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EFFECTOR DYNAMICS FOR SEQUENTIALLY ROTATING RIGID
BODY SPACECRAFT COMPONENTS

João Vaz Carneiro*, Cody Allard† and Hanspeter Schaub‡

Spacecraft simulations and subsequent analysis are critical steps in any mission. The first step
is typically to develop the equations of motion that describe the behavior of the space vehicle
such that they can be simulated to verify mission requirements. However, with increasingly
more complex spacecraft configurations, developing and validating such equations of motion
is difficult and often spacecraft-specific. Robotic arm appendages are particularly interesting,
as they have been used to service and dock spacecraft, which is the primary mission of many
proposed missions. Prior work has focused on developing the Back-Substitution Method
(BSM) to modularly create the equations of motion under the assumption that the spacecraft
is composed of a rigid hub to which multiple rigid bodies (effectors) are attached. These
can include solar panels, reaction wheels, etc. The BSM formulation has been expanded to
simulate general single and dual-axis rotating rigid bodies with any mass distribution and
spin axis. It creates a singular formulation that can represent a plethora of effectors, from
control moment gyroscopes to dual-gimbal antennas under the same equations of motion.
This paper aims to expand this work further to simulate a chain of rotating rigid bodies of
any length, not constrained to one or two axes. Kane’s equations are used to identify patterns
in the equations of motion development that allow for this elegant generalization. The rigid
bodies can be connected by any sequence of single-axis rotations, vastly improving the pos-
sible spacecraft configurations and allowing for the simulation of very complex robotic arms
attached to a rigid hub.

INTRODUCTION

Space vehicles have become increasingly complex to keep up with ambitious mission requirements. Start-
ing with Sputnik 1,1 the first artificial satellite composed of little more than a sphere with some sensors and
four boom antennas, spacecraft design has changed dramatically as technology has evolved. The Interna-
tional Space Station2 (ISS) has been in orbit for more than two decades and is arguably the most complex
space vehicle of the twenty-first century. Notably, many spacecraft now include multi-link robotic arms to
perform in-orbit operations like servicing and docking. The Canadarm3–5 has been used by the Space Shuttle
(Canadarm 1) and the ISS (Canadarm 2), while the Lunar Gateway will also make use of it (Canadarm 3).
Other servicing vehicles like Northrop Grumman’s Mission Extension Vehicle6 or the National Air and Space
Administration’s (NASA) OSAM-1 Mission7 also make use of robotic arms for life-extension and servicing
missions. The need for robotic manipulators in space is clear, and the future of the industry will rely on them
for future missions.

The vehicle must be simulated and analyzed to ensure the spacecraft meets mission requirements. These
steps require the equations of motion that describe the vehicle’s behavior in orbit to be derived and validated.
However, simulating multi-link appendages is challenging due to their multiple degrees of freedom and the
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(a) Diagram for a reaction wheel effector.9

(b) Diagram for a solar panel effector.10, 11

Figure 1: Diagrams for two different single-axis components.

inherent dynamic coupling between links. One common approach in robotics is to assume that the robotic
arm is prescribed;8 that is, to suppose that each degree of freedom is precisely imposed by an actuator/motor.
The output of all the actuators would describe the motion of the arm. Effectively, this means that the arm
behaves separately from the rigid hub, not being affected by it; however, the rigid hub is still affected by
the motion of the arm. This one-way coupling simplifies the equations of motion and is a fair assumption in
many applications. Nevertheless, this is still an approximation and standard validation metrics like energy
and angular momentum conservation cannot be used to verify that the simulation is correct. Moreover, even
when the full coupling equations of motion are used, they are often developed for a particular spacecraft
configuration or specific types of effectors. This lack of generality means that the equations of motion must
be received and invalidated each time the configuration changes, slowing progress.

Previous work introduced the Back-Substitution Method (BSM), which rearranges the equations of motion
of each effector and the hub to fit a standard form. With BSM, effectors are the dynamic components added
to a central, rigid hub component. In turn, instead of having to invert a large system mass matrix, which
is computationally very expensive, BSM first solves for the translational and rotational accelerations of the
hub r̈B/N and ω̇B/N , respectively, by having already analytically back-substituted the effector equations
of motion into the hub differential equations. Next, the degrees of freedom of each effector are solved
with the hub accelerations.10, 12 BSM has been used to model several different effectors, including balanced
and imbalanced reaction wheels,13 variable-speed control moment gyroscopes,9 and hinged solar arrays.11

The modeling of these effectors starts by making assumptions about each component, especially concerning
the spin axis and the body’s mass distribution. To illustrate this, Figure 1 shows diagrams of two rotating
dual-axis components: Figure 1a shows the problem statement of a spacecraft with a variable-speed control
moment gyroscope, and Figure 1b shows the problem statement of a spacecraft with a dual-hinged panel.

2



In these examples, both effectors represent dual-axis rotating rigid bodies. However, because of their initial
assumptions, the resulting equations of motion are different, as some terms vanish because of the choice
of mass distribution and spin axis. While this formulation still describes each particular effector, it lacks
generality; one standard formulation could have been used with general spin axes and mass distributions to
describe both effectors, as they are identical from a dynamics standpoint.

To address the lack of generality of the effector solutions of spinning rigid bodies discussed in Refs. 13
and 11, BSM is expanded in Ref. 14 to develop particular effector solutions for one and two degrees of
freedom effectors. The equations of motion of one and two-degree-of-freedom components are derived and
implemented in a general manner, avoiding the symmetry assumptions of prior work, to simulate any part
mounted on a single or dual gimbal. The result is a general formulation for each effector type (single or dual-
axis rotating rigid body), which can simulate reaction wheels, solar panels, control-moment gyroscopes, etc.,
using only one set of equations for each type. This means that the general equations are validated once and
can be used for current and future implementations of one and two-degree-of-freedom components, saving
time for both the user and developer.

This work aims to develop a general formulation N -degree-of-freedom sequential rotation rigid compo-
nents connected to a rigid hub. Depending on the use case, the dynamicist can choose how many degrees of
freedom are needed and how they are arranged to simulate a particular component. As an example, a three-
degree-of-freedom component type is shown. The formulation is broad enough to include a cluster of three
rigid bodies connected sequentially by three rotary joints, a single part able to rotate in a yaw-pitch-roll or any
other permutation of three sequential axial rotations with up to three bodies. This dramatically extends the
spacecraft configuration space that can be simulated, as three rotations can reach the entire attitude space of a
rigid sub-component. Specific examples of these components are found in Figures 2a and 2b. The figure on

(a) Spacecraft with a triple hinged-panel component.
(b) Spacecraft with a dual gimbaled antenna attached
to a single-hinged arm.

Figure 2: Three-degree-of-freedom component configurations.

the left exemplifies a three-panel cluster attached to a hub. As is evident, the hinges on which the panels are
deployed do not have to be parallel. The figure on the right shows an example of a two-body component in
which the lower arm can rotate about one axis while the upper antenna sits on a dual-axis gimbal. These are
just two examples of the numerous components that fit the same dynamic model of three sequential rotations.

Beyond simulating a chain of rigid bodies, this N -degree-of-freedom formulation can also simulate flexing
rigid bodies, first proposed in Ref. 11. It approximates the behavior of a flexible appendage by discretizing
it into a series of small rigid bodies connected by joints with springs and dampers. The flexible body modes
can be simulated by tuning the spring and damper coefficients. While this is a first-order approximation, it
can be helpful in early mission design to test against control-structure interactions by guaranteeing that the
control devices do not excite unwanted structural modes.

The present work aims to expand on Ref. 14 and the BSM framework to formulate the generalized dy-
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namics of a sequence of spinning body components. This enables simulating any sequence of rigid body
components subject to sequential rotations with respect to the spacecraft’s hub. The goal is to determine
patterns in the effector differential equations of motion development to allow the sequence of rigid bodies
to be written in a summation form. Such a solution retains the ability to describe multiple components that
fit the same dynamics type (reaction wheels and single panel for one degree of freedom or control-moment
gyroscope and dual panel for two degrees of freedom) while vastly expanding the configuration space by also
modeling components with more degrees of freedom. While the rotations considered must be sequential, they
can be grouped to form multiple-degree-of-freedom joints. Therefore, the connections between bodies can
be represented by universal joints using one-, two- or three-dimensional joints. This is particularly useful for
robotic arms with joints between links composed of multiple degrees of freedom. Throughout the equations
of motion derivation, no assumption is made on the spin axes, the center of mass locations, the component
inertias, etc. Thus, this paper pursues a universal implementation of these dynamic models.

This paper uses Kane’s equations,15, 16 as opposed to Newtonian and Eulerian17, 18 formulations employed
in prior work.9–11, 13, 14, 19 While all formulations are equivalent in that they yield analogous equations of
motion, Kane’s method lends itself better to the N -degree-of-freedom problem. Although more abstract,
it can provide more analytical insight into the equations of motion structure. This is especially important
because the main goal is to find patterns in the equations that describe an effector with various degrees
of freedom. In addition to Kane’s equation, this work also makes use of the inertia transport theorem.20

Analogous to the vector transport theorem,17 the inertia transport theorem describes the time derivative of the
inertia tensor between two different rotating frames. This result is used to simplify the rotational equations
of motion to yield a more compact analytical result of the effector differential equations of motion.

This paper is structured as follows. First, a brief introduction to Kane’s method is given to familiarize the
reader with this dynamics formulation. Second, the problem statement is shown to set up the rigid hub and
the N -degree-of-freedom (DoF) effector. Then, all necessary equations of motion are written and derived,
which include the system’s translation and rotational equations of motion, as well as the equations for each
additional degree of freedom of the effector.

KANE’S METHOD

This paper makes extensive use of Kane’s method, developed by Kane and Levinson.15 Ref. 21 further
adapts this theory to the back-substitution method and introduces the notation used throughout the paper.
While this work is agnostic to the dynamics formulation used in the sense that they all yield analogous equa-
tions of motion, Kane’s method is beneficial due to its systematic nature in how it develops analytical equa-
tions of motion. The main challenge with this work is to find patterns in the accelerations to yield compact
and programmatic equations of motion, and Kane’s method, while more abstract and arguably less intuitive,
is structured in a way that eases the effort of the dynamicist in finding all the necessary equations of motion.
Newtonian or Eulerian formulations require understanding where the forces/torques are applied, where to
draw the system’s bounding box, etc. In contrast, Kane’s method only requires that the dynamicist finds the
accelerations of each connected body. The resulting equations might need rearrangements before being ready
to use with the back-substitution formulation, but this can be done using some algebraic properties.

Kane’s method starts by defining the generalized coordinates and their corresponding generalized veloc-
ities.15, 16 The velocities do not have to be the direct derivative of the corresponding coordinate. This is
particularly important with the rotational coordinates, where any attitude parameterization can be used while
utilizing the angular velocity vector as the corresponding generalized velocity.

After defining the generalized coordinate and velocity vectors, the velocity vector of the center of mass and
the angular velocity vector of the body’s frame are defined. This is because rigid bodies are the focus of this
work, so both the translation and rotation properties are investigated. These vectors are used to determine the
partial velocities. These are calculated by taking the derivative of each body’s velocity and angular velocity
vectors with respect to each generalized velocity coordinate.

Finally, the generalized active force Fr and generalized inertia force F ∗
r are defined for each degree of

freedom. The active force corresponds to external forces/torques. In contrast, the inertia force is computed
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using the acceleration of the center of mass of each body and the angular acceleration of each corresponding
frame. The generalized active force has a translational and a rotational term applied to forces and torques,
respectively, and is defined as

Fr =
∑
i

(vi
r)

T · F +
∑
i

(ωi
r)

T ·L (1)

where vi
r and ωi

r correspond to the translational and rotational partial velocities of the i-th body. Here,
the summation is done over all connected bodies. The generalized inertia force also has translational and
rotational contributions and is given by

F ∗
r = −

∑
i

(vir)
T ·
(
mSi

r̈Sci
/N

)
−
∑
i

(ωi
r)

T ·
(
[ISi,Sci

]ω̇Si/N + [ω̃Si/N ][IS,Sci
]ωSi/N

)
(2)

where r̈Sci
/N is the acceleration of the center of mass of the i-th body, while ωSi/N and ω̇Si/N are the

angular velocity and angular acceleration of the frame connected to the i-th body, respectively. The mass of
the i-th body is mSi

and its inertia about its center of mass is [ISi,Sci
].

With the generalized active and inertia forces in hand, the equations of motion are defined by

Fr + F ∗
r = 0 (3)

Depending on the variable r, grouping variables in a vector is sometimes convenient instead of using them
component-wise. This is particularly important for the position rB/N and angular velocity ωB/N , where
three components are used together to form a vector. In this case, both vr and ωr are matrices instead of
scalars, represented by [vBc

r ] and [ωB
r ], and the forces are vectors instead of scalars: Fr for the generalized

active force and F ∗
r for the generalized inertia force.

EFFECTOR PROBLEM STATEMENT

The problem statement for the N -axes rotating rigid body effector attached to the hub is given in Figure 3.
The inertial frame N originates at point N . The spacecraft is composed of a rigid hub to which the effector

Figure 3: Problem statement for the N -degree-of-freedom spinning rigid body.

attaches. The B frame has an origin point at B, which does not have to coincide with the center of mass of
the hub Bc nor the center of mass of the system C. The hub has mass mhub, center of mass rBc/B and inertia
about its center of mass [Ihub,Bc ] The effector consists of a chain of rigid bodies connected through single
hinges. The mass and inertia of some bodies can be set to zero to give the joint multiple degrees of freedom
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of an effector component. Here, the degrees of rotation act as an Euler angle sequence of rotation. Each body
has a frame Si with origin Si, mass mSi , center of mass rSci

/Si
and inertia about its center of mass [ISi,Sci

].
The bodies rotate the ŝi spin axis, which passes through the origin of the S⟩ frame, with an angle θi and
angular rate θ̇i.

Generalized Coordinates

Kane’s method requires defining generalized coordinate and velocity vectors containing the system’s states
and their derivatives. For this problem, the states include the position and attitude of the hub rB/N and
σB/N , respectively, as well as the angles for all joints of the effector. The generalized coordinate vector q
and corresponding generalized velocity vector u are

q =



rB/N

σB/N
θ1
θ2
...
θN


, u =



ṙB/N

ωB/N

θ̇1
θ̇2
...
θ̇N


(4)

Velocities

The velocities of the center of mass of all bodies need to be computed to calculate the corresponding
translational partial velocities. For the hub, it is

ṙBc/N = ṙB/N + ṙBc/B = ṙB/N − [r̃Bc/B ]ωB/N (5)

where [r̃Bc/B ] corresponds to the cross-product operator such that [r̃Bc/B ]ωB/N = rBc/B × ωB/N . The
transport theorem17 is used here since rBc/B is constant in the B frame. The velocity of the center of mass
for the first two rotating bodies is

ṙSc1/N
= ṙB/N + ṙSc1/B

= ṙB/N − [r̃Sc1/B
]ωB/N − [r̃Sc1/S1

]ŝ1θ̇1 (6)

ṙSc2
/N = ṙB/N + ṙSc2

/B = ṙB/N − [r̃Sc2
/B ]ωB/N − [r̃Sc2

/S1
]ŝ1θ̇1 − [r̃Sc2

/S2
]ŝ2θ̇2 (7)

A pattern emerges for the velocity of the center of mass of the i-th rotating body

ṙSci
/N = ṙB/N − [r̃Sci

/B ]ωB/N −
i∑

j=1

[r̃Sci
/Sj

]ŝj θ̇j (8)

This means the translational partial velocities relating to all bodies can be computed.

Angular Velocities

Similarly, the angular velocities of the frames attached to each rigid body are needed. The angular veloci-
ties of the first two rotating rigid bodies are

ωS1/N = ωB/N + ŝ1θ̇1 (9)

ωS2/N = ωB/N + ŝ1θ̇1 + ŝ2θ̇2 (10)

Another pattern emerges for the angular velocity of the i-th frame

ωSi/N = ωB/N +

i∑
j=1

ŝj θ̇j (11)
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Partial Velocity Table

The partial velocities are computed by taking the partial derivative of each body’s center of mass velocity
ṙSci

/N or the frame’s angular velocity ωSi/N with respect to each generalized coordinate ur. Therefore,
each entry applies ∂/∂r to the corresponding variable, where 1-3 is for rB/N , 4-6 is for ωB/N and the rest
are for all θi. The partial velocity table is shown in Table 1.

Table 1: Partial velocities.

r vBc
r ωB

r v
Sc1
r ωS1

r v
Sc2
r ωS2

r . . . v
Sci
r ωSi

r . . . v
ScN
r ωSN

r

1− 3 [I3×3] [03×3] [I3×3] [03×3] [I3×3] [03×3] . . . [I3×3] [03×3] . . . [I3×3] [03×3]

4− 6 −[r̃Bc/B ] [I3×3] −[r̃Sc1
/B ] [I3×3] −[r̃Sc2

/B ] [I3×3] . . . −[r̃Sci
/B ] [I3×3] . . . −[r̃ScN

/B ] [I3×3]

7 [03×3] [03×3] [r̃Sc1
/S1

]ŝ1 ŝ1 [r̃Sc2
/S1

]ŝ1 ŝ1 . . . [r̃Sci
/S1

]ŝ1 ŝ1 . . . [r̃ScN
/S1

]ŝ1 ŝ1

8 [03×3] [03×3] [03×3] [03×3] [r̃Sc2
/S2

]ŝ2 ŝ2 . . . [r̃Sci
/S2

]ŝ2 ŝ2 . . . [r̃ScN
/S2

]ŝ2 ŝ2

...
...

...
...

...
...

...
. . .

...
...

. . .
...

...

6 + i [03×3] [03×3] [03×3] [03×3] [03×3] [03×3] . . . [r̃Sci
/Si

]ŝi ŝi . . . [r̃ScN
/Si

]ŝi ŝi

...
...

...
...

...
...

...
. . .

...
...

. . .
...

...

6 +N [03×3] [03×3] [03×3] [03×3] [03×3] [03×3] . . . [03×3] [03×3] . . . [r̃ScN
/SN

]ŝN ŝN

TRANSLATIONAL EQUATION OF MOTION

Here, the translational equation of motion for the system consisting of a hub with an N -DoF effector is
derived. The goal is to write the equation to fit the form proposed in Ref. 10. For the translation equations of
motion, the generalized equation is shown here as

mscr̈B/N −msc[c̃]ω̇B/N +

Neff∑
i=1

NDOF,i∑
j=1

vTrans,LHSij
α̈ij = Fext − 2msc[ω̃B/N ]c′

−msc[ω̃B/N ][ω̃B/N ]c+

Neff∑
i=1

vTrans,RHSi
(12)

There are a few things to note in the equation above. First, all explicit second-order accelerations are moved to
the left-hand side. These include the acceleration of the hub, the angular acceleration of the hub’s frame, and
all second-order time derivatives of the effector’s states. Second, while Equation 12 shows a summation of all
effectors, this work only derives the equations for one effector, with the result for multiple being analogous.
This is a direct consequence of the modularity of the backsubstitution method. Finally, the right-hand side
shows some terms using center of mass properties such as c and c′, which correspond to the position and
velocity (with respect to the B frame) of the center of mass with respect to point B, respectively. Therefore,
the final equation must be rearranged so that these terms are explicit. The remaining terms are grouped into
vTrans,RHSi

, which catches any other contributions. The following derivation of the equations of motion takes
the form in Equation 12 into account to right the equation into the most compact form suitable for use with
the backsubstitution method.

The generalized active force for the system’s translation is given by

F1−3 = Fext (13)
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where Fext is the sum of the external forces on the system. The generalized inertia forces are given by

F ∗
1−3 = −

N∑
i=0

mSi
(v

Sci
1−3)

T · r̈Sci
/N (14)

where, for ease of notation, S0 ≡ B and Sc0 ≡ Bc, making the hub the 0-th body. No ωr terms appear
because their respective partial velocities are equal to zero. To find the acceleration of the center of mass of
the i-th body, let us first write the acceleration of the first bodies to find a pattern, starting with the hub.

r̈Bc/N = r̈B/N − [r̃Bc/B ]ω̇B/N + [ω̃B/N ][ω̃B/N ]rBc/B (15)

This result is found by taking the inertial time derivative of Eq. (5) while using the transport theorem to take
B frame derivatives. Applying the same approach to the first and second bodies, their accelerations are given
by

r̈Sc1
/N = r̈B/N − [r̃Sc1

/B ]ω̇B/N − [r̃Sc1
/S1

]ŝ1θ̈1 + [ω̃B/N ][ω̃B/N ]rSc1
/B

+ 2[ω̃B/N ]r′Sc1
/B + [ω̃S1/B]r

′
Sc1

/S1

(16)

r̈Sc2
/N = r̈B/N − [r̃Sc2

/B ]ω̇B/N − [r̃Sc2
/S1

]ŝ1θ̈1 − [r̃Sc2
/S2

]ŝ2θ̈2 + [ω̃B/N ][ω̃B/N ]rSc2
/B

+ 2[ω̃B/N ]r′Sc2/B
+ [ω̃S1/B]r

′
Sc2/S1

+ [ω̃S2/S1
]r′Sc2

/S2
− [r̃Sc2

/S2
][ω̃S1/B]ωS2/S1

(17)

It is important to note that the transport theorem is used extensively to simplify some derivatives, particularly
by using the property that rSci

/Si
is constant in the Si frame and that rSi/Si−1

is constant in the Si−1 frame.
For the i-th body, the following pattern emerges

r̈Sci
/N =r̈B/N − [r̃Sci

/B ]ω̇B/N −
i∑

j=1

[r̃Sci
/Sj

]ŝj θ̈j + [ω̃B/N ][ω̃B/N ]rSci
/B + 2[ω̃B/N ]r′Sci

/B

+

i∑
j=1

[ω̃Sj/Sj−1
]r′Sci

/Sj
−

i−1∑
j=1

[r̃Sci
/Sj+1

][ω̃Sj/B]ωSj+1/Sj

(18)

Using Kane’s Method, the translational equation of motion is given by setting F1−3 + F ∗
1−3 = 0, which

yields

N∑
i=0

mSi
r̈B/N −

N∑
i=0

mSi
[r̃Sci

/B ]ω̇B/N −
N∑
i=1

mSi

i∑
j=1

[r̃Sci
/Sj

]ŝj θ̈j =

= Fext − 2[ω̃B/N ]

N∑
i=1

mSi
r′Sci

/B − [ω̃B/N ][ω̃B/N ]

N∑
i=0

mSi
rSci

/B

+

N∑
i=1

mSi

 i∑
j=1

[ω̃Sj/Sj−1
]r′Sci

/Sj
−

i−1∑
j=1

[r̃Sci
/Sj+1

][ω̃Sj/B]ωSj+1/Sj


(19)

Note here that the explicit second-order acceleration terms are grouped to the left-hand side in the equation
above, and many terms are already written in a suitable form according to Ref. 10, particularly one that allows
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the use of the system’s center of mass properties. It is useful to define the following mass property terms

msc =

N∑
i=0

mSi (20)

mscc =

N∑
i=0

mSirSci
/B (21)

mscc
′ =

N∑
i=0

mSir
′
Sci

/B (22)

msc[c̃] =

N∑
i=0

mSi [r̃Sci
/B ] (23)

In addition, because it is convenient to have a single summation in the ŝiθ̈i terms, the following property of
double summations is used

N∑
i=1

i∑
j=1

fij =

N∑
i=1

N∑
j=i

fji (24)

Finally, the compact form of the translational equation of motion is given by

mscr̈B/N −msc[c̃]ω̇B/N −
N∑
i=1

 N∑
j=i

mSj [r̃Scj
/Si

]

 ŝiθ̈i = Fext

− 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c

+

N∑
i=1

mSi

 i∑
j=1

[ω̃Sj/Sj−1
]r′Sci

/Sj
−

i−1∑
j=1

[r̃Sci
/Sj+1

][ω̃Sj/B]ωSj+1/Sj


(25)

ROTATIONAL EQUATION OF MOTION

The rotational equation of motion defines the attitude history of the system. Again, the goal is to write it
as presented in Ref. 10, which shows that the generalized rotational equation takes the form

msc[c̃]r̈B/N + [Isc,B ]ω̇B/N +

Neff∑
i=1

NDOF,i∑
j=1

vRot,LHSij
α̈ij = LB − [ω̃B/N ][Isc,B ]ωB/N

− [I ′sc,B ]ωB/N +

Neff∑
i=1

vRot,RHSi
(26)

As before, the explicit second-order terms are moved to the left-hand side. The right-hand side contains
terms using the systems mass properties, which now include the system’s total inertia [Isc,B ] and its B-frame
derivative [Isc,B ]

′, as well as the catch-all term vRot,RHSi
for all other terms.

For the rotational equation of motion, the generalized active force corresponds to the applied torque
F4−6 = LB , where LB is the pure torque applied to the origin of the B frame. The generalized inertia
force is

F ∗
4−6 = −

N∑
i=0

(
mSi

(v
Sci
4−6)

T r̈Sci
/N + (ωSi

4−6)
T
(
[ISi,Sci

]ω̇Si/N + [ω̃Si/N ][ISi,Sci
]ωSi/N

))
(27)
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It is important to note that none of the partial velocities are zero here, which means all terms are accounted
for. To find the angular acceleration of each frame, let us write the first two results

ω̇S1/N = ω̇B/N + ŝ1θ̈1 − [ω̃S1/B]ωB/N (28)

ω̇S2/N = ω̇B/N + ŝ1θ̈1 + ŝ2θ̈2 − [ω̃S2/B]ωB/N − [ω̃S2/S1
]ωS1/B (29)

These results are obtained by applying the transport theorem, which makes use of the fact that ŝi is constant
in both the Si and Si−1 frames. Again, a pattern emerges for the i-th frame

ω̇Si/N = ω̇B/N +

N∑
j=1

ŝj θ̈j − [ω̃Si/B]ωB/N −
i−1∑
j=1

[ω̃Si/Sj
]ωSj/Sj−1

(30)

Kane’s equation F4−6 + F ∗
4−6 = 0 can now be used

LB −
N∑
i=0

mSi
[r̃Sci

/B ]r̈Sci
/N −

N∑
i=0

[ISi,Sci
]ω̇Si/N −

N∑
i=0

[ω̃Si/N ][ISi,Sci
]ωSi/N = 0 (31)

To simplify the equation above, the last term is expanded

N∑
i=0

[ω̃Si/N ][ISi,Sci
]ωSi/N = [ω̃B/N ]

(
N∑
i=0

[ISi,Sci
]

)
ωB/N +

(
N∑
i=0

[ω̃Si/B][ISi,Sci
]

)
ωB/N

+

N∑
i=0

[ω̃Si/N ][ISi,Sci
]ωSi/B

(32)

Moreover, the triple cross product identity a × (b × c) = (a × b) × c + b × (a × c) is used to get the
following equalities

[r̃Sci
/B ][ω̃B/N ][ω̃B/N ][r̃Sci

/B ] = −[ω̃B/N ][r̃Sci
/B ][r̃Sci

/B ][ω̃B/N ] (33)

[r̃Sci
/B ][ω̃B/N ]r′Sci

/B = −[r̃′Sci
/B ][r̃Sci

/B ]ωB/N + [ω̃B/N ][r̃Sci
/B ]r

′
Sci

/B (34)

These are used to group like-terms together and to fit the intended final form of the equation. Expanding the
acceleration terms and plugging these results in Eq. (31) yields

N∑
i=0

mSi
[r̃Sci

/B ]r̈B/N +

N∑
i=0

(
[ISi,Sci

]−mSi
[r̃Sci

/B ][r̃Sci
/B ]
)
ω̇B/N

+

N∑
i=1

i∑
j=1

(
[ISi,Sci

]−mSi
[r̃Sci

/B ][r̃Sci
/Sj

]
)
ŝj θ̈j =

=LB − [ω̃B/N ]

N∑
i=0

(
[ISi,Sci

]−mSi
[r̃Sci

/B ][r̃Sci
/B ]
)
ωB/N

−
N∑
i=0

(
[ω̃Si/B][ISi,Sci

]− [ISi,Sci
][ω̃Si/B]−mSi

(
[r̃Sci

/B ][r̃
′
Sci

/B ] + [r̃′Sci
/B ][r̃Sci

/B ]
))

ωB/N

−
N∑
i=1

[ω̃Si/N ][ISi,Sci
]ωSi/B − [ISi,Sci

]

i−1∑
j=1

[ω̃Si/Sj
]ωSj/Sj−1


−

N∑
i=1

mSi
[r̃Sci

/B ]

(
[ω̃B/N ][r̃Sci

/B ]r
′
Sci

/B +

i∑
j=1

[ω̃Sj/Sj−1
]r′Sci

/Sj

−
i−1∑
j=1

[r̃Sci
/Sj+1

][ω̃Sj/B]ωSj+1/Sj

)

(35)
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Once again, all explicit second-order acceleration terms are grouped on the left-hand side. The following
system inertia definitions are useful

[Isc,B ] =

N∑
i=0

(
[ISi,Sci

]−mSi
[r̃Sci

/B ][r̃Sci
/B ]
)

(36)

[I ′sc,B ] =

N∑
i=0

(
[ω̃Si/B][ISi,Sci

]− [ISi,Sci
][ω̃Si/B]−mSi

(
[r̃Sci

/B ][r̃
′
Sci

/B ] + [r̃′Sci
/B ][r̃Sci

/B ]
))

(37)

The equation of motion above can be simplified to show the compact form of the rotational equation of
motion

msc[c̃]r̈B/N + [Isc,B ]ω̇B/N+

N∑
i=1

 N∑
j=i

(
[ISj ,Scj

]−mSj
[r̃Scj

/B ][r̃Scj
/Si

]
) ŝiθ̈i =

=LB − [ω̃B/N ][Isc,B ]ωB/N − [I ′sc,B ]ωB/N

−
N∑
i=1

[ω̃Si/N ][ISi,Sci
]ωSi/B − [ISi,Sci

]

i−1∑
j=1

[ω̃Si/Sj
]ωSj/Sj−1


−

N∑
i=1

mSi
[r̃Sci

/B ]

(
[ω̃B/N ][r̃Sci

/B ]r
′
Sci

/B +

i∑
j=1

[ω̃Sj/Sj−1
]r′Sci

/Sj

−
i−1∑
j=1

[r̃Sci
/Sj+1

][ω̃Sj/B]ωSj+1/Sj

)

(38)

N-TH SPINNING BODY EQUATION OF MOTION

From Ref. 10, for a single uncoupled degree of freedom, the governing equation of motion takes the form

α̈i = aαi
· r̈B/N + bαi

· ω̇B/N + cαi
(39)

where αi is the state and α̈i the corresponding second-order time derivative. The left-hand side is only taken
by the states’ acceleration, while the right-hand side contains three terms: r̈B/N , ω̇B/N and the last term,
which conglomerates all remaining contributions. The equations are written this way because this result for
the state acceleration is ”backsubstituted” into the translational and rotational equations, which means r̈B/N

and ω̇B/N can be solved for independently of any α̈i. The result is then substituted in Equation 39, and all
states can be numerically propagated forward in time because their accelerations have been explicitly solved.

However, many effectors have multiple coupled degrees of freedom, meaning the equations do not fit into
the form presented in Equation 39. For these cases, it is useful to write the equations in a coupled form using
a mass matrix, as shown below

[Mα]α̈ = [A∗
α]r̈B/N + [B∗

α]ω̇B/N + [C∗
α] (40)

where [Mα] is the mass matrix and α̈ is the stacked vector of states for the effector. In some cases, particularly
when the number of degrees of freedom is small, the matrix equation in Eq. 40 can be analytically solved
for, yielding several equations like Eq. 39. However, this is not always possible and can be tedious, so a
faster option is to invert the mass matrix [Mα]. As with the global mass matrix, this can be computationally
expensive, but it is a viable solution given that this is done for each effector, not the entire system. Using this
approach, the canonical form of equation (40) is given by

α̈ = [Aα]r̈B/N + [Bα]ω̇B/N + [Cα] (41)
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where the new matrices are defined as

[Aα] = [Mα]
−1[A∗

α], [Bα] = [Mα]
−1[B∗

α], [Cα] = [Mα]
−1[C∗

α] (42)

This section aims to find the equation for each row of the matrix equation in Eq. 40. For the n-th equation
of motion, the generalized active force is Fn = un and the generalized inertia force is

F ∗
n = −

N∑
i=n

(
mSi

[v
Sci
n ]T r̈Sci

/N + [ωSi
n ]T

(
[ISi,Sci

]ω̇Si/N + [ω̃Si/N ][ISi,Sci
]ωSi/N

))
(43)

where, using the partial velocity table, [v
Sci
n ] = [r̃Sci

/Sn
]ŝn and [ωSi

n ] = ŝn.

Kane’s equation Fn + F ∗
n = 0 is used to get

ŝTn

N∑
i=n

i∑
j=1

(
[ISi,Sci

]−mSi
[r̃Sci

/Sn
][r̃Sci

/Sj
]
)
ŝj θ̈j = un

−ŝTn

N∑
i=n

mSi
[r̃Sci

/Sn
]r̈B/N − ŝTn

N∑
i=n

(
[ISi,Sci

]−mSi
[r̃Sci

/Sn
][r̃Sci

/B ]
)
ω̇B/N

−ŝTn

N∑
i=n

[ω̃Si/N ][ISi,Sci
]ωSi/N − [ISi,Sci

][ω̃Si/B]ωB/N −
i−1∑
j=1

[ω̃Si/Sj
]ωSj/Sj−1


−ŝTn

N∑
i=n

mSi
[r̃Sci

/Sn
]
(
[ω̃B/N ][ω̃B/N ]rSci

/B + 2[ω̃B/N ]r′Sci
/B

+

i∑
j=1

[ω̃Sj/Sj−1
]r′Sci

/Sj
−

i−1∑
j=1

[r̃Sci
/Sj+1

][ω̃Sj/B]ωSj+1/Sj

)

(44)

Notice how the state acceleration is moved to the left while all other terms are on the right. Moreover, the
r̈B/N and ω̇B/N are explicitly written, and every other term consists of additional contributions that do not
explicitly depend on state accelerations. As usual, it is convenient to rewrite the double summation in ŝj θ̈j
using Eq. 24, which yields the alternative form

ŝTn

n∑
i=1

 N∑
j=n

(
[ISj ,Scj

]−mSj
[r̃Scj

/Sn
][r̃Scj

/Si
]
) ŝiθ̈i

+ŝTn

N∑
i=n+1

 N∑
j=i

(
[ISj ,Scj

]−mSj
[r̃Scj

/Sn
][r̃Scj

/Si
]
) ŝiθ̈i = un

−ŝTn

N∑
i=n

mSi
[r̃Sci

/Sn
]r̈B/N − ŝTn

N∑
i=n

(
[ISi,Sci

]−mSi
[r̃Sci

/Sn
][r̃Sci

/B ]
)
ω̇B/N

−ŝTn

N∑
i=n

[ω̃Si/N ][ISi,Sci
]ωSi/N − [ISi,Sci

][ω̃Si/B]ωB/N − [ISi,Sci
]

i−1∑
j=1

[ω̃Si/Sj
]ωSj/Sj−1


−ŝTn

N∑
i=n

mSi
[r̃Sci

/Sn
]
(
[ω̃B/N ][ω̃B/N ]rSci

/B + 2[ω̃B/N ]r′Sci
/B

+

i∑
j=1

[ω̃Sj/Sj−1
]r′Sci

/Sj
−

i−1∑
j=1

[r̃Sci
/Sj+1

][ω̃Sj/B]ωSj+1/Sj

)

(45)
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BACKSUBSTITUTION FORMULATION

The backsubstitution method requires taking Equation 40 and plugging the result into Equations 12 and 26,
which removes the explicit dependency of the effector second-order state derivatives from the translational
and rotational equations. The result is a 6x6 system of equations in r̈B/N and ω̇B/N given by

[A] [B]

[C] [D]


 r̈B/N

ω̇B/N

 =

vTrans

vRot

 (46)

Here, vTrans and vRot correspond to all the terms that do not explicitly depend on any second-order time
derivatives in the translational and rotational equations of motion, respectively. As discussed in Ref. 10, this
system of 6 equations is solved using the Schur complement matrix formulation for the partitioned form of
the hub system mass matrix:

ω̇B/N =
(
[D]− [C][A]−1[B]

)−1

(vRot − [C][A]−1vTrans) (47)

r̈B/N = [A]−1(vTrans − [B]ω̇B/N ) (48)

Let us define each term introduced in the equations above for the problem at hand. First, the terms in
Equation 40 are defined. The element of the mass matrix in the n-th row and i-th column is defined as

Mαn,i =


ŝTn

N∑
j=n

(
[ISj ,Scj

]−mSj
[r̃Scj

/Sn
][r̃Scj

/Si
]
)
ŝi, i ≤ n

ŝTn

N∑
j=i

(
[ISj ,Scj

]−mSj
[r̃Scj

/Sn
][r̃Scj

/Si
]
)
ŝi, i > n

(49)

The other terms are defined n-th row-wise as

A∗
αn

= −ŝTn

N∑
i=n

mSi [r̃Sci
/Sn

] (50)

B∗
αn

= −ŝTn

N∑
i=n

(
[ISi,Sci

]−mSi [r̃Sci
/Sn

][r̃Sci
/B ]
)

(51)

C∗
αn

= un − ŝTn

N∑
i=n

(
[ω̃Si/N ][ISi,Sci

]ωSi/N − [ISi,Sci
][ω̃Si/B]ωB/N

−[ISi,Sci
]

i−1∑
j=1

[ω̃Si/Sj
]ωSj/Sj−1

+mSi
[r̃Sci

/Sn
]
(
[ω̃B/N ][ω̃B/N ]rSci

/B

+2[ω̃B/N ]r′Sci
/B +

i∑
j=1

[ω̃Sj/Sj−1
]r′Sci

/Sj
−

i−1∑
j=1

[r̃Sci
/Sj+1

][ω̃Sj/B]ωSj+1/Sj

))
(52)

With the effector equation terms defined, the terms for solving the translational and rotation acceleration
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can be found. The matrices for this problem are given by

[A] = msc[I3×3]−
N∑
i=1

 N∑
j=i

mSj
[r̃Scj

/Si
]

 ŝiAαi
(53)

[B] = −msc [̃c]−
N∑
i=1

 N∑
j=i

mSj
[r̃Scj

/Si
]

 ŝiBαi
(54)

[C] = msc [̃c] +
N∑
i=1

 N∑
j=i

(
[ISj ,Scj

]−mSj
[r̃Scj

/B ][r̃Scj
/Si

]
) ŝiAαi

(55)

[D] = [Isc,B ] +

N∑
i=1

 N∑
j=i

(
[ISj ,Scj

]−mSj
[r̃Scj

/B ][r̃Scj
/Si

]
) ŝiBαi

(56)

Notice how the Aαi
and Bαi

terms are used instead of A∗
αi

and B∗
αi

. The latter are defined directly from each
spinning body equation but cannot be used directly. The effector mass matrix must be inverted, resulting in
the former terms that cannot be defined analytically. The additional translational and rotational contributions
are

vTrans = Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c

+

N∑
i=1

mSi

 i∑
j=1

[ω̃Sj/Sj−1
]r′Sci

/Sj
−

i−1∑
j=1

[r̃Sci
/Sj+1

][ω̃Sj/B]ωSj+1/Sj


+

N∑
i=1

 N∑
j=i

mSj
[r̃Scj

/Si
]

 ŝiCαi

(57)

vRot = LB − [ω̃B/N ][Isc,B ]ωB/N − [I ′sc,B ]ωB/N

−
N∑
i=1

[ω̃Si/N ][ISi,Sci
]ωSi/B − [ISi,Sci

]

i−1∑
j=1

[ω̃Si/Sj
]ωSj/Sj−1


−

N∑
i=1

mSi
[r̃Sci

/B ]

(
[ω̃B/N ][r̃Sci

/B ]r
′
Sci

/B +

i∑
j=1

[ω̃Sj/Sj−1
]r′Sci

/Sj

−
i−1∑
j=1

[r̃Sci
/Sj+1

][ω̃Sj/B]ωSj+1/Sj

)

−
N∑
i=1

 N∑
j=1

(
[ISj ,Scj

]−mSj [r̃Scj
/B ][r̃Scj

/Si
]
) ŝiCαi

(58)

VERIFICATION

A fundamental step in any simulation concerns the verification of the equations developed. Since the equa-
tions of motion represent a physical system, conservation laws can be used to verify that both the software
implementation and the underlying equations are correct. This is impossible if some cross-coupling terms,
even the smaller ones, are removed. In particular, the principles of energy and angular momentum conserva-
tion can be used to verify that the model behaves according to physical laws. In an environment where only
conservative forces and torques are present, the energy and angular momentum of the entire system must be
conserved. In other words, the energy (a scalar) and the angular momentum, expressed in the inertial frame
N , (a vector), must not change throughout the simulation. Furthermore, energy and angular momentum
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can be separated into their orbital and rotational contributions, which must remain constant. This separation
is done due to their large order of magnitude difference; the orbital part tends to be much greater than the
rotational part. Not separating the two contributions could result in minor errors in one of the rotational
components not being caught, as the orbital term overshadows the result.

In line with the back-substitution method, the energy and angular momentum equations are written to
separate the hub and center of mass properties from the specific effector contributions. Here, only the effector
contributions to the rotational terms are shown; see Ref. 10 for details on the full equations. The contribution
to the rotational energy is

Trot =

N∑
i=1

(
1

2
ωSi/N · [ISi,Sci

]ωSi/N +
1

2
mSi

ṙSci
/B · ṙSci

/B

)
(59)

while the contribution to the rotational angular momentum is

Hrot,C =

N∑
i=1

(
[ISi,Sci

]ωSi/N +mSi
rSci

/B × ṙSci
/B

)
(60)

The conservation laws are verified by a simulation that includes the effectors modeled in this paper. The
energy and angular momentum at each timestep are compared to their values at t = 0. This comparison
is done by taking the difference between the two values and dividing it by the initial value, which yields a
relative difference. Due to the finite number of bits in computers, the relative difference is never zero, but
rather very close to machine precision, on the order of 10−15. Moreover, the relative difference does not stay
completely constant. Instead, it presents as a random walk, common when using fixed timestep integrators.
See Ref. 12, 14 for example figures.

CONCLUSION

It is clear that space vehicles are becoming more complex, and it is more important than ever that extensive
simulation work is done before the mission launches. Many spacecraft have a rigid hub with attached ap-
pendages, many of them comprised of rotating rigid bodies. While these include simple devices like reaction
wheels and single-hinged panels, interest has been growing in multi-link robotic arms in recent years. These
effectors are useful in servicing missions, but they are hard to model correctly, which this paper achieves in a
general way.

The equations of motion of components with N degrees of freedom are thoroughly derived, including the
system’s translational and rotational equations and an equation for each additional degree of freedom. The
derivation is done using the backsubstitution method, which creates a modular formulation to propagate the
motion equations that prevent inverting large mass matrices.

Future work includes implementing these equations into software and validating the results using energy
and momentum verifications.
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