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Abstract

The relative motion dynamics of a Coulomb satellite formation is considered. Elec-
trostatic forces are exploited to control the relative motion. The formation angular
momentum about an inertial point of reference and the formation center of mass are
studied. The insights provide constraints on the relative motion description for both
inertial and relative coordinates. The inertial formation center of mass motion is stud-
ied in more detail and compared to Keplerian motion. Finally, a coordinate frame is
introduced which tracks the principal axes of the formation. This allows a convenient
method to describe the formation shape at large.

Introduction

An important concern with spacecraft formation flying is how to control the relative
motion. Since the formation is expected to have a life time of several years, a fuel-
and power-efficient solution is crucial. For the sparse radar aperture missions, the
spacecraft are to fly on relative orbits ranging from 0.5 to 10 kilometers. For these
missions fuel efficient ion engines are being considered to stabilize the relative orbits
and avoid secular drift among the satellites. Recently a novel formation flying con-
cept using electrostatic propulsion has been proposed in References 5 and 14. The
charge of the spacecraft is controlled to generate inter-spacecraft Coulomb forces.
Such forces can be used to attract or repel the craft of each other, and thus control
their relative motion. Studying the electrostatic charging data of the geostationary
SCATHA spacecraft,7 it became evident that it is possible to generate forces of the
order of 10–1000µN. The values are comparable to those of ion engines being con-
sidered to control current formation flying concepts. What was inspiring was that vir-
tually zero fuel mass would be consumed to generate these forces, and the electrical
power requirements were typically around 1 Watt or less. However, since the electric
field strength will drop off with the inverse square of the separation distance, this rela-
tive motion control concept is only viable for relatively tight formations with 10-100
meters separation distances. Beyond such distances, electrostatic discharge among
spacecraft components becomes an increasing concern. Further, in a space plasma
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environment, the electric field strength drops off in an exponential manner due to the
presence of charged plasma particles. The severity of the exponential drop off is ex-
pressed through the Debye length.1,9 For low Earth orbits (LEO), the Debye length is
of the order of centimeters, making the Coulomb formation flying concept impracti-
cal. However, extensive data is available for the plasma environment at geostationary
orbits (GEO), where the Debye length can vary between 100–1400 m. Thus, at GEO
altitudes or higher, the Coulomb formation flying concept appears feasible.

This essentially propellantless mode of propulsion comes at the price of a greatly in-
creased level of complexity of the relative motion dynamics. The electrostatic fields
directly tie together and couple the motion ofall charged satellites. If one charged
satellite were to change its position, then the motion of all other charged satellites
in the formation will be affected. This paper attempts to shed some light on how
the Coulomb formation will evolve as an entity, as opposed to individual satellite
motion. To do so, the angular momentum of the formation about the Earth center
(inertial point) and the formation center of mass is examined. Each craft is assumed
to be subjected to the standard inverse square gravitational attraction, as well as the
Coulomb forces from all other craft in the formation. Studying the inertial angular
momentum vector, conclusions can be drawn regarding the controllability of the en-
tire formation. Of particular interest is that given a desired Coulomb formation, can a
feedback law be developed that will achieve this formation given any arbitrary initial
formation errors?

To be able to describe the overall formation motion, a formation coordinate frame is
considered. The formation is no longer treated as a series of individual, un-coupled
satellites, but rather as a fluid-like entity subjected to orbital dynamics. The inter-
spacecraft Coulomb forces are similar to fluid internal forces that can be used to
control the shape and size of the formation. As the formation rotates and moves, the
formation body frame will move in an analogous manner. Studying the formation
frame orientation, it is possible to study the overall formation attitude change, as
well as possibly control it. Cochran et al. discuss in Reference 2 how to model a
spacecraft formation as a rigid body. Here the spacecraft are assumed to be in fixed
positions relative to each other, and thus form a discretely distributedrigid spacecraft
structure. The formulation adopted in this paper allows for all spacecraft to move
relative to each other, and thus act more as a fluid than a rigid body. However, given
an appropriate control, it might be possible to “freeze” this fluid and have all craft
form a rigid formation as shown in Reference.6 Sengupta and Vadali also employ a
rigid body analogy to describe relative motion in Reference 16, but use it to describe
the motion of the individual satellites, and not to describe the formation shape and
size as a whole.

Lastly, the formation center of mass motion is studied in detail, since this location
forms the origin of the proposed formation body frame. In previous formation flying
control work, the satellite motion is defined to be relative to some chief point.4,8,12,15

For example, this point could be the geometric center of the formation, or the center
of mass, or simply another satellite of the formation. In the Coulomb feedback con-
trol laws presented in References 14 and 11, all relative motion is written explicitly



with respect to the formation center of mass motion, which is assumed to perform a
Keplerian motion. Here the validity of Keplerian formation center of mass motion is
studied in greater detail. Both an analytical and numerical analysis are presented.

Coulomb Formation Equations of Motion

Let the Coulomb formation consist ofN satellites of different massmi . Let the for-
mation chief positionrc be defined as the inertial formation center of mass A vector
ri will denote a satellite position vector relative to the inertial center of Earth point,
while aρi vector will denote a relative position vector with respect to the chief posi-
tion. Typically the motion of the Coulomb satellites is expressed relative to the center
of mass motion of the formation. These differences could be Cartesian coordinate
where the relative position vectorρi components are expressed with respect to the
rotating chief Hill frameH as Hρi =

(
x y z

)T
. An alternate coordinate choice

would be to express the relative motion in terms of orbit element differences.11,14

Given the various satellite massesmi , the center of massrc is computed using13

rc =
1
M

(
N

∑
k=1

miri

)
(1)

whereM = ∑N
k=1mi is the total formation mass. The Coulomb force that craftj exerts

onto crafti is given by

fi j = kc
r ji

r3
ji

qiq je
−

r ji
λd (2)

wherer ji = ri −r j , |r ji | = r ji = r i j , kc = 8.99·109 Nm2/C2 is Coulomb’s constant,
andλd is the plasma Debye length. Assuming a standard inverse square gravitational
attraction and infiniteλd, the inertial equations of motion of thei-th craft are

r̈i +
µ

r3
i

ri =
1
mi

N

∑
j=1

fi j for i 6= j (3)

Note that these equations of motion are valid for any conic-section orbit type. Pre-
vious research into the Coulomb formation dynamics has focused on using the CW,
which linearize the relative motion dynamics assuming the chief motion is circular:5ẍi −2nẏi −3n2xi

ÿi +2nẋi

z̈i +nzi

=
kc

mi

N

∑
j=1

r ji

r3
ji

qiq j (4)

These equations are very convenient for typical formation flying studies since they
express the relative motion dynamics directly in terms of the relative position vector
components. However, to study angular momentum conservation laws, they are not
very convenient since the vector components are taken with respect to the rotating
chief Hill frame. Instead, the full nonlinear equations of Eq. (3) will be used instead.



Coulomb Formation Conservation Laws

Formation Angular Momentum about Inertial Point

To study the overall motion of the Coulomb formation as a whole, let us examine
the angular momentum vector of the entire formation. The moments are first taken
relative to the Earth’s center, which is assumed to be an inertial point for the purpose
of this study. The inertial angular momentum vectorHe is then written as

He =
N

∑
i=1

ri ×mi ṙi (5)

The gravitational acceleration vector is known to not cause any change in the inertial
momentum vector, because its direction is collinear with the satellite position vec-
tor. Since the Coulomb forces are all formation internal forces, they too cannot cause
the inertial momentum vector to change. Thus we findḢe = 0. This angular mo-
mentum vector of the entire formation thus provides three constraint equations that
the Coulomb satellite motion must abide by. If a system of 3 Coulomb satellites is
studied through 3 inertial position vectors, then there would be 9 degrees of freedom
for the entire formation. However, due to the angular momentum constraint, three
degrees of freedom would be lost, leaving only 6 unconstrained degrees of freedom.

Any Coulomb control strategy must take these formation constraints into account. It
may be possible that not all craft in the Coulomb formation need to achieve a specific
trajectory. Additional craft may be introduced specifically to facilitate the control-
lability of the true sensor craft. The other craft would absorb the inertial angular
momentum difference between current and desired formation and make sure that the
inertial angular momentum constraints are satisfied. Also, missions are envisioned
where the precise relative motion may not need to be controlled. For example, it
might be sufficient to define the desired relative motion to be a formation with equal
spacecraft spacing (equilateral triangle for the planar three craft case).

Formation Angular Momentum about Center of Mass

The inertial angular momentum expression in Eq. (5) is written in terms of the inertial
position vectorsri . Because it is preferred to write the Coulomb satellite motion as
coordinate differences relative to the center of mass motion (chief), we writeri =
rc +ρi . The inertial angular momentum vector is written as13

He = rc×Mṙc +
N

∑
i=1

ρi ×miρ̇i = rc×Mṙc +Hc (6)

whereHc is the formation angular momentum about the center of mass. Note that
this expression is analogous to that used to express the angular momentum of a rigid



body in space. BecausėHe = 0 for a Coulomb formation, by differentiating Eq. (6)
we find that

Ḣc =−rc×Mr̈c =−rc×Fc (7)

whereFc = Mr̈c is the effective force acting on the formation center of mass. If the
Coulomb formation is floating in space without any external forces acting on it (i.e.
far from Earth), then ¨rc = 0 andHc would be conserved. However, if the formation is
orbiting about a planet and subject to an inverse square gravity field, then an external
torque similar to the rigid body gravity gradient torque will act onHc.

Using Eqs. (1), (3) andfi j =−f ji , the effective force vectorFc can be written as

Fc = Mr̈c =
N

∑
i=1

mi r̈i =
N

∑
i=1

(
−mi

µ

r3
i

ri +
N

∑
j=1

fi j

)
=−

N

∑
i=1

mi
µ

r3
i

ri (8)

Note that this expression is not very convenient yet, since it requires us to know the
inertial position vectorsri of each satellite. It is preferred to be able to express the
Coulomb satellite motion using both the center of mass motionrc and the relative
position vectorsρi . Further, theρ values for Coulomb formations are typically 10-
100 meters, which is very small compared to the inertial center of mass orbit radius
rc. Using ri = rc + ρi , the 1/r3

i term is approximated using a standard truncated
binomial expansion. Only retaining the first order terms and making use of the center
of mass definition, this expansion allows us to approximateFc as

Fc =−M
µ
r3
c
rc +3

µ
r5
c

[
N

∑
i=1

(miρi × (ρi ×rc))+

(
N

∑
i=1

miρ2
i

)
rc

]
(9)

If the systems of particles were a rigid body, then the inertia matrix would be defined
as

[I ] =−
N

∑
i=1

mi [ρ̃i ][ρ̃i ] (10)

where the matrix tilde operator is is equivalent tox×y. The identical inertia matrix
definition is used here to define the Coulomb formation inertia[I ] about the formation
center of mass. Whereas theρi position vectors would be fixed relative to a body fixed
frame, these relative position vectors will be time varying for Coulomb satellites.
Thus, instead of describing the formation as a rigid body, it is described as a fluid-
like entity. This formation inertia matrix definition[I ] allows us to write the center of
mass force vectorFc as the matrix equation

Fc =−M
µ
r3
c
rc−3

µ
r5
c

(
[I ]rc−

(
N

∑
i=1

miρ2
i

)
rc

)
(11)



Substituting Eq. (11) into Eq. (7) and carrying out the vector cross products, we find
the formation angular momentum rate expression approximated as

Ḣc =−rc×Fc = 3
µ
r5
c
[r̃c][I ]rc = τc (12)

If the massesmi were part of a rigid body, thenτc would be referred to as the gravity
gradient torque. It arises from the fact that if two equal masses are at different orbit
radii, then the inverse square gravity field will exert a larger force onto the mass with
the smaller orbit radius.

Thus, while the formation angular momentum about an inertial point (Earth’s center)
was found to be conserved for Coulomb satellites, the formation angular momen-
tum about the formation center of mass is generally not conserved in the formation.
An upper bound on the gravity gradient torque is found by assuming that all of the
formation massesmi are distributed at the outer formation radiusρ.

τ ≤ µM
rc

(
ρ
rc

)2

(13)

As rc grows sufficiently large, the gravity gradient torque will become very small
and could be neglected from a formation analysis. Note that the three constraints
of the Ḣe or Ḣc formulation are essentially equivalent. There are still only three
momentum constraints that a Coulomb formation must satisfy. The only difference is
that the gravity gradient torqueτc has been approximated through a truncated series.

Formation Center of Mass Motion

If the Coulomb satellite motion is expressed relative to the center of mass through
ρi = ri −rc, the center of mass motion definition in Eq. (1) can be written in terms
of ρi as

N

∑
k=1

miρi = 0 (14)

This equation provides three additional constraints on the Coulomb satellite motion
ρi that must be satisfied at all timeif the satellite motion is expressed relative to the
formation center of mass. Combined with the three inertial angular momentum con-
straints, there are a total of six constraints on the Coulomb satellite motion. If inertial
position vectors are used, then the center of mass constraint does not appear. For
example, consider the 2-satellite Coulomb formation discussed in Reference 14. Ex-
pressing the satellite motion relative to the formation center of mass, theρ1, ρ2 andrc

vectors have 9 degrees of freedom. With the 6 constraints found for a Coulomb forma-
tion, this results in the two Coulomb satellite system being a three degree of freedom
system. As the Coulomb formation grows in its number of associated craft, these
constraints will become less restrictive. A three craft formation would have 6 degrees



of freedom. Note that this degree of freedom discussion does not apply to classical
spacecraft formation concepts where each craft is controlled individually. Assuming
general three-dimensional thrusting capability, here there are no constraints as to how
each satellite can move.

With the formation equations of motion written relative to the formation center of
mass, it is important to understand how this point will move in space. Previous work
has treated the chief point to be rotating at a constant rate for the near-circular chief
orbit case,6 or that the chief orbit elements are constant.11,14 SinceMr̈c = Fc, the
differential equations of the center of mass are found using Eq. (8):

r̈c =− 1
M

N

∑
k=1

mi
µ

r3
i

ri (15)

Note that these are the true nonlinear differential equations ofrc. The Coulomb
forces do not appear explicitly here. Assuming thatρi is much smaller thanrc, this
differential equation can be approximated using Eq. (11).

r̈c =− µ
r3
c

[
1+3

1
Mr2

c

(
[I ]− [I3×3]

(
N

∑
i=1

miρ2
i

))]
rc (16)

Note that the first term in the square brackets above is the standard Keplerian gravita-
tional attraction term. The second term is the first order approximation of the rotation
to translation coupling. In rigid body attitude and orbital translational motion, the
coupling of the attitude on the translation motion is typically treated as a negligible
term. However, typical spacecraft do not have dimensions on the order of 100s of
meters. Treating the Coulomb formation as a discretely distributed fluid-like body,
we need to investigate if this second term inside the square brackets can be neglected.
Assume the formation has an outer radius ofρ, and that all the mass is distributed at
this radius. We can provide a conservative upper bound on the term using

3
1

Mr2
c

(
[I ]− [I3×3]

(
N

∑
i=1

miρ2
i

))
≤ 3

(
∑N

k=1miρ2
i

)
Mr2

c
= 3

ρ2

r2
c

(17)

Assume the Coulomb formation has an outer radius of 100 meters and is at GEO, then
the upper bound shown in Eq. (17) is 1.7·10−11. The coupling term of the formation
motion on the center of mass motion is about 11 orders of magnitude smaller than
the Keplerian gravitational attraction. Thus, even though Coulomb formations would
be much larger than typical rigid bodies, it is reasonable to ignore the formation
motion influence on the center of mass motion and treat the formation center of mass
motion as Keplerian. Note that this conclusion is valid regardless if the chief motion
is circular or elliptical in nature.

Formation Body Frame

To describe the overall motion of the formation, the cluster of spacecraft is treated
as a distributed system of discrete masses, inter-connected by Coulomb forces. In



essence, the formation is treated as a virtual structure with a fluid-like behavior. By
designing appropriate spacecraft charging control laws, it can be made to change
shape, size and orientation. Instead of describing the motion of each craft within the
clusters, statistical measures are used to describe the overall motion. For this pur-
pose, a coordinate frame is associated to the Coulomb formation. Let this formation
coordinate frame be calledB = {rc : b̂1, b̂2, b̂3}. Its origin is the formation center of
mass locationrc, while it’s orientation is determined by the formation dynamics and
overall shape.

Assume that the formation inertia matrixB [I ] in Eq. (10) is computed with vector
components taken with respect to the rotating chief Hill frameH . The formation
body frameB is defined such that it will diagonalize this formation inertia matrix.
Thus, theB frame orientation axeŝbi are the principal axes of theH frame centric
inertia matrix. Let[BH] be a rotation matrix that will transformH frame vectors into
B frame vectors. The formation inertia matrix is written in theB frame as13

B [I ] = diag(I1, I2, I3) = [BH] ·H [I ] · [BH]T (18)

Since[I ] is a symmetric, positive definite matrix, the[BH] matrix is the transpose
of the eigenvector matrix of[I ], while the principal inertias are the associated eigen-
values of[I ].13 This frameB and the associated principal formation inertiasIi are
very useful to describe the overall shape and orientation of the formation. For exam-
ple, if two Ii values are nearly equal, then the formation has a near-cylindrical shape.
If all three Ii values are identical, then the formation has become spherical. If one
Ii is much smaller than the other two, then the formation is performing near-planar
relative motion. The attitude matrix[BH] would provide information regarding the
orientation of this relative motion plane.

ComputingH [I ] at every time step, it is possible to compute the corresponding atti-
tude matrix[BH] by solving the numerical eigenvalue/eigenvector problem, or using
a singular value decomposition routine. However, these routines have ambiguities
regarding the direction of the unit eigenvectors. Care must be taken that the three
eigenvectors ofH [I ] form a proper, right-handed coordinate system.

An alternate approach is that the formation eigenvalue/eigenvector problem could be
solved once to setup the initial formation principal inertias and attitude, and then use
associated differential equations to propagate these parameters. Letω = ωB/H for

this discussion. Using[ḂH] =−[ω̃][BH], taking the derivative ofH [I ] we find

H [İ ] = [ḂH]T B [I ] [BH]+ [BH]T B [İ ][BH]+ [BH]T B [I ][ḂH]

= [BH]T
(
[ω̃]B [I ]+ B [İ ]−B [I ][ω̃]

)
[BH]

(19)

This leads to the condition

[ω̃]B [I ]+ B [İ ]−B [I ][ω̃] = [BH]H [İ ][BH]T = [ξ] (20)

Since[ω̃]B [I ]−B [I ][ω̃] is a symmetric matrix with zero diagonal entries, andB [İ ] is a
diagonal matrix, we can equate matrix components to solve for the desired differential



Table 1: Satellite Simulation Data

Sat 1 Sat 2 Sat 3 Sat 4 Sat 5 Units
a 42241.075 0·100 0·100 0·100 0·100 km
e 0.500 7·10−7 9·10−7 -6·10−7 -5·10−7

i 48.000 0·100 0·100 0·100 0·100 deg
Ω 20.000 0·100 0·100 0·100 0·100 deg
ω 0.000 2·10−5 -1·10−4 -1·10−5 -14.5·10−5 deg
Mt0 20.000 0·100 15·10−5 5·10−5 18·10−5 deg
m 150.000 50.0 110.0 120.0 140.0 kg

equations.3,10

ω1 =
ξ23

I2− I3
ω2 =− ξ13

I1− I3
ω3 =

ξ12

I1− I2
(21)

İ1 = ξ11 İ2 = ξ22 İ3 = ξ33 (22)

Integrating such differential equations will have well known issues whenever the prin-
cipal inertias become equal. References 10 and 3 discuss numerical approximations
to deal with these. The geometric interpretation of these singularities is that with
I2 = I3, the plane spanned bŷb1 andb̂2 is unique and well defined, but not the indi-
vidual vectors.
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Figure 1: Illustration of the Formation Shape Through Principal Inertias and Forma-
tion Attitude through MRPs.

The following numerical simulation illustrates how the formation body frame can be
used to describe the overall shape and attitude of a cluster of satellites. The initial
conditions of 5 satellites are listed in Table 1. The first satellite is given in terms



of osculating orbit elements, while the other satellites are expressed in terms of dif-
ferences to this first satellite. The full nonlinear inertial equations of motion of each
satellite is solved using Eq. (3). No spacecraft charging is active here. Thus, due to all
satellites having the same semi-major axis, all relative motions will remain bounded
relative to the chief or center of mass motion. Further, since alli andΩ values are
equal, there is no out-of-plane relative motion in this cluster. This makes it easier to
verify that the computed formation principal inertiasIi and attitude are correct.

Figure 1 shows the resulting formation principal inertiasIi , as well as theB frame at-
titude expressed through Modified Rodrigues Parameters (MRPs).13,17 TheB frame
orientation axes are illustrated at 4 different time steps in Figure 2. The axis length is
scaled by the principal inertias, to indicate the respective inertia about this axis. Be-
cause the relative motion is planar, one principal axis is always pointing perpendicu-
lar to the chief orbit plane. Two formation principal axes directions don’t vary very
much for this case. This is due to the satellites being fairly evenly distributed across
the formation. This reinforces the concept that this proposed formation frame does
not track individual satellite motions, but only provides information regarding the re-
sulting shape. While the previous discussions regarding relative motion constraints
were particular to Coulomb satellite formations, this proposed formation body frame
could also be used to describe the shape and orientation of classical formations of
satellites.

Conclusion

The angular momentum of the entire formation about an inertial point and the for-
mation center of mass is examined. Because the inertial angular momentum of a
Coulomb formation is conserved, the relative motion of the charged spacecraft is
subjected to three constraints. If the relative motion is described relative to the for-
mation center of mass, then the center of mass definition provides an additional set
of three constraints on the relative motion. Further, the center of mass motion of the
formation is studied. Even with Coulomb formations having relative orbit radii of
100 meters, it is shown to be reasonable to treat the center of mass motion as being
Keplerian. Finally, a formation coordinate frame is introduced which is similar to that
used to track a continuous rigid body motion in space. This formation body frame
can be used to describe the overall attitude, shape, size and motion of the formation.
Differential equations are provide to integrate the body formation frame.
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