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Abstract

A Kalman filter is presented for a micro-robotic vehicle which is propelled by
two tracks. The vehicle may be equipped with either GPS, compass head-
ing sensor, heading sensor to a non-directional beacon, or any combination
thereof. Of particular interest is what effect track slippage will have on the
internal position and heading estimates.



1 Introduction

A Kalman filter is developed for a planar Mobile Robotic Vehicle (MRV).
This vehicle is assumed to be propelled by two tracks on either side of the
chassis. The tracks speed are measured by odometers and fed back to the
state estimator to forward propagate the internal state estimates. Since the
vehicle is to operate over unprepared ground (sand, rocks, gravel, etc.), it
must be assumed that the tracks will slip from time to time. This track
slippage will corrupt the internal state estimates.

The MRV’s are further assumed to have either GPS, compass heading
or Non-Directional Beacon (NDB) sensors. The question is whether it is
beneficial to implement a Kalman filter in the presence of track slippage,
or if it’s performance is no better than using the raw GPS and compass
heading sensor data.

A sample MRV with its two tracks is illustrated in Figure 1. The origin of
the coordinate system is assumed to be the MRV target. The MRV heading
is given by the angle θ. The range to target is denoted by r and the relative
heading is φ.
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Figure 1: Illustration of the Miniature Robot Crawler

Let p = (x, y, θ)T be the state vector of the MRV, then the equations of
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motion are given by1

ṗ = B(p)ω =
1

2





Rr cos θ Rl cos θ
Rr sin θ Rl sin θ

2 Rr

Rw
−2 Rl

Rw





[
ωr

ωl

]

= f(p, ω) (1)

where ω = (ωr, ωl)
T , Rr and Rl are the right and left track radii and Rw

is the distance between the two tracks. The MRV rotates by having each
track operate at different speeds. Note that a MRV cannot slip sideways.
For it to move purely to the right, it must change its heading first and then
propel itself forward.

2 Kalman Filter Outline

2.1 Linearized Equations of Motion

A Kalman filter for a MRV is outlined in this section. Since the position and
heading sensor updates typically occur at a low frequency, it is necessary to
estimate the states between these sensor updates to calculate the current
control input. Between these sensor updates it is assumed that the track
angular velocities are sampled at a high frequency. The measured track
angular velocities ωm will contain some white noise w which is assumed to
have a standard deviation of σω. The true track angular velocity is given as

ω(t) = ωm(t) − w(t) (2)

The following extended Kalman estimator provides current state estimates
and is able to filter out some measurement noise by optimal weighting of
the sensor information based upon forward propagating the state covariance
matrix.2 With the following formulas, a subscript indicates the number of
data sets that were used to find its estimate. A superscript indicates the
time step of the state estimate. Let p̂k

k be the current state estimate at
time step k. Until the next sensor update is available at time k + 1, the
state estimates are then forward integrated using the nonlinear equations of
motion in Eq. (1), this process is indicated formally as

p̂k+
k = p̂k

k +

∫ k+

k

ṗdt (3)

The notation pk+ indicates the state p at time k+, where k < k+ < k +
1. To be able to forward propagate the state covariance estimate derived
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from measurement error covariances, the linearized dynamics about some
reference states pref and ωref are required.

ṗref = f(pref , ωref ) (4)

Taking the first Taylor expansion of Eq. (1) about the reference motion we
obtain

ṗ ≈ f(pref , ωref ) +
∂f(p, ω)

∂p

∣
∣
∣
∣
ref

(p − pref ) +
∂f(p, ω)

∂ω

∣
∣
∣
∣
ref

(ω − ωref ) + · · ·

(5)

After subtracting Eq. (4) from (5) we obtain

δṗ =
∂f(p, ω)

∂p

∣
∣
∣
∣
ref

δp +
∂f(p, ω)

∂ω

∣
∣
∣
∣
ref

δω (6)

where δp = p − pref and δω = ω − ωref . For linearization of the dynamics,
the reference states are set equal to the best present estimates. Therefore
pref = pk+

k and ωref = ωm. Using Eq. (2) the vector δω is clearly −w and
is the driving process noise of the linearized system. The linearized system
can now be written as

δṗ = F (pk+
k , ωm)δp + G(pk+

k )δω (7)

where the matrices F and G are defined as

F = F (pk+
k , ωm) =

∂f(p, ω)

∂p

∣
∣
∣
∣
(pk+

k
,ωm)

=
1

2





0 0 −(Rrωr + Rlωl) sin θ
0 0 (Rrωr + Rlωl) cos θ
0 0 0





(8)

G = G(pk+
k , ωm) =

∂f(p, ω)

∂ω

∣
∣
∣
∣
(pk+

k
,ωm)

=
1

2





Rr cos(θ) Rl cos(θ)
Rr sin(θ) Rl sin(θ)
2Rr/Rw −2Rl/Rw



 (9)

From here on we will only use the short hand notation F and G where their
dependence on p and ω is understood implicitly.
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2.2 Covariance Matrices

Let the 3× 3 matrix P k
k be the state covariance matrix at time step k. This

covariance matrix provides a measure of how uncertain the current state
estimates are. A high entry in P indicates a high uncertainty of the current
state estimate. Let Q be the covariance matrix associated with the driving
process noise w and the 2 × 1 vector σw be the standard deviation of the
process noise. The 2 × 2 matrix Q is then defined as

Q =

[
σ2

w1
0

0 σ2
w2

]

(10)

Without including the effect of process noise, the covariance matrix P would
eventually tend to zero. This means that only the previous measurements
will be trusted and future updates are ignored. If this occurs, then any
remaining errors in the state estimates are retained and forward propagated
using the ω measurements. Including the covariance matrix Q allows the
estimator to be tuned such that P never will go to zero. Past measurements
are never perfectly trusted and it is now assumed that the ω measurements
also contain measurement noise. In between sensor updates, the covariance
matrix P is updated using

P k+
k = P k

k +

∫ k+

k

Ṗ dt (11)

where the covariance matrix derivative is given as the inhomogeneous Lya-
punov equation3

Ṗ = FP + PF T + GQGT (12)

Standard literature on continuous covariance propagation includes an extra
“learning” term in the above equation, resulting in the Riccati equation.

Ṗ = FP + PF T
− PHT Λ−1

vv HP + GQGT

This term would “decrease” the covariance matrix if the sensor output were
sampled continuously. However, the sensor output is only sampled at dis-
crete times and not “continuously” like the track angular velocities. There-
fore this term is dropped here since no sensor based learning occurs between
the times k and k + 1. Once a new sensor measurement is available, the
covariance matrix P is also updated along with the state vector.
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Since the F and G matrices for the MRVs contain large blocks of zeros,
the calculation of Ṗ can be simplified. Let the P matrix be partitioned as

P =

[
P11 P12

P T
12 P22

]

(13)

where P11 is a 2 × 2 matrix, P12 is a 2 × 1 matrix and P22 is a scalar. The
matrix F is partitioned as

F = F (p, ωm) =

[
0 F12

0 0

]

(14)

where the 2 × 1 matrix F12 is defined as

F12 =
1

2

[
−(Rrωmr + Rlωml

) sin θ
(Rrωmr + Rlωml

) cos θ

]

(15)

The matrix G is written as

G = G(p) =

[
G1

G2

]

(16)

with the 2 × 2 matrix G1 being

G1 =
1

2

[
Rr cos(θ) Rl cos(θ)
Rr sin(θ) Rl sin(θ)

]

(17)

and the 2 × 1 matrix G2 being

G2 =
[

Rr

Rw
−

Rl

Rw

]

(18)

Using these definitions, the time derivatives of the P matrix partitions are
expressed as

Ṗ11 = P12F
T
12 + F12P

T
12 + G1QGT

1 (19a)

Ṗ12 = F12P22 + G1QGT
2 (19b)

Ṗ22 = G2QGT
2 (19c)

2.3 Sensor Updates

Let Ŷ k+1 be the estimated output vector of the sensors at time k + 1. It is
defined as

Ŷ k+1 = h(p̂k+1
k ) (20)
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The generally nonlinear function h(pk+1
k ) maps the current state estimate

into a best prediction of the observation vector. The measured sensor output
vector Ỹ k+1 at time k + 1 given in terms of the true state vector pk+1 is

Ỹ k+1 = h(pk+1) + v (21)

where the vector v is the gaussian measurement noise with standard devi-
ation σv. The covariance matrix associated with the measurement noise,
assuming no correlation of measurement errors, is

Λvv =






σ2
v1

0 · · ·

0 σ2
v2

· · ·

...
...

. . .




 (22)

Assume that at time k+1 a new sensor update Ỹ k+1 is available. The current
state estimate p̂k+1

k is updated to incorporate the new sensor measurement
through the extended Kalman filter recursion2

p̂k+1
k+1 = p̂k+1

k + Kk+1
(

Ỹ k+1
− Ŷ k+1

)

(23)

The matrix Kk+1 is the optimal Kalman gain matrix which is found through

Kk+1 = P k+1
k HT

(

Λvv + HP k+1
k HT

)
−1

(24)

where H is defined as

H =
∂h

∂p

(

pk+1
k

)

(25)

The state covariance matrix P is updated to reflect the presence of a new
sensor measurement through

P k+1
k+1 =

(

I − Kk+1H
)

P k+1
k (26)

If H is a n × m matrix, where n is the number of sensor observations
and m is the number of states (3 for the MRVs), then the matrix inverse
required in Eq. (24) is of order n. Because the sensor updates typically arrive
at different frequencies, this number n can vary from update to update.
Implementing the sensor update algorithm directly in this manner would
require performing matrix inverses for various matrix sizes, depending on
the combination of sensors providing an update the the current time step.
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Also, the order n of the matrix inverse can quickly grow, slowing down the
numerical arithmetic.

Due to the linear nature of the Kalman filter, we are able to invoke the
superposition principle and incorporate the various sensor updates in a se-

quential manner, rather than in a bulk approach. Flags are added to the
program structure that signal that a particular sensor has a new observa-
tion vector for the current time step. At a given time step, these various
observation vectors are then processed individually one at a time using the
algorithms in Eq. (23) through Eq. (26). This sequential approach allows
for a more flexible program structure that can incorporate different update
frequencies very easily. Also, the order of the matrix inverses involved is
kept very small. Since most sensor observation return scalar quantities, the
inverse in Eq. (24) typically simply requires a scalar inverse.

3 Observation Vectors

This section provides the mapping between the state and the observation
vectors for various sensor types. Due to the sequential nature of the Kalman
filter used, the sensor updates are processed individually and at different
update frequencies if needed. The linearized mapping matrix H is also
provided for each sensor type.

3.1 GPS Sensor

The GPS sensor is assumed to provide planar (x, y) coordinates of the MRV,
where the GPS coordinate frame is assumed to be the same as the one used
by the MRV. Therefore the corresponding 2 × 1 observation vector Ŷ k+1

GPS is
simply given by the linear relationship

Ŷ k+1
GPS = hGPS(pk+1) =

[
1 0 0
0 1 0

]

︸ ︷︷ ︸

HGPS

pk+1
k (27)

The 2×3 matrix HGPS for the GPS sensor is defined in the above expression.

3.2 Compass Heading Sensor

The compass heading sensor returns the orientation angle θ of the MRV
relative to the north pole axis. For the given coordinate system, this is the
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x-axis. The 1 × 1 observation vector Ŷ k+1
Compass is given by

Ŷ k+1
Compass = hCompass(p

k+1) =
[
0 0 1

]

︸ ︷︷ ︸

HCompass

pk+1
k (28)

The 1 × 3 matrix HCompass for the GPS sensor is defined in the above
expression.

3.3 Range Sensor

The Range sensor is assumed to provide a scalar distance measurement of
the MRV relative to a stationary object with a known location (X,Y ). This
object could be the target itself or a beacon along the path to the target.
Given the planar MRV location (x, y), the distance d between the MRV and
this object is

d(x, y) =
√

(x − X)2 + (y − Y )2 (29)

The 1 × 1 observation vector Ŷ k+1
Range is then given by

Ŷ k+1
Range = hRange(p

k+1) = d(x, y) =
√

(x − X)2 + (y − Y )2 (30)

The linear mapping HRange is then found to be

HRange =
∂hRange

∂p
(pk+1

k ) =
[

x−X
d

y−Y
d

0
]

(31)

3.4 Heading Sensor

Assume an object is located at a known location with coordinates (X,Y )
and is transmitting a radio frequency (RF) signal (such as a radio station).
The heading sensor will sense the relative orientation of the MRV relative to
the line of sight vector to this RF sender. In essence, this RF source acts like
an “artificial north pole” and provides an alternative heading information
to triangulate the MRV location. In aviation, such RF sources are referred
to Non-Directional Beacons (NDBs). The geometry of a MRV-NDB layout
is shown in Figure 2.

The heading of the line of sight vector of the MRV to the NDB relative
to the north pole direction (x-axis in this discussion) is expressed through
the angle γ. The relative orientation of the MRV relative to this line of sight
vector is labelled as β.

β(x, y, θ) = θ − tan−1

(
Y − y

X − x

)

(32)
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MRV

(X,Y)

(x,y)

β

γθ

x
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Figure 2: MRV-NDB Layout Geometry

Note that the β angle contains both information about the MRV heading
angle θ and the MRV location coordinates (x, y). The scalar observation
vector Ŷ k+1

Heading is given by

Ŷ k+1
Heading = hHeading(p

k+1) = β = θ − tan−1

(
Y − y

X − x

)

(33)

The linear mapping HHeading is then found to be

HHeading =
[

−
Y −y
d2

X−x
d2 1

]
(34)

where d(x, y) is defined in Eq. (29).

4 Track Slippage Modeling

The odometers on the two MRV tracks provides an indirect velocity feedback
of the vehicle motion. However, because the tracks may slip from time to
time, this feedback can be very unreliable at times and will corrupt the
internal state forward propagation.

To model track slippage in the numerical simulations of the MRV motion
the following scheme was used. A steering law is commanding a desired
track speed ωd(t). The true effective track speed ωe is the track speed
corresponding to the actual MRV motion. Thus ωe might be less than ωd

at times when the tracks are slipping on the surface. At any instant there
is a certain probability that one of the two tracks may start to slip. If
it does, than a random amount of slip is computed with a given standard
deviation. This track slipping magnitude is held constant over a period of
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time. The slip duration is again chosen at random with a given standard
deviation. Once the slip duration is over, the program logic again checks
periodically to see if this track is slipping again. If yes, then it computes
new slip magnitudes and duration. Note that the slip logic is applied to
each track individually.

100 200 300 400 500 600

0.2

0.4

0.6

0.8

1

time [s]

Figure 3: Loss in Effective Track Performance Due to Slippage

The track slippage applied during the following numerical simulations is
shown in Figure 3. Note that this is a rather severe case where one or both
tracks are slipping at any given time.

5 Numerical Study of Slippage affect

The Kalman filter estimator performance is studied for various sensor pack-
ages being active and track slippage being either on or off. The MRV ge-
ometry is given by Rl = Rr = 0.127m and Rw = 0.508m. The track speeds
are commanded through the open-loop control

ωl = 1.05rad/sec

ωr = 1.00rad/sec

which result in the MRV nominally performing a large circle of roughly 20
meter diameter. Figure 4 shows both the nominal MRV track path without
track slippage present and when the track slippage shown in Figure 3 is
applied. Clearly the track slippage applied in this study is very severe and
represents a worst case type scenario.

The effect of track slippage on the Kalman filter is as follows. The filter
does not know that the angular velocity feedback it is receiving of the track
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Figure 4: MRV Track Paths With and Without Track Slippage

speeds is erroneous at times. The covariance matrix still becomes very small,
indicating that the filter will mainly rely on its internal state estimates and
more or less ignore future sensor measurements. Doing so will cause the
states estimates to grow very large. Much larger in fact than the typical
sensor noise itself. To avoid the filter starting to rely to heavily on the
internal state estimates, the procedure used in this study is to increase the
process noise covariance matrix [Q] to a large value. The size of this matrix
was determined through numerical simulations. Having a large [Q] prevents
the state covariance matrix from becoming too small and the Kalman filter
continuous to rely heavily on the sensor input. The goal of the [Q] matrix
tuning is to achieve better position tracking than what is possible with pure
GPS measurement. If the matrix is set too large, then very little filtering
is done and we essentially obtain pure GPS data. If the matrix is set too
small, then very large drift in the position estimates are possible when track
slippage occurs.

All of the following numerical studies have a simulation time of 600
seconds. A simple Euler integration method is used with a time step of
0.1 seconds. GPS sensor information is updated at 5 Hz, compass heading
updates arrive at 10 Hz and relative heading sensor information is also at 10
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Hz. The GPS measurement noise has a standard deviation of 1 meter, while
both the compass and heading measurement noise has a standard deviation
of 1 degree. The track speed measurements are assumed to have a standard
deviation of 0.1 degrees. These noise levels are used to construct the various
sensor covariances.

5.1 GPS Sensor Information Only

Standard Process Noise Matrix

Here the Kalman filter is only updated using GPS position measurements
at 5 Hz. The process noise matrix [Q] is set equal to

[Q] = σ2
ω [I3×3] = 0.01I3×3 (rad/s)2

For the case where no track slippage is present, the (x, y) position esti-
mate errors are marked as dark green and blue lines in Figure 5(a). The
corresponding GPS sensor noise in the x and y direction are shown in the
background as light colored lines. With the relatively small process noise
σω, the filtered position errors typically lie within ±0.3 meters.
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(b) Heading Estimate Errors

Figure 5: GPS-Only Study without Track Slippage

The compass heading estimate errors are shown in Figure 5(b) as a red
line. Without any compass sensor updates, this information is relatively
poor. The reason for is as follows. For the MRV to move from the left
to right, it must first turn to face the right (i.e. change its heading) and
then move forward. The MRV are incapable of “sliding” to the right. If the
GPS noise tells the filter that it senses the MRV to be at a slightly different
location, then it must assume that the vehicle actually rotated to move in
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that direction. Due to the relatively accurate (x, y) estimates, the filtered
compass heading errors remain within ±10 degrees.

However, if we add track slippage, these filtered state estimates become
erroneous very quickly. The position estimate errors are shown in Fig-
ure 6(a). Since the Kalman filter does not know about the tracks slipping, it
trusts the ω measurements as much as it did in the previous simulation and
reduces the covariances very quickly. The result is that the internal state
estimates are trusted too much and propagated with poor ω values. As is
seen in Figure 6(a), the estimate error can become worse than the GPS noise
itself.
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(b) Heading Estimate Errors

Figure 6: GPS-Only Study with Track Slippage

The compass heading estimate errors are shown Figure 6(b). Due to the
track slippage and without any direct heading measurements, the heading
estimates are essentially useless for this case.

Exaggerated Process Noise Matrix

To make the Kalman filter more robust to track slippage, we increase the
process noise matrix [Q] to

[Q] = σ2
ω [I3×3] = 2.00I3×3 (rad/s)2

Figure 7 shows the corresponding position and heading estimate errors. As
is expected, with the increased process noise matrix the filter capability
is reduced. The position estimate errors are roughly within ±0.5 meters
and the heading estimates are essentially useless, even for this no-track-slip
situation.
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(b) Heading Estimate Errors

Figure 7: GPS-Only Study without Track Slippage and Exaggerated Process
Noise Matrix

The effect of severe track slippage on the state estimator is shown in
Figure 8. Despite the erroneous ω measurements, the position estimate
error are only slightly larger than when no track slippage is occurring. In
particular, the position estimate errors are much smaller than the ones shown
in Figure 6(a). The heading estimate errors at this point are starting to look
like “pure noise.”
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(b) Heading Estimate Errors

Figure 8: GPS-Only Study with Track Slippage and Exaggerated Process
Noise Matrix

A pure GPS based estimator can therefore only be expected to provide
reasonably accurate position estimates, not heading information. Especially
when the track slippage effects are included.
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5.2 GPS and Compass Sensor Information

Standard Process Noise Matrix

In this study both GPS sensor (5 Hz update frequency) and compass heading
information (10 Hz update frequency) are available to the MRV. The first
simulation is run without slippage and the process noise matrix [Q] set to
0.01 I3×3. The position and heading estimate errors are shown in Figure 9
relative to the respective sensor noises.
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Figure 9: GPS and Compass Study with Standard Process Noise Matrix
and without Track Slippage and

With the direct compass heading feedback available, the position esti-
mate errors are very small for this ideal case without track slippage. The
errors are reduced to within ±0.1 meters. Having both GPS position up-
dates and heading measurements also allows the heading estimate errors to
be reduced to a level below the compass noise. Though the improvement
here isn’t very substantial. Again, this is due to noisy GPS measurements
being poor at estimating the MRV attitude.

If we add the same severe track slippage as was done in the previous
studies, the state estimate errors are greatly corrupted. The position and
heading estimate errors are shown in Figure 10 compared to the respective
sensor noise levels.

In particular, the position estimate errors begin to drift to levels larger
than the GPS noise levels. The internal position estimates are being trusted
to much due to the small [Q] matrix. The erroneous ω feedback then drives
the state estimates off. Because every time a GPS update arrive, there is
also a compass update, the heading estimate errors are still slightly less than
the compass noise level. If a GPS update occurs without simultaneously

15



-3

-2

-1

1

2

3

600300 400 500100 200

time [s]

P
o
si

ti
o
n
 E

st
im

at
e 

E
rr

o
rs

 [
m

]

(a) Position Estimate Errors Com-
pared to GPS Noise

300

-2

-1

1

2

3

600400 500100 200

time [s]

H
ea

d
in

g
 E

st
im

at
e 

E
rr

o
r 

[d
eg

]

(b) Heading Estimate Errors Com-
pared to Compass Noise

Figure 10: GPS and Compass Study with Track Slippage and Standard
Process Noise Matrix

updating the heading, then the heading errors may actually grow larger
than the compass noise levels.

Exaggerated Process Noise Matrix

To make the Kalman filter more robust to track slippage, the process noise
matrix is set to [Q] = 5000 I3×3. Note that this value is much larger than
the GPS only case. Finding a suitable [Q] matrix for a given sensor pack-
age involves running some test cases and finding a medium between filter
robustness and performance. The filter performance with this exaggerated
process noise matrix is shown in Figure 11 for the ideal case without track
slippage.

The position estimate errors are now increased to within ±0.25 meters.
While the heading estimate errors are now essentially the same as the com-
pass noise level, adding the compass updates does provide better (x, y) es-
timates than the GPS-only case.

The filter performance when track slippage is added is shown in Fig-
ure 12. The position estimate errors are still well below the GPS noise
levels.

In conclusion, adding a Kalman filter to the MRVs improves the GPS
and compass heading estimates. In particular, by tuning the process noise
matrix [Q], the filter can be made more robust to track slippage effects. The
(x, y) estimates are typically 2-3 times smaller than the GPS sensor noise
during periods of severe track slippage. Without track slippage present, the
errors are reduced further to relative small levels or roughly 0.3-0.5 meters.
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(b) Heading Estimate Errors Com-
pared to Compass Noise

Figure 11: GPS and Compass Study with Exaggerated Process Noise Matrix
and without Track Slippage
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Figure 12: GPS and Compass Study with Track Slippage and Exaggerated
Process Noise Matrix

6 Alternate Motion Sensor

The previous discussion assumed that the actual MRV motion is obtained
by measuring the instantaneous left and right vehicle track speeds. The
main drawback here is that this is only an indirect method of measuring
motion. Under ideal circumstances, the track speeds can be directly related
to the MRV motion. However, because of track slippage, this measurement
can often be very erroneous.

Another method to directly measure the MRV motion is suggested here.
An imaging system is proposed which would be mounted on the MRV such
that it looks straight down as illustrated in Figure 13. A frame grabber cap-
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Figure 13: Motion Sensor Illustration

tures the ground picture below the MRV between two discrete time steps and
compares the images. Using software similar to that used in laser doppler
velocimetry in experimental windtunnel testing, it is possible to track the
ground motion below the MRV.

In Figure 13 the perpendicular distance from the MRV to the ground
is denoted by d. The focal length distance between the lens and the image
plane is f . The body axes are assigned as is standard with aircraft type
vehicles. The first (roll) body axis points out to the front of the MRV, the
second (pitch) out to the right and the third (yaw) points down into the
vehicle.

∆x

∆y

∆θ

b̂1

b̂2

Figure 14: Frame Grabber Image Plain Illustration
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The position and orientation of the identical ground patch pattern at
two different time steps are shown in Figure 14. The current area below the
sensor is shown in light grey, the position and orientation of the same ground
pattern at the previous time step is shown in dark grey. The figure indicates
that the MRV has moved forward and rotated to the right. Note that the
image plane displays a mirror image of what is seen below the MRV. If the
MRV is moving forward, then the relative ground motion should appear to
be moving backward. However, due to the mirror image effect of the lens,
this motion will appear in the image plane as the ground moving forward.
The same holds true for rotations.

d

f

∆x

∆X

b̂1

(a) Level MRV

d

f

∆x

∆X

θ̇2
b̂1

(b) Tilting MRV

Figure 15: Comparison of Level and Tilting MRV

Using Figure 15(a), the actual ground covered ∆X and ∆Y is related to
the corresponding image plane distances ∆x and ∆y through through

−
∆X

d
=

∆x

f
(35)

−
∆Y

d
=

∆y

f
(36)

The negative sign is due the ground moving backward as seen by the MRV
if the MRV is moving forward. The translational MRV velocity v is then
given by

v = −
1

∆t

(
∆X
∆Y

)

=
d

f ∆t

(
∆x
∆y

)

(37)

The heading rate of change can be compute directly from −∆θ/∆t. One
limitation of this method is immediately apparent studying Eq. (37). Any
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errors in either d or f directly relate to errors in the measured velocity v.
The distance f can be determined through proper calibration. However, the
ground clearance d can vary with time as the MRV travels over an unknown
terrain. It is therefore necessary to have some distance measuring device
installed which can measure the line of sight distance from the sensor lens to
the ground. For example, such a device could be a small laser ranging device.
Without this capability the proposed sensor would return very erroneous
velocity measurements as the MRV travels over rough, uneven ground.

Another issue that would need to be addressed is the tilting of the MRV.
This may occur when the vehicle tracks roll over a rock or stump. As the
vehicle continues to roll forward, it is also being rotating about the b̂1 axis
(rolling rate θ̇1) or rotated about the b̂2 axis (pitching rate θ̇2). A positive
pitch or roll angle is established using the right hand rule. What these
rotations cause is an erroneous apparent motion by the sensor. Consider
a MRV which is not translating, but which is pitching upwards at a rate
θ̇2 as illustrated in Figure 15(b). The ground would also appear to move,
indicating a forward motion. On unprepared ground, the MRV is expected
to tilt often as it traverses over small obstacles. One method to partially
compensate for this is to have the MRV be equipped with rotation rate
sensors about the b̂1 and b̂2 axes. Assuming that the MRV rotation occurs
about the sensor lens, then the rotational component can be extracted from
the velocity measurement through

v =
d

f ∆t

(
∆x
∆y

)

+

(
−θ̇2

θ̇1

)

d (38)

However, note that in practice the MRV will typically not tilt perfectly
about the sensor lens. For example, if the right tracks are rolling over a
rock and the left tracks remain on the ground, then the tilting is occurring
about the left MRV edge. Using the formula in Eq. (38) it is possible to
partially compensate for the tilting induced velocity measurement errors.
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