dual-gimbaled thrusters are considered two-degree-of-freedom com-
ponents. The derivations begin by considering the entire system to develop the translational and
rotational equations of motion of the system’s hub. The components are then considered separately,
leading to their rotational motion equation. A general software architecture is proposed, which al-
lows for specific components to inherit from a parent class with shared equations of motion along
with common quantities such as mass, inertia, and rotation axis.

To find the general equations of motion without making any assumptions on the rotating rigid
bodies, the inertia tensor transport theorem is applied extensively.10 This theorem converts the time
derivative of the inertia tensor in one frame to another frame, analogous to the vector transport
theorem.11 With this theorem, no assumptions on the frame are needed to derive the spacecraft’s
equations of motion. This is the crucial aspect to allow for a general formulation of the equations
that describe classes of rotating rigid bodies.

The outcome of this work is a general analytical description and software implementation of
these rotating bodies that is agnostic to the type of rotating body being simulated. These results can
be applied to various scenarios, and the proposed architecture can be implemented in any software
package. The complete analytical derivation of the equations of motion is shown in this paper, and
the software implementation is done in Basilisk,12 an open-source*, spacecraft-centric simulation
software. It has a modular implementation of spacecraft dynamics and flight software modules and
has seen extensive use in mission analysis. This paper is organized as follows. First, the generalized
dynamics architecture is defined, which covers how different spacecraft components can be grouped
into similar classes. Then, the problem statement, equations of motion, and numerical validation
for the one-degree-of-freedom system are shown. This process is then repeated for the two-degree-
of-freedom system.

*http://hanspeterschaub.info/basilisk/index.html
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GENERALIZED DYNAMICS ARCHITECTURE

The goal of the proposed dynamics is to uniformize and unify the description of spacecraft com-
ponents representing identical physical elements from a dynamics point of view. This is done by
creating common classes for single and dual-axis rotating rigid bodies that make no assumptions on
frame definitions, the center of mass location, inertia distribution, etc. The specific components can
then inherit from this class and add other properties that distinguish them from other elements.

A diagram for the single-axis rotating rigid body class is shown in Figure 1 as a gold box. It
represents the skeleton for rigid spacecraft appendages that rotate about one axis. The class con-
tains several variables common to all single-axis rotating rigid bodies, like the body’s mass and
inertia matrix. The center of mass location and spin axis can be defined as any vectors without any
assumptions on how the frame is defined. The frame conversion information relating the rotating
rigid body frame to the body-fixed frame is expressed through a direction cosine matrix (DCM).
The class also contains methods like the equations of motion that describe the system, the mass
property contributions to compute the spacecraft’s center of mass and inertia matrix, and the energy
and momentum contributions to calculate the total energy and angular momentum of the spacecraft.

1 DoF  Class

- mass
- inertia matrix
- center of mass location
- spin axis
- frame conversion

Solar Panel

- normal vector
- surface area

Reaction Wheel One-axis Antenna

- pointing vector
- power

- maximum torque
- maximum wheel speed

- equationsOfMotion()
- massPropertiesContributions()
- energyMomentumContributions()

Figure 1. Class diagram for the one-axis rotating rigid body class.

The light grey boxes represent specific modules that can be derived from the general one-degree-
of-freedom class. These include hinged solar panels, reaction wheels, or one-axis gimbaled anten-
nas. These modules inherit from the 1 DoF class, which means they all contain the same variables
and methods from the parent class. However, each module can be specified by adding new vari-
ables and methods that define that particular component type. For example, a solar panel needs a
vector normal to the solar cells to point at the Sun, as well as the total surface area of the solar
cells. Adding additional parameters makes the module more specific while retaining the variables
and methods common to all single-axis rotating rigid bodies.

A diagram for the dual-axis rotating rigid body class is shown in Figure 2. This class contains
similar variables and methods but is now adapted to represent a two-degree-of-freedom system.
There are now two masses, inertia matrices, center of mass locations, spin axes, and DCM frame
conversions. The methods have identical names but are adapted to dual-axis kinematics and dynam-
ics.

Similar to the 1 DoF class, modules represented in light grey inherit variables and functions from
the 2 DoF parent class. Examples include dual-hinged solar panels, control moment gyroscopes,
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2 DoF  Class

- masses
- inertia matrices
- center of mass locations
- spin axes
- frame conversions

Solar Panels

- normal vectors
- surface area

Control Moment Gyroscope Two-axis Antenna

- pointing vector
- power

- maximum torque
- fixed wheel speed

- equationsOfMotion()
- massPropertiesContributions()
- energyMomentumContributions()

Figure 2. Class diagram for the two-axis rotating rigid body class.

and two-axis gimbaled antennas. Apart from being derived from the parent class, each module
contains variables and methods that define the specific component, such as a pointing vector for the
antenna or a surface area for the solar panels.

Neither parent class is accessible from the user’s perspective. Instead, the user instantiates the
specific modules, populates the necessary variables that define the particular component, and uses
the available methods. The abstract parent class creates a skeleton common to either one or two-
degree-of-freedom systems, with the module inheriting its variables and methods. This minimizes
repeated code and potential errors or bugs from going over similar processes multiple times.

Moreover, these general classes facilitate the validation process. Instead of having to vali-
date all functions for each module, the common methods such as equationsOfMotion(),
massPropertiesContributions() and energyMomentumContributions() can be
validated once for the entire parent class. This saves time for the developer, as all shared functions
are derived and implemented only once. It also decreases the total number of unit tests, improving
the compactness of the software package since common methods are validated only once.

SINGLE-AXIS ROTATING RIGID BODY DYNAMICS

Here, the derivation and validation of the equations of motion of a single-axis rotating rigid body
attached to a rigid hub are shown. The one-degree-of-freedom component can be described as a
rigid body that can only rotate about one body-fixed axis. It represents a rigid component attached
to the spacecraft’s hub through a rotary joint.

This general description can describe multiple common spacecraft components. Examples in-
clude single-hinge solar arrays for deployment or first-order flexing analysis, reaction wheels as
attitude control devices, and one-axis gimbaled low-gain antennas. All these components can be
defined through a general description where they are specified by their mass, inertia matrix, the
location of the center of mass, and spin axis.

Problem Statement

The problem statement for the single-axis rotating rigid body is given in Figure 3. The inertial
frame is represented by N with origin at point N . The spacecraft is composed of a rigid body
connected to a rigid hub through a single axis of rotation. The hub has a body-fixed frame B with
origin B, and its center of mass is located at point Bc. The mass of the hub is mhub, and its inertia
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Figure 3. Problem statement for the one-degree-of-freedom spinning rigid body.

matrix about point B is [Ihub,B]. The rotating rigid body has the S frame attached to it with its origin
at point S. The center of mass of the spinner is located at point Sc. The mass of the spinner is mS,
and its inertia matrix about its center of mass is [IS,Sc ]. The combined center of mass of the system
is located at point C. The spin axis ŝ is constant, as seen by the B frame, and passes through the
point S. The angle about the rotation axis is θ, and its angle rate is θ̇.

The single-axis rotating rigid body attached to the hub has seven degrees of freedom shown in
Table 1: three for the system’s position, three for the system’s attitude, and one for the angle about
the rotation axis. The motion equations are developed so that all degrees of freedom are described.
The position state variables are described by the translational equation of motion, the attitude state
variables by the rotational equation of motion, and the rotation angle by the spinner equation of
motion.

State Variables Degrees of Freedom Equations of motion
rB/N , ṙB/N 3 Translational
ωB/N , ω̇B/N 3 Rotational

θ, θ̇ 1 Spinner Rotational

Table 1. State variables for the single-axis rotating rigid body spacecraft.

Translational Equations of Motion

The entire system is considered for the translational equation of motion, including the hub and
the spinner. This equation of motion defines three degrees of freedom of the system. Using the
Super Particle Theorem:

mscr̈C/N = mscr̈B/N +mscc̈ = F (1)

where c ≡ rC/B is the vector from the origin of the body frame B to the system’s center of mass
C, and F is the combined force acting on the system. A single dot above a vector represent the
first-order inertial frame derivative, and a double dot represents the second-order inertial frame
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derivative. Using the definition of the center of mass of the system:

mscc = mhubrBc/B +mSrSc/B (2)

Using the transport theorem, the inertial time derivative is expressed using body-frame derivatives
as

ċ = c′ + ωB/N × c (3)

c̈ = c′′ + ω̇B/N × c + ωB/N × c′ + ωB/N × ċ (4)

where a single apostrophe represents a first-order body-frame derivative and a double apostrophe
represents a second-order body-frame derivative. The term ωB/N represents the angular velocity of
the B frame relative to the N frame. As for the body-frame time derivatives, the rBc/B and rS/B
vectors are fixed with respect to the B frame (r′Bc/B

= r′S/B = 0), which means

mscc′ = mSr′Sc/B
= mSr′Sc/S

= mSωS/B × rSc/S (5)

mscc′′ = mS

(
θ̈ŝ× rSc/S + ωS/B × r′Sc/S

)
(6)

where by definition:

ωS/B = θ̇ŝ, ω′
S/B = θ̈ŝ (7)

because ŝ is fixed in the B frame. Finally, all these terms are combined to get

mscr̈B/N −msc [̃c]ω̇B/N −mS [̃rSc/S ]ŝθ̈ = F − 2msc[ω̃B/N ]c′−
msc[ω̃B/N ][ω̃B/N ]c −mS[ω̃S/B]r′Sc/S

(8)

In the equation above, the matrix cross product operator is used. For an arbitrary vector a =
[a1, a2, a3]

T , the corresponding matrix cross product operator is written as [ã] and is given by

[ã] =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (9)

Rotational Equations of Motion

For the rotational equation of motion, the entire spacecraft is considered. This equation of motion
defines three degrees of freedom of the system. The rotational differential equation given about point
B, which is not the system’s center of mass, is given by

Ḣsc,B = LB +mscr̈B/N × c (10)

where Hsc,B is the angular momentum of the spacecraft (sc) about point B and LB is the torque
about point B. The angular momentum is

Hsc,B = Hhub,B + HS,B = [Ihub,B]ωB/N + [IS,Sc ]ωS/N +mSrSc/B × ṙSc/B (11)

where Hhub,B is the angular momentum of the hub and HS,B is the angular momentum of the
spinner, both about point B. The terms multiplied by ωB/N are grouped together to simplify the
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expression above. To express the inertial time derivative using the B frame time derivative, the
equality ωS/N = ωS/B + ωB/N and ṙSc/B = r′Sc/B

+ ωB/N × rSc/B is used, which yields

Hsc,B = [Isc,B]ωB/N + [IS,Sc ]ωS/B +mSrSc/B × r′Sc/B
(12)

where [Isc,B] = [Ihub,B] + [IS,Sc ]−mS[r̃Sc/B][r̃Sc/B] is the spacecraft’s total inertia about point B.
The inertial time derivative of the total angular momentum is expressed as

Ḣsc,B = [Isc,B]ω̇B/N + [I ′sc,B]ωB/N + ωB/N × [Isc,B]ωB/N + [IS,Sc ]θ̈ŝ+ ωS/N × [IS,Sc ]ωS/B+

(13)

mSrSc/B × r′′Sc/B
+mSωB/N × (rSc/B × r′Sc/B

) (14)

Before writing the final equation, some terms are defined for compactness. To take the body-
frame time derivative of the total spacecraft inertia, the inertia transport theorem needs to be used.
The time derivative of the inertia tensor [I] with respect to the A frame can be written using the time
derivative with respect to the B frame as

Ad
dt

[I] =
Bd
dt

[I] + [ω̃B/A][I]− [I][ω̃B/A] (15)

With this result, the body-frame time derivative of the total spacecraft inertia is

[I ′sc,B] = [ω̃S/B][IS,Sc ]− [IS,Sc ][ω̃S/B]−mS[r̃′Sc/B
][r̃Sc/B]−mS[r̃Sc/B][r̃

′
Sc/B

] (16)

Since the r′′Sc/B
contains second-order terms, it must be simplified

r′′Sc/B
= r′′Sc/S

= θ̈ŝ× rSc/S + ωS/B × r′Sc/S
(17)

Combining these results into the rotational equation of motion yields the final expression for the
rotational equation of motion

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +
(
[IS,Sc ]−mS[r̃Sc/B][r̃Sc/S ]

)
ŝθ̈ =

= LB − [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N − [ω̃S/N ][IS,Sc ]ωS/B−
mS[ω̃B/N ][r̃Sc/B]r

′
Sc/B

−mS[r̃Sc/B][ω̃S/B]r′Sc/S

(18)

Spinning Body Equations of Motion

For the final equation of motion, only the rotating rigid body is considered. This solves the final
degree of freedom of the system. The general formulation of the equation of motion of the spinning
body is

ḢS,S = LS −mSrSc/S × r̈S/N (19)

The angular momentum of the spinner about point S is

HS,S = [IS,S ]ωS/N (20)
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where [IS,S ] is defined using the parallel axis theorem as [IS,S ] = [IS,Sc ] −mS[r̃Sc/S ][r̃Sc/S ]. The
inertial time derivative of the angular momentum is given by

ḢS,S = [IS,S ]ω̇S/N + ωS/N × [IS,S ]ωS/N (21)

As for the r̈S/N term, we can separate it into two terms

r̈S/N = r̈S/B + r̈B/N (22)

To compute r̈S/B , the fact that rS/B is constant in the B frame is used to yield

ṙS/B = ωB/N × rS/B, r̈S/B = ω̇B/N × rS/B + ωB/N × ṙS/B (23)

The term ω̇S/N can be separated into three distinct terms

ω̇S/N = ω̇B/N + θ̈ŝ+ ωB/N × ωS/B (24)

Before these results are combined, the dot product with the spin axis ŝ is applied to all terms.
This removes the contributions in other directions apart from the rotating axis. Implicitly, structural
torques are applied to the other directions to keep the single-axis rotation constraint in place. This
results in the following equation of motion:

ŝT [IS,S ]ŝθ̈ = uS −mSŝ
T [r̃Sc/S ]r̈B/N − ŝT

(
[IS,S ]−mS[r̃Sc/S ][r̃S/B]

)
ω̇B/N−

ŝT [ω̃S/N ][IS,S ]ωS/N − ŝT [IS,S ][ω̃B/N ]ωS/B −mSŝ
T [r̃Sc/S ][ω̃B/N ]ṙS/B

(25)

Back-Substitution Formulation

The modular software implementation of these equations of motion requires that they are written
in a particular way. The full explanation of this approach is given in Ref. 6. The spinning body
equation of motion can be written in the form

mθθ̈ = a∗
θ · r̈B/N + b∗θ · ω̇B/N + c∗θ (26)

where the following terms are introduced

a∗
θ = mS[r̃Sc/S ]ŝ (27)

b∗θ = −
(
[IS,S ]−mS[r̃S/B][r̃Sc/S ]

)
ŝ (28)

c∗θ = uS − ŝT
(
[ω̃S/N ][IS,S ]ωS/N + [IS,S ][ω̃B/N ]ωS/B +mS[r̃Sc/S ][ω̃B/N ]ṙS/B

)
(29)

along with the mass-like term mθ = ŝT [IS,S ]ŝ. Using these terms, the spinning body equation of
motion can be written in its compact form as

θ̈ = aθ · r̈B/N + bθ · ω̇B/N + cθ (30)

where the new variables are defined as

a∗
θ =

a∗
θ

mθ
, b∗θ =

b∗θ
mθ

, c∗θ =
c∗θ
mθ

(31)
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This result can be backsubstituted into equations (8) and (18), which yields[
[A] [B]
[C] [D]

] [
r̈B/N

ω̇B/N

]
=

[
vtrans
vrot

]
(32)

using the following matrices

[A] = mSC[I3×3]−mS [̃rSc/S ]ŝa
T
θ (33)

[B] = −msc [̃c]−mS [̃rSc/S ]ŝb
T
θ (34)

[C] = msc [̃c] +
(
[IS,Sc ]−mS[r̃Sc/B][r̃Sc/S ]

)
ŝaTθ (35)

[D] = [Isc,B] +
(
[IS,Sc ]−mS[r̃Sc/B][r̃Sc/S ]

)
ŝbTθ (36)

and vectors

vtrans = F − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c −mS[ω̃S/B]r′Sc/S
+mScθ [̃rSc/S ]ŝ (37)

vrot = LB − [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N − [ω̃S/N ][IS,Sc ]ωS/B−
mS[ω̃B/N ][r̃Sc/B]r

′
Sc/B

−mS[r̃Sc/B][ω̃S/B]r′Sc/S
− cθ

(
[IS,Sc ]−mS[r̃Sc/B][r̃Sc/S ]

)
ŝ

(38)

Validation

Validation is a crucial step in implementing the equations of motion. It is impossible to guaran-
tee that the equations are correct and implemented appropriately without validating the approach
used. The validation method verifies that some conservation laws are being respected by checking
whether some physical quantities remain constant throughout the simulation. While this alone does
not guarantee that the equations are correct, it gives high confidence that they have been correctly
derived and implemented.

The quantities being verified are the orbital energy, the orbital angular momentum, the rotational
energy, and the rotational angular momentum. In the presence of gravity, a conservative force,
energy should be constant. Moreover, since gravity is a radial force, the orbital angular momentum
is also constant throughout the simulation. The rotational quantities should also remain constant
without torques and non-conservative forces. The complete derivation and explanation of why these
quantities must be conserved are given in Ref. 6.

The validation results are given in Figures 4, 5, 6 and 7. It should be noted that while the plots
do not immediately look constant, the scale on the vertical axis is on the order of 10−15 to 10−14.
This is very close to machine precision, which means numerical errors slightly corrupt the data.
Moreover, the random walk in these plots is very common in fixed-step integrators like the fourth-
order Runge-Kutta used in these simulations.

DUAL-AXIS ROTATING RIGID BODY DYNAMICS

This section shows the derivation and validation of the equations of motion of a dual-axis rotating
rigid body attached to a rigid hub. The two-degree-of-freedom component can be described in one
of two ways: first, as a chain of two rigid bodies connected to each other by rotary joints, each
rotating about a particular spin axis; second, as a single rigid body connected to the hub through a
universal joint, which can have two spin axes.

This description can represent various common spacecraft components. Examples include dual-
hinge solar arrays for deployment or second-order flexing analysis, control moment gyroscopes as
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Figure 4. Orbital energy using a single-axis rotating rigid body.
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Figure 5. Orbital angular momentum using a single-axis rotating rigid body.
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Figure 6. Rotational energy using a single-axis rotating rigid body.

attitude control devices, and two-axis gimbaled high-gain antennas. All these components can be
defined through a general description, where they are specified by their masses, inertia matrices, the
location of the centers of mass, and spin axes.

Problem Statement

The problem statement for the dual-axis rotating rigid body is given in Figure 8. The inertial
frame is represented by N with origin at point N . The spacecraft is composed of two rigid bodies
connected to each other and to a rigid hub through two axes of rotation. The hub has a body-fixed
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Figure 7. Rotational angular momentum using a single-axis rotating rigid body.

Figure 8. Problem statement for the two-degree-of-freedom spinning rigid body.

frame B with origin B, and its center of mass is located at point Bc. The mass of the hub is mhub,
and its inertia matrix about point B is [Ihub,B]. The lower rotating rigid body has the S1 frame
attached to it with its origin at point S1 and its center of mass located at point Sc1 . The mass of the
lower body is mS1 , and its inertia matrix about its center of mass is [IS1,Sc1

]. The upper rotating
rigid body has the S2 frame attached to it with its origin at point S2 and its center of mass located
at point Sc2 . The mass of the upper body is mS2 , and its inertia matrix about its center of mass is
[IS2,Sc2

]. The center of mass of the spinning system is located at point Sc, and its mass is mS. The
combined center of mass of the spacecraft is located at point C. The first spin axis ŝ1 is constant, as
seen by the B frame, and passes through the point S1. The angle about this rotation axis is θ1, and
its angle rate is θ̇1. The second spin axis ŝ2 is constant, as seen by the S1 frame, and passes through
the point S2. The angle about this rotation axis is θ2, and its angle rate is θ̇2.

The two-body description is used to describe the two-axis rotating rigid body system as generally
as possible. However, the resulting equations of motion still apply to a single rotating body attached
by a universal joint. To do this, the user can set the mass and inertia matrix of the lower body to
zero, which does not impart any singularity in the equations.
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The dual-axis rotating rigid body attached to the hub has eight degrees of freedom shown in
Table 2: three for the system’s position, three for the system’s attitude, and one for the angle about
each rotation axis. Like the one-degree-of-freedom case, the motion equations are developed to
describe all eight degrees of freedom. Therefore, beyond the translational and rotational equations
of motion, the system needs two spinner equations to describe each angle.

State Variables Degrees of Freedom Equations of motion
rB/N , ṙB/N 3 Translational
ωB/N , ω̇B/N 3 Rotational

θ1, θ̇1 1 First Spinner Rotational
θ2, θ̇2 1 Second Spinner Rotational

Table 2. State variables for the single-axis rotating rigid body spacecraft.

Translational Equations of Motion

For the translational equations of motion, the entire spacecraft is considered. This describes three
degrees of freedom. Using the Super Particle Theorem:

mscr̈C/N = mscr̈B/N +mscc̈ = F (39)

where c ≡ rC/B . Using the definition of the center of mass of the system:

mscc = mhubrBc/B +mS1rSc1/B
+mS2rSc2/B

(40)

Using the transport theorem, the inertial time derivatives can be expressed using body-frame
derivatives as

ċ = c′ + ωB/N × c (41)

c̈ = c′′ + ω̇B/N × c + 2ωB/N × c′ + ωB/N ×
(
ωB/N × c

)
(42)

The first-order body-frame derivatives for the three terms that are part of c are given by

r′Bc/B
= 0 (43)

r′Sc1/B
= r′Sc1/S1

= ωS1/B × rSc1/S1
(44)

r′Sc2/B
= r′Sc2/S2

+ r′S2/S1
= ωS2/B × rSc2/S2

+ ωS1/B × rS2/S1
(45)

where, by definition, ωS1/B = θ̇1ŝ1 and ωS2/B = ωS2/S1
+ωS1/B = θ̇2ŝ2+θ̇1ŝ1. The second-order

body-frame derivatives are given by

r′′Bc/B
= 0 (46)

r′′Sc1/B
= θ̈1ŝ1 × rSc1/S1

+ ωS1/B × r′Sc1/S1
(47)

r′′Sc2/B
= θ̈2ŝ2 × rSc2/S2

+θ̈1ŝ1 × rSc2/S1
+
(
ωS1/B × ωS2/S1

)
× rSc2/S2

+

ωS2/S1
× r′Sc2/S2

+ ωS1/B × r′Sc2/S1

(48)
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where ω′
S1/B = θ̈1ŝ1 and ω′

S2/B = θ̈1ŝ1 + θ̈2ŝ2 + ωS1/B × ωS2/S1
because ŝ1 is fixed in the B

frame and ŝ2 is fixed in the S1 frame. With these results, the expressions for mscc′ and mscc′′ are

mscc′ = mS1r′Sc1/B
+mS2r′Sc2/B

= mSr′Sc/B
(49)

mscc′′ = mS1r′′Sc1/B
+mS2r′′Sc2/B

= −mS [̃rSc/S1
]ŝ1θ̈1 −mS2 [̃rSc2/S2

]ŝ2θ̈2+

mS[ω̃S1/B]r
′
Sc/B

+mS2

(
[ω̃S2/S1

]r′Sc2/S2
− [r̃Sc2/S2

][ω̃S1/B]ωS2/S1

) (50)

The center of mass of the spinning bodies system about point S1 is defined as mSrSc/S1
=

mS1rSc1/S1
+mS2rSc2/S1

. Finally, combining similar terms together yields

mscr̈B/N −msc [̃c]ω̇B/N −mS [̃rSc/S1
]ŝ1θ̈1 −mS2 [̃rSc2/S2

]ŝ2θ̈2 =

F − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c −mS[ω̃S1/B]r
′
Sc/B

−

mS2

(
[ω̃S2/S1

]r′Sc2/S2
− [r̃Sc2/S2

][ω̃S1/B]ωS2/S1

) (51)

Rotational Equations of Motion

For the rotational equation of motion, the entire spacecraft is considered. Three degrees of free-
dom of the system are described by this equation of motion. The rotational differential equation
given about point B, which is not the system’s center of mass, is given by

Ḣsc,B = LB +mscr̈B/N × c (52)

The angular momentum about point B is

Hsc,B = Hhub,B + HS1,B + HS2,B =

= [Ihub,B]ωB/N + [IS1,Sc1
]ωS1/N +mS1rSc1/B

× ṙSc1/B
+

[IS2,Sc2
]ωS2/N +mS2rSc2/B

× ṙSc2/B

(53)

As before, it is useful to express the inertial time derivative using the B frame derivative and
the transport theorem by noting that ωS1/N = ωS1/B + ωB/N and ṙSc1/B

= r′Sc1/B
+ ωB/N ×

rSc1/B
. An equivalent development can be done for the second spinning body. Grouping the terms

multiplied by each angular velocity yields

Hsc,B = [Isc,B]ωB/N + [IS1,Sc1
]ωS1/B + [IS2,Sc2

]ωS2/B+

mS1rSc1/B
× r′Sc1/B

+mS2rSc2/B
× r′Sc2/B

(54)

where [Isc,B] = [Ihub,B] + [IS1,Sc1
] + [IS2,Sc2

] − mS1 [r̃Sc1/B
][r̃Sc1/B

] − mS2 [r̃Sc2/B
][r̃Sc2/B

] is
the spacecraft’s total inertia about point B. To take the inertial time derivative of the total angular
momentum, the transport theorem is used to take the body-frame time derivatives instead, which
yields

Ḣsc,B = H′
sc,B + ωB/N × Hsc,B (55)

The body-frame derivative of the angular momentum is

H′
sc,B = [I ′sc,B]ωB/N + [Isc,B]ω̇B/N + [I ′S1,Sc1

]ωS1/B + [IS1,Sc1
]ω′

S1/B+

[I ′S2,Sc2
]ωS2/B + [IS2,Sc2

]ω′
S2/B +mS1rSc1/B

× r′′Sc1/B
+mS2rSc2/B

× r′′Sc2/B

(56)
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where the derivative product rule is applied. To simplify the expression above, the body-frame
derivatives of the inertia matrices are defined using the inertia transport theorem

[I ′S1,Sc1
] = [ω̃S1/B][IS1,Sc1

]− [IS1,Sc1
][ω̃S1/B] (57)

[I ′S2,Sc2
] = [ω̃S2/B][IS2,Sc2

]− [IS2,Sc2
][ω̃S2/B] (58)

[I ′sc,B] = [I ′S1,Sc1
] + [I ′S2,Sc2

]−mS1

(
[r̃′Sc1/B

][r̃Sc1/B
] + [r̃Sc1/B

][r̃′Sc1/B
]
)
−

mS2

(
[r̃′Sc2/B

][r̃Sc2/B
] + [r̃Sc2/B

][r̃′Sc2/B
]
) (59)

Combining these results with the definitions derived in the translational equation of motion sec-
tions yields the following rotational equation of motion

msc[c̃]r̈B/N + [Isc,B]ω̇B/N+(
[IS1,Sc1

] + [IS2,Sc2
]−mS1 [r̃Sc1/B

][r̃Sc1/S1
]−mS2 [r̃Sc2/B

][r̃Sc2/S1
]
)
ŝ1θ̈1+(

[IS2,Sc2
]−mS2 [r̃Sc2/B

][r̃Sc2/S2
]
)
ŝ2θ̈2 = LB −

(
[I ′sc,B] + [ω̃B/N ][Isc,B]

)
ωB/N−

−
(
[I ′S1,Sc1

] + [ω̃B/N ][IS1,Sc1
]
)
ωS1/B −

(
[I ′S2,Sc2

] + [ω̃B/N ][IS2,Sc2
]
)
ωS2/B−

−
(
[IS2,Sc2

]−mS2 [r̃Sc2/B
][r̃Sc2/S2

]
)
[ω̃S1/B]ωS2/S1

−

mS1

(
[r̃Sc1/B

][ω̃S1/B] + [ω̃B/N ][r̃Sc1/B
]
)

r′Sc1/B
−

−mS2

(
[r̃Sc2/B

][ω̃S1/B] + [ω̃B/N ][r̃Sc2/B
]
)

r′Sc2/B
−mS2 [r̃Sc2/B

][ω̃S2/S1
]r′Sc2/S2

(60)

First Spinning Body Equations of Motion

The first spinning body equation of motion describes the motion of the spinning body system,
defining another degree of freedom of the spacecraft. The formulation of the equation of motion for
the spinning body system is

ḢS,S1 = LS1 −mSrSc/S1
× r̈S1/N (61)

The angular momentum of the spinning system is

HS,S1 = HS1,S1 + HS2,S1 =

= [IS1,Sc1
]ωS1/N +mS1rSc1/S1

× ṙSc1/S1
+ [IS2,Sc2

]ωS2/N +mS2rSc2/S1
× ṙSc2/S1

(62)

The expression above can be simplified by applying the transport theorem to the ṙ terms and
grouping the ωB/N terms as follows

HS,S1 = [IS,S1 ]ωB/N + [IS1,Sc1
]ωS1/B + [IS2,Sc2

]ωS2/B+

mS1rSc1/S1
× r′Sc1/S1

+mS2rSc2/S1
× r′Sc2/S1

(63)

where three new inertia matrices are defined

[IS,S1 ] = [IS1,S1 ] + [IS2,S1 ] (64)

[IS1,S1 ] = [IS1,Sc1
]−mS1 [r̃Sc1/S1

][r̃Sc1/S1
] (65)

[IS2,S1 ] = [IS2,Sc2
]−mS2 [r̃Sc2/S1

][r̃Sc2/S1
] (66)
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Using the transport theorem to take the derivatives in the B frame, the inertial time derivative of
the angular momentum is given by

ḢS,S1 = H′
S,S1

+ ωB/N × HS,S1 (67)

The body-frame derivative of the angular momentum is

H′
S,S1

= [I ′S,S1
]ωB/N + [IS,S1 ]ω̇B/N + [I ′S1,Sc1

]ωS1/B + [IS1,Sc1
]ω′

S1/B+

[I ′S2,Sc2
]ωS2/B + [IS2,Sc2

]ω′
S2/B ++mS1rSc1/S1

× r′′Sc1/S1
+mS2rSc2/S1

× r′′Sc2/S1

(68)

The body-frame derivatives of the inertia matrices are

[I ′S,S1
] = [I ′S1,S1

] + [I ′S2,S1
] (69)

[I ′S1,S1
] = [I ′S1,Sc1

]−mS1

(
[r̃′Sc1/S1

][r̃Sc1/S1
] + [r̃Sc1/S1

][r̃′Sc1/S1
]
)

(70)

[I ′S2,S1
] = [I ′S2,Sc2

]−mS2

(
[r̃′Sc2/S1

][r̃Sc2/S1
] + [r̃Sc2/S1

][r̃′Sc2/S1
]
)

(71)

As for the r̈S1/N term, it can be separated into two terms

r̈S1/N = r̈S1/B + r̈B/N (72)

To compute r̈S1/B , it should be noted that rS1/B is constant in the B frame, which yields

ṙS1/B = ωB/N × rS1/B, r̈S1/B = ω̇B/N × rS1/B + ωB/N × ṙS1/B (73)

Here, all terms are dotted with the spin axis ŝ1 to ignore the dynamics in any other direction,
where structural torques keep the constraints in place. This results in the first spinning body equation
of motion

ŝT1 [IS,S1 ]ŝ1θ̈1 + ŝT1

(
[IS2,Sc2

]−mS2 [r̃Sc2/S1
][r̃Sc2/S2

]
)
ŝ2θ̈2 = uS1−

mSŝ
T
1 [r̃Sc/S1

]r̈B/N − ŝT1
(
[IS,S1 ]−mS[r̃Sc/S1

][r̃S1/B]
)
ω̇B/N−

ŝT1
(
[I ′S,S1

] + [ω̃B/N ][IS,S1 ]
)
ωB/N − ŝT1

(
[I ′S1,Sc1

] + [ω̃B/N ][IS1,Sc1
]
)
ωS1/B−

ŝT1

(
[I ′S2,Sc2

] + [ω̃B/N ][IS2,Sc2
]
)
ωS2/B−

ŝT1

(
[IS2,Sc2

]−mS2 [r̃Sc2/S1
][r̃Sc2/S2

]
)
[ω̃S1/B]ωS2/S1

−

mS1 ŝ
T
1

(
[r̃Sc1/S1

][ω̃S1/B] + [ω̃B/N ][r̃Sc1/S1
]
)

r′Sc1/S1
−

mS2 ŝ
T
1

(
[r̃Sc2/S1

][ω̃S1/B] + [ω̃B/N ][r̃Sc2/S1
]
)

r′Sc2/S1
−

mS2 ŝ
T
1 [r̃Sc2/S1

][ω̃S2/S1
]r′Sc2/S2

−mSŝ
T
1 [r̃Sc/S1

][ω̃B/N ]ṙS1/B

(74)

Second Spinning Body Equations of Motion

For the final equation of motion, only the top spinner is considered, describing the last degree of
freedom of the system. The formulation for the equation of motion for the second spinner is

ḢS2,S2 = LS2 −mS2rSc2/S2
× r̈S2/N (75)
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The angular momentum of the top spinner about point S2 is

HS2,S2 = [IS2,S2 ]ωS2/N = [IS2,S2 ]ωB/N + [IS2,S2 ]ωS2/B (76)

where [IS2,S2 ] is defined as [IS2,S2 ] = [IS2,Sc2
]−mS2 [r̃Sc2/S2

][r̃Sc2/S2
] using the parallel axis theo-

rem. The inertial time derivative of the angular momentum is given by

ḢS2,S2 = H′
S2,S2

+ ωB/N × HS2,S2 (77)

The body-frame time derivative of HS2,S2 is

H′
S2,S2

= [I ′S2,S2
]ωB/N + [IS2,S2 ]ω̇B/N + [I ′S2,S2

]ωS2/B + [IS2,S2 ]ω
′
S2/B (78)

As for the r̈S2/N term, it can be separated into three terms

r̈S2/N = r̈S2/S1
+ r̈S1/B + r̈B/N (79)

where r̈S2/S1
is equal to

ṙS2/S1
= r′S2/S1

+ ωB/N × rS2/S1
(80)

r̈S2/S1
= r′′S2/S1

+ ω̇B/N × rS2/S1
+ ωB/N × r′S2/S1

+ ωB/N × ṙS2/S1
(81)

These results can be combined into the spinning body equation of motion by dotting each term
with ŝ2:

ŝT2

(
[IS2,S2 ]−mS2 [r̃Sc2/S2

][r̃S2/S1
]
)
ŝ1θ̈1 + ŝT2 [IS2,S2 ]ŝ2θ̈2 = uS2−

mS2 ŝ
T
2 [r̃Sc2/S2

]r̈B/N − ŝT2

(
[IS2,S2 ]−mS2 [r̃Sc2/S2

][r̃S2/B]
)
ω̇B/N−

ŝT2
(
[I ′S2,S2

] + [ω̃B/N ][IS2,S2 ]
)
ωS2/N − ŝT2 [IS2,S2 ][ω̃S1/B]ωS2/S1

−

mS2 ŝ
T
2 [r̃Sc2/S2

][ω̃S1/N ]r′S2/S1
−mS2 ŝ

T
2 [r̃Sc2/S2

][ω̃B/N ]
(
ṙS2/S1

+ ṙS1/B

)
(82)

Back-Substitution Formulation

To get a compact formulation for both equations of motion of both rotating rigid bodies, they are
expressed in matrix form as such

[Mθ]θ̈ = [A∗
θ]r̈B/N + [B∗

θ ]ω̇B/N + [C∗
θ ] (83)
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where the matrices above are defined as

[Mθ] =

 ŝT1 [IS,S1
]ŝ1 ŝT1

(
[IS2,Sc2

]−mS2
[r̃Sc2

/S1
][r̃Sc2

/S2
]
)
ŝ2

ŝT2

(
[IS2,S2

]−mS2
[r̃Sc2

/S2
][r̃S2/S1

]
)
ŝ1 ŝT2 [IS2,S2

]ŝ2

 (84)

[A∗
θ] =

[
−mSŝ

T
1 [r̃Sc/S1

]
−mS2

ŝT2 [r̃Sc2
/S2

]

]
(85)

[B∗
θ ] =

[
−ŝT1

(
[IS,S1

]−mS[r̃Sc/S1
][r̃S1/B ]

)
−ŝT2

(
[IS2,S2 ]−mS2 [r̃Sc2/S2

][r̃S2/B ]
)] (86)

[C∗
θ ] =



−ŝT1

{(
[I ′S,S1

] + [ω̃B/N ][IS,S1
]
)
ωB/N +

(
[I ′S1,Sc1

] + [ω̃B/N ][IS1,Sc1
]
)
ωS1/B+(

[I ′S2,Sc2
] + [ω̃B/N ][IS2,Sc2

]
)
ωS2/B+(

[IS2,Sc2
]−mS2

[r̃Sc2/S1
][r̃Sc2/S2

]
)
[ω̃S1/B]ωS2/S1

+

mS1

(
[r̃Sc1/S1

][ω̃S1/B] + [ω̃B/N ][r̃Sc1/S1
]
)

r′Sc1
/S1

+

mS2

(
[r̃Sc2/S1

][ω̃S1/B] + [ω̃B/N ][r̃Sc2/S1
]
)

r′Sc2
/S1

+

mS2
[r̃Sc2/S1

][ω̃S2/S1
]r′Sc2

/S2
+mS[r̃Sc/S1

][ω̃B/N ]ṙS1/B

}
−ŝT2

{(
[I ′S2,S2

] + [ω̃B/N ][IS2,S2
]
)
ωS2/N + [IS2,S2

][ω̃S1/B]ωS2/S1
+

mS2
[r̃Sc2/S2

[ω̃S1/N ]r′S2/S1
+mS2

[r̃Sc2/S2
][ω̃B/N ]

(
ṙS2/S1

+ ṙS1/B

)}



(87)

The canonical form of equation (83) is given by

θ̈ = [Aθ]r̈B/N + [Bθ]ω̇B/N + [Cθ] (88)

where the new matrices are defined as

[Aθ] = [Mθ]
−1[A∗

θ], [Bθ] = [Mθ]
−1[B∗

θ ], [Cθ] = [Mθ]
−1[C∗

θ ] (89)

These results can be plugged into the back-substitution formulation as such[
[A] [B]
[C] [D]

] [
r̈B/N

ω̇B/N

]
=

[
vtrans
vrot

]
(90)

using the following matrices

[A] = mSC[I3×3]−mS [̃rSc/S1
]ŝ1Aθ1 −mS2 [̃rSc2/S2

]ŝ2Aθ2 (91)

[B] = −msc [̃c]−mS [̃rSc/S1
]ŝ1Bθ1 −mS2 [̃rSc2/S2

]ŝ2Bθ2 (92)

[C] = msc [̃c] +
(
[IS1,Sc1

] + [IS2,Sc2
]−mS1 [r̃Sc1/B

][r̃Sc1/S1
]−

mS2 [r̃Sc2/B
][r̃Sc2/S1

]
)
ŝ1Aθ1 +

(
[IS2,Sc2

]−mS2 [r̃Sc2/B
][r̃Sc2/S2

]
)
ŝ2Aθ2

(93)

[D] = [Isc,B] +
(
[IS1,Sc1

] + [IS2,Sc2
]−mS1 [r̃Sc1/B

][r̃Sc1/S1
]−

mS2 [r̃Sc2/B
][r̃Sc2/S1

]
)
ŝ1Bθ1 +

(
[IS2,Sc2

]−mS2 [r̃Sc2/B
][r̃Sc2/S2

]
)
ŝ2Bθ2

(94)

and vectors
vtrans = F − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c−

mS[ω̃S1/B]r
′
Sc/B

−mS2

(
[ω̃S2/S1

]r′Sc2/S2
− [r̃Sc2/S2

][ω̃S1/B]ωS2/S1

)
+

mS [̃rSc/S1
]ŝ1Cθ1 +mS2 [̃rSc2/S2

]ŝ2Cθ2

(95)
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vrot = LB − [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N−(
[I ′S1,Sc1

] + [ω̃B/N ][IS1,Sc1
]
)
ωS1/B −

(
[I ′S2,Sc2

] + [ω̃B/N ][IS2,Sc2
]
)
ωS2/B−(

[IS2,Sc2
]−mS2 [r̃Sc2/B

][r̃Sc2/S2
]
)
[ω̃S1/B]ωS2/S1

−

mS1

(
[r̃Sc1/B

][ω̃S1/B] + [ω̃B/N ][r̃Sc1/B
]
)

r′Sc1/B
−

mS2

(
[r̃Sc2/B

][ω̃S1/B] + [ω̃B/N ][r̃Sc2/B
]
)

r′Sc2/B
−mS2 [r̃Sc2/B

][ω̃S2/S1
]r′Sc2/S2

−(
[IS1,Sc1

] + [IS2,Sc2
]−mS1 [r̃Sc1/B

][r̃Sc1/S1
]−mS2 [r̃Sc2/B

][r̃Sc2/S1
]
)
ŝ1Cθ1−(

[IS2,Sc2
]−mS2 [r̃Sc2/B

][r̃Sc2/S2
]
)
ŝ2Cθ2

(96)

Validation

The same validation tests are performed for the dual-axis rotating rigid body system, shown in
Figures 9, 10, 11 and 12. As before, the angular momentum and energy quantities are conserved
throughout the simulation, as only conservative forces and torques are acting on the spacecraft.
This implies a high level of confidence that both the mathematical derivation and the software
implementation are correct and follow fundamental physical principles.
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Figure 9. Orbital energy using a dual-axis rotating rigid body.
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Figure 10. Orbital angular momentum using a dual-axis rotating rigid body.
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Figure 11. Rotational energy using a dual-axis rotating rigid body.
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Figure 12. Rotational angular momentum using a dual-axis rotating rigid body.

CONCLUSION

With spacecraft becoming more complex, there is a need for a robust simulation architecture
that can replicate the spacecraft’s behavior throughout its mission. Creating a general and modular
representation of common categories of spacecraft components saves time and effort for the engi-
neers while retaining the high fidelity needed to guarantee that the mission objectives are met. This
work provides an architecture and the corresponding equations of motion for simulating single and
dual-axis rotating rigid components in a general, modular way.

A dynamics architecture is proposed, where shared component classes are created to minimize
code repetition and centralize the validation of the functions common to each class. Each abstract
class can then represent specific components with their particular variables and methods while shar-
ing the general equations of motion and kinematics contributions.

The equations of motion of the single and dual-axis are comprehensively derived without making
any assumptions on the frame, spin axis, or the location of the center of mass. The outcome is a
universal formulation of the equations that describe these components. Validation is done to both
formulations by verifying energy and angular momentum conservation. It is shown that both models
agree to these fundamental physical conservation laws when only conservative forces are present.
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