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Abstract

A Coulomb structure is a cluster of satellites that can maintain or change its shape
through inter-vehicle electrostatic forces generated by on-board charge control de-
vices. This paper investigates the charged dynamics of a linear 3-craft cluster. The
1D-restricted control of a three-body coulomb structure is developed. This control
can be used to stabilize the motion of charged spheres on a 1D hover test track. A
feedback control law based on Lyapunov stability analysis is developed to control the
relative distances between the satellites. Exploiting the null space of the input-output
relationship, a minimal-charge routine is developed guaranteeing that the final con-
trol strategy is implementable with real charges at all times. Numerical simulations
illustrate the performance, and also demonstrate that by slightly releasing the criteria
for the search routine to switch between two eligible intervals, the system can avoid
chatter in the charge time histories, and thus can reduce the power expense and the
burden on the hardware.

Introduction

King et al. [1] originally discussed the novel method of exploiting Coulomb forces
for formation flying in 2002. Since then, many papers have been published in this
area. Coulomb forces are used to control a tight formation up to 100 meters. Elec-
trostatic force fields are generated to control the formation’s shape and size. There
are some other promising techniques in close formation flying such as the Electric
Propulsion(EP) [1] and Electro-Magnetic Formation Flying(EMFF) [2]. EP systems
generate forces by expelling ionic plumes. The ionic plumes can disturb the motions
of nearby spacecraft, and the intensive and caustic charge plumes are also threatening
to sensitive instruments. The EMFF method controls relative separation and attitude
of the formation by creating electromagnetic dipoles on each spacecraft in concert
with reaction wheels. In contrast to EP method, the Coulomb formation flying tech-
nique has no exhausting plume contamination issues. The Coulomb force field is also
simpler to model than electromagnetic force field, and the strength does not drop off
as fast as electromagnetic force field. Coulomb force is also practically promising in
that the required forces can be created with milliwatts of power and can be controlled
on a millisecond time scale [3]. In addition, Coulomb force control is 3-5 orders of



magnitude more fuel-efficient than EP [1]. This is an essential advantage in long-term
space missions.

Many practical problems in Coulomb formation flying have been investigated. Hyun-
sik Joe et al. introduced a formation coordinate frame which tracked the principal
axes of the formation in [4]. Gordon G. Parker et al. presented a sequential control
strategy for arranging N charged bodies into an arbitary geometry using N +3 partici-
pating bodies in [5]. The paper overcame two challenging problems of Coulomb force
control: the Coulomb force coupling and unimplementable control solutions arising
from the square force nonlinearity. First order differential orbit element constraints
for Coulomb formation are studied in [6]. Arun Natarajan et al. developed a charge
feedback law to stabilize the relative distance between two satellites of a Coulomb
tether formation in [7]. By exploiting the gravity gradient torque, the attitude of the
Coulomb tether formation can also be stabilized.

This paper discusses another application of Coulomb force formation, Coulomb vir-
tual structures. A Coulomb structure is a virtual structure composed of several space-
craft. It controls its shape and size by utilizing the inter-spacecraft electrostatic forces.
This virtual structure control can be used in large scale distributed spacecraft con-
cepts. As a fundamental study of a simple Coulomb structure, the paper considers
a 1D Coulomb structure consisting of three spacecraft. Based on Lyapunov stability
analysis, a control law is introduced to generate the charge products to stabilize the
separation distances. As a general problem in Coulomb formation flying, the charge
products are not guaranteed to produce real charges at all times. Sometimes imag-
inary values of charges are obtained from the basic control law. An optimal search
routine is of interest to reach a solution that not only guarantees implementability, but
also can minimize the spacecraft charges in stabilizing the formation to a rigid virtual
structure. Numerical simulations show the resulting performance of the 1D 3-craft
Coulomb structure control system.

Coulomb structure dynamics

Let the Coulomb structure consist of 3 bodies with masses mi, and they are restricted
to move in one-dimension only. The inertial positions of the three bodies are given
through their inertial coordinates xi. The charges qi always appear in pairs qiq j both in
the dynamic functions and in the control formulation. Charge products are introduced
as

Qi j = qiq j (1)

This approach quickly leads to the problem of physical feasibility in extracting indi-
vidual charges qi which is addressed in the later sections. Without loss of generality,
assume that x1 < x2 < x3. The equations of motion of the charged bodies are given



through

m1ẍ1 = kc

[
− Q12

(x2− x1)2 −
Q13

(x3− x1)2

]
(2)

m2ẍ2 = kc

[
Q12

(x2− x1)2 −
Q23

(x3− x2)2

]
(3)

m3ẍ3 = kc

[
Q13

(x3− x1)2 +
Q23

(x3− x2)2

]
(4)

where kc = 8.99×109C−2 ·N ·m2 is the Coulomb’s constant. A charge feedback law
is required to control the relative motion of the three-body Coulomb structure and
make the formation assume a specific shape.
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Figure 1: Illustration of positions and coordinates of the 3-body system.

Control strategy

Not all of the inertial xi states can be controlled independently. Because the spacecraft
charges produce formation internal forces, the momentum of the Coulomb cluster
must be conserved if there are no other external forces acting on it. As a result it is
not possible to completely control the three inertial coordinates xi. For the 1D motion
considered in this paper, the momentum conservation imposes one constraint on the
system. Thus, the motion of the three-body system only has two degrees of freedom.
To control the shape of the 1D-restricted 3-craft Coulomb structure, it is equivalent
to control the two relative distances:

δx12 = x2− x1, δx23 = x3− x2 (5)

Here the third distance δx13 is determined by δx12 and δx23. The goal of the feed-
back control law is to drive [δx12,δx23]T to desired values [δx∗12,δx∗23]

T that yield a
specific virtual structure shape. Note that these two relative position coordinates are
independent coordinates. The holonomic constraint due to momentum conservation
has already been incorporated into the relative motion coordinate choice.



Control law based on Lyaponov stability

For notational convenience the vector ξξξ = [a,b,c]T is introduced and defined as

a =
kcQ12

(x2− x1)2 , b =
kcQ23

(x3− x2)2 , c =
kcQ13

(x3− x1)2 (6)

Using Equation 2− 4 and 6, the equations of motion of the relative position coordi-
nates are given by

δẍ12 = ẍ2− ẍ1 =
(

1
m1

+
1

m2

)
a− 1

m2
b+

1
m1

c (7)

δẍ23 = ẍ3− ẍ2 =− 1
m2

a+
(

1
m2

+
1

m3

)
b+

1
m3

c (8)

Define the state vector X to be the relative motion tracking error

X =
[

∆x12
∆x23

]
=

[
δx12−δx∗12
δx23−δx∗23

]
(9)

Assuming that the desired relative position coordinates are constants, the tracking
error dynamics is expressed using X as

Ẍ =

[
1

m1
+ 1

m2
− 1

m2
1

m1
− 1

m2
1

m2
+ 1

m3
1

m3

]
︸ ︷︷ ︸

[A]

ξξξ (10)

Define the following Lyapunov function in terms of X:

V (X) =
1
2

XT [K]X+
1
2

ẊT Ẋ (11)

where [K] is a symmetric, positive definite gain matrix. Next, the derivative of V is
set to be equal to a negative definite function

V̇ = ẊT [K]X+ ẊT Ẍ =−ẊT [P]Ẋ (12)

where [P] is a symmetric, positive definite velocity feedback gain matrix. Thus, the
stabilizing control law must satisfy

[A]ξξξ+[K]X+[P]Ẋ = 0 (13)

Note that [A] is a 2×3 real-valued matrix, so there is an infinity of solutions of ξξξ that
satisfy this equation. Here the minimum norm inverse is chosen (which will minimize
the norm of the ξξξ vector), and yields

ξ̂ξξ = [A]T
(
[A][A]T

)−1 (
−[K]X− [P]Ẋ

)
(14)



Note that ξ̂ξξ is not the only solution to ξξξ, and it doesn’t minimize the spacecraft charges
qi, but rather the ξξξ vector. Substituting Equation 6 into Equation 10, yields

Ẍ+[P]Ẋ+[K]X = 0 (15)

Equation 15 shows that the closed-loop dynamics is in a linear form with proportional
position and rate feedback.

From the definition of ξξξ in Equation 6, individual qi values can be calculated through

q1 =
√

ac
bkc

|δx12||δx13|
|δx23|

(16)

q2 = sign(bc)

√
ab
ckc

|δx12||δx23|
|δx13|

(17)

q3 = sign(c)

√
bc
akc

|δx23||δx13|
|δx12|

(18)

Notice that the singularity problem occurs when some elements of ξ̂ξξ are equal to
zero. Because ξ̂ξξ is physically determined by charges, there are two possible cases for
elements of ξ̂ξξ to be equal to zero. The first is that two elements of ξ̂ξξ equal zero, the
other is ξ̂ξξ = 0. The first case can be avoided by performing a search routine in the null
space of [A] matrix which will be discussed in the following sections. The second case
indicates that q1 = q2 = q3 = 0, this state occurs only either when ∆x = 0 and ∆ẋ = 0,
which means the system has reached the desired state, or due to (−[K]X− [P]Ẋ)
being zero temporally.

Now consider general cases where a ·b ·c 6= 0. Note that a ·b ·c < 0 yields imaginary
values of qi. But charges must always be real numbers, so a ·b ·c < 0 is not an imple-
mentable solution. This is a fundamental issue with developing any charge feedback
law. If the constrained inertial positions xi are controlled instead of the unconstrained
relative position coordinates δxi j, this approach would be at a road block. However,
note that the particular ξ̂ξξ value is obtained by looking for a minimum norm solutions
to this vector in Equation 14. However, there is an infinity of solutions that satisfy
Equation 13 Using the null space of [A], all possible ξξξ values are parameterized as

ξξξ =

a
b
c

 =

â
b̂
ĉ

+ γ

−1
−1

1

 (19)

The control problem is rewritten to find a parameter γ that satisfies

f (γ) = a ·b · c = (â− γ)(b̂− γ)(ĉ+ γ) > 0 (20)

This inequality constraint guarantees that the charges qi are real, and also ensures that
the temporal singularity case a ·b · c = 0 does not occur.



Optimal search routine

Any choice of γ in Equation 19 provides the required stabilizing charging behav-
ior, but sometimes the solution is not implementable. A parameter γ that satisfies
the inequality in Equation 20 makes the solution physically implementable with real
charge qi solutions. In fact, note that the null space of the input matrix [A] can be
used to charge up the vehicles and not cause any relative motion to occur. The ξ̂ξξ vec-
tor is found such that the norm of the vector ξξξ is minimized. However, this doesn’t
correspond to a more logical optimal solution where the spacecraft charges qi are
minimized. Define a charge cost function J(γ) as

J(γ) =
3

∑
i=1

q2
i (21)

The optimal solution ξξξ that minimizes spacecraft charges qi corresponds to the op-
timal γm that satisfies the inequality constraint in Equation 20, and at the same time
minimizes the charge cost function J(γ).

Consider the constraint inequality in Equation 20, where (â, b̂, ĉ) are given by Equa-
tion 14. There are three real roots for the equation f (γ) = 0, and the roots are just
(â, b̂,−ĉ). Rearrange the roots in descent order and denote as (γ1,γ2,γ3), where
γ1 ≥ γ2 ≥ γ3. The solution to the constraint in Equation 20 turns out to be γ > γ1
or γ3 < γ < γ2. If γ2 = γ3, then the solution is simply γ > γ1. Figure 2(a) shows a
numerical example of f (γ) and (γ1,γ2,γ3).
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(a) f (γ) and (γ1,γ2,γ3).
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Figure 2: A sample shows γm search.

Thus the optimization problem can be formulated as follows: search the optimal γm
of the charge cost function J(γ) within two open intervals (γ1,∞) and (γ3,γ2). The
search routine using secant method is shown in Figure 3.

Once γm is obtained, an implementable solution that minimizes the norm of the charge
vector (q1,q2,q3) is also reached. Figure 2(b) shows an example of the search result
at one instant, where γm1 and γm2 are two local optimal points.
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Figure 3: Illustration of γm search routine.

Notice that generally there are two eligible intervals in the search routine. Sometimes
this may introduce chatter because γm switchs between γm1 and γm2 when J(γm1) and
J(γm2) are very close. To reduce the chatter of the charge history, one approach is to
change the criteria for γm to switch between the two intervals. If γm(i) = γm1(i), then
γm(i+1) = γm2(i+1) if and only if J(γm2) < α ·J(γm1), where 0 < α ≤ 1. Following
numerical simulations will show results of this trade off.

Numerical simulations

The charging control law is determined by first computing ξ̂ξξ using Equation 6, then
searching the optimal γm to calculate (a,b,c). Individual charges qi are determined
using Equations 16−18. The solution is physically implementable at all times and
has the minimal charge cost at each step when α = 1. Figure 4 shows the simulation
results with parameters m1 = m2 = m3 = 1kg, α = 1, δx∗12 = 2m, δx∗23 = 2m, and
initial states X(0) = [−1,3,7]T m, Ẋ(0) = 0m/s. The gain matrices of the controller
are

[K] = 0.01 ·diag(1,1), [P] = 0.12 ·diag(1,1) (22)

Figure 5 shows simulation results under the same conditions as in Figure 4 except
that α = 0.7. It can be seen that comparing with the charge history in Figure 4 the
chatter effect has been greatly reduced in Figure 5.

Conclusion

A three-body 1D Coulomb structure control strategy is presented in this paper. The
purpose of the controller is to maintain a fixed shape of the 1D Coulomb structure by
controlling the distances of the charged particles. Lyaponov stability analysis is used
in developing the basic control law to derive charge products. But real charges cannot
always be extracted from these charge products. A search routine in the null space of
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Figure 4: Illustration of the control effect with α = 1.
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Figure 5: Illustration of the control effect with α = 0.7.



the input matrix is designed to find the optimal solution that minimizes the norm of
the charge vector and makes the solution implementable. Chatter may arise because
of the high-frequency switching of the optimal point between two eligible intervals.
Simulations show that this phenomenon can be reduced by softerning the criteria for
the switching.
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