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Differential Orbit Element Constraints for Coulomb Satellite
Formations

Hanspeter Schaub∗and Mischa Kim†

Virginia Polytechnic Institute, Blacksburg, VA 24091-0203

Recently the concept of controlling the relative motion of spacecraft using elec-
trostatic charging has been proposed. For tight spacecraft formations with separation
distances ranging from 10–100 meters, the Coulomb forces between the spacecraft can
be exploited to provide a very fuel and power efficient means of propulsion. As the
charge of a single craft is varied, the relative motion of the entire formation is af-
fected. The Coulomb force vector a craft experiences is restricted to be directed along
the relative position vector, which results in constraints being imposed on how the
Coulomb force can be used to control a formation. This paper investigates how the
conservation of angular momentum and the formation center of mass limits the types
of relative orbits that can be controlled. Considering the spacecraft formation to be
a system ofN particles, this internal force can not change the inertial system angular
momentum vector. The center of mass definition and angular momentum constraint
are expressed using differential orbit elements to describe the relative motion. First
order transformations to the nonlinear solutions are presented. Their accuracy is
evaluated both analytically and using numerical simulations.

I. Introduction

SPACECRAFT formation flying control is a challenging research thrust requiring a fundamental understanding of
both orbital mechanics and control theory. Typically, the amount of propellant aboard a craft is limited. Neverthe-

less, even with a carefully chosen relative orbit geometry, the control system typically needs to perform minor orbit
corrections periodically to maintain the formation. Typical spacecraft interferometry missions consider separation
distances ranging from hundreds of meters to multiple kilometers. Large baselines are used to provide highly accurate
sensing of a narrow field of view. The forces required for a continuous thrust propulsion system to maintain a relative
orbit are of the order of milli-Newtons or less. Pulsed-Plasma Thrusters (PPTs) and other ion engines are considered
as the primary relative navigation propulsion method. The thrust is achieved by expelling charged ions at a very high
velocity. To achieve high escape velocities, relatively large amounts of electrical power must be provided. Because the
exhaust plume contains toxic chemicals that could damage another spacecraft or its sensors, care must be taken that
the ion engine exhaust does not hit another craft. For formations with relative separations in the order of kilometers,
the exhaust issue is not of concern.

Consider a tight formation to be defined as having spacecraft separation distances ranging between 10 and 100
meters. Such clusters could be used to perform high accuracy, very wide field of view missions at Geostationary Orbits
(GEO). For example, 20-30 meter formations at GEO could observe the entire hemisphere with a meter level resolution
with infinite dwell time. Alternatively, tight formations could be used to measure local gradients of magnetic or
gravitational fields. Yet another application exploits the Coulomb forces to navigate a sensor about a larger spacecraft.
In all of these scenarios, the ion engine exhaust plume issues is one of the primary mission concerns. However,
with all craft flying in close proximity, collision avoidance and – in particular – fuel expenditure to perform the
greatly increased number of relative orbit corrections are of major concern. In Reference 1 the use of electrostatic
charging is used as a means to perform relative orbit control. It was found that milli-Newton levels of thrust could
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be achieved between the vehicles with typical power requirements of< 1 Watt. CalculatedIsp fuel efficiencies were
as high as 1010–1013 seconds, rendering this mode of propulsion essentially propellantless. Measured spacecraft
charging data obtained by the SCATHA GEO mission in 1979 verified that a craft can charge to high voltages in
low space plasma environments such as GEO.2 More recently, the CLUSTERS mission demonstrated the feasibility
to control the spacecraft charge and maintain a near-zero voltage level.3 Note that Coulomb force control is only
effective for relatively tight formation/proximity flying scenarios of 10–100 meters due to the1/r2 behavior of the
Coulomb electrostatic force magnitude,r being the spacecraft separation distance. For minimum separation distances
larger than that, the required spacecraft charging levels simply become impractical due to differential charging issues.
Additionally, Coulomb force effectiveness is diminished in a space plasma environment. The reduced effectiveness is
measured through the Debye length, which indicates the exponential decaye−r/λd of the electrostatic field strength.4,5

Becauseλd is in the order of centimeter for Low Earth Orbits (LEO), the Coulomb satellite concept is not practical at
low altitudes. However, at GEO it was found thatλd values are in the order of 100–1000 meters, making Coulomb
formation flying (CFF) feasible at higher altitudes.

References 1 and 6 discuss interesting steady-state solutions that exist for the charged relative orbit equations of
motion equations. The authors show how such charged formations are able to establish fixed relative positions as seen
by the rotating Hill coordinate frame. As a result the individual spacecraft can be shown to perform non-Keplerian
orbits to maintain their formation position. Both in-plane and general three-dimensional steady-state equilibrium
conditions were found. However, none of these formation shapes were found to be controllable. Nonlinear charging
control laws were investigated for a two-satellite formation in Reference 7, and for a larger cluster of Coulomb satellites
in Reference 8. An orbit element difference approach was used to describe and control the relative motion. However,
in these control developments, only general stability properties were provided. Asymptotic convergence was only
discussed for algorithms controlling semi-major axis exclusively. For example, it is intuitive that the inter-spacecraft
Coulomb forces cannot be used to change a relative orbit from being an in-plane formation to having out-of-plane
components.

Since Coulomb force control inherently only allows for relative motion control (spacecraft are pushing and pulling
off each other), it is natural to describe relative motion of a Coulomb formation with respect to the formation center
of mass (CM). The single-craft control strategies in References 7 and 8 identify the formation chief position as the
formation center of mass. Furthermore, these papers assume the Coulomb formation chief to be moving in a Keplerian,
unperturbed orbit. As shown in Reference 9, these assumptions are valid approximations and particularly feasible for
small formations using Coulomb thrusting. Reference 9 examines relative motion constraints of Coulomb formations
for satellite motion described using either inertial or formation-center-of-mass relative position vectors.

This paper investigates how conservation of inertial angular momentum and the formation center of mass (barycen-
ter) definition constrain the evolution of Coulomb formations if the relative motion is expressed using differential orbit
elements. The formation center of mass definition is a simple linear relationship only when using Cartesian coor-
dinates. On the other hand, the barycenter definition becomes a nonlinear function using an orbit elements system
description. Similarly, the precise momentum constraint using orbit element differences is a complex function. First
order approximations are introduced for these transformations and their accuracy is discussed both analytically and
through numerical illustrations. In particular, the concept of an orbit element based formation barycenter is introduced
and compared to the classical Cartesian formation barycenter. When controlling Coulomb formations, it is more mean-
ingful to describe the formation with respect to the orbit element barycenter versus the Cartesian formation barycenter.
The presented first order orbit element constraints on Coulomb formations can be used in control analysis research to
investigate convergence and feasible relative motion.

II. Problem Statement
Rather than using traditional Cartesian coordinates with respect to the rotating Hill frame, classical orbit elements

oe = (a, e, i,Ω, ω,M0) are used to describe the satellite motion. Note that semi-major axisa, eccentricitye, orbit
inclination anglei, ascending node angleΩ and argument of periapsesω, as well as initial mean anomalyM0, are
constants of the unperturbed orbital motion (Keplerian motion case). To describe the satellite relative motion, differ-
ences in orbit elementsδoe are used. For unperturbed, uncontrolled relative motion, these differenced elements are
constants, as well.

It is convenient to describe Coulomb formations relative to the formation center-of-mass or barycenterRc. Since
the electrostatic Coulomb force is a formation-internal force, the control can not change the formation inertial angular
momentum. Ifhi is the angular momentum per unit mass of theith satellite, then the formation inertial angular
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momentum

h =
N∑

i=1

hi (1)

must be a constant of motion. This conservation law imposes three constraints onto the charged relative motion
dynamics. As pointed out before, the conservation of angular momentum is readily expressed using either inertial
Cartesian position and velocity vectors(Ri, Ṙi) or inertial orbit elementsoe. However, the momentum constraint,
as well as the formation barycenter definition, are more complex if relative position coordinatesδoe are employed.
Of interest are analytic approximations of the momentum and barycenter expressions using orbit element differences.
While momentum conservation is specific to the study of Coulomb formations, the barycenter discussion is applicable
to general spacecraft formations.

III. Center of Mass Definition
Let us first investigate the formation barycenter definition using differenced orbit elements. The inertial position

and velocity vectors of the formation center of mass are traditionally defined using inertial Cartesian position and
velocity vectors as

Rc =
1
M

N∑
i=1

miRi (2)

Ṙc =
1
M

N∑
i=1

miṘi (3)

whereM =
∑N

i=1 mi is the total formation mass. Eq. (2) defines the true formation center of mass position vector.
Later on, approximate solutions are compared to the classical formulation (2). Using relative position coordinates
ri = Ri −Rc with respect to the formation barycenter, Eq. (2) can be rewritten as

N∑
i=1

mi ri = 0 (4)

Note that Eq. (4) is a vector equation and must hold for any coordinate frame choice to express the vector components.
Let ri vector components be expressed in the chief Local-Vertical-Local-Horizontal (LVLH) or Hill frameH as10

Hri =

xi

yi

zi

 (5)

Next, let the non-dimensional relative position coordinates be defined through

ui =
xi

Rc
vi =

yi

Rc
wi =

zi

Rc
(6)

Note that the formation barycenter radiusRc is time varying in general (elliptic orbits). An equivalent expression for
the center of mass condition in Eq. (4) is expressed using(u, v, w) as

N∑
i=1

miui =
N∑

i=1

mivi =
N∑

i=1

miwi = 0 (7)

If the relative motion is expressed using Cartesian coordinates, as is commonly done when using the Clohessy-
Wiltshire-Hill equations,10–12 center of mass definitions in either Eq. (2) or (7) could be used directly. However, if
the relative motion is expressed using orbit element differences, the center of mass conditions are not obvious, espe-
cially if the chief orbit is allowed to be highly eccentric.

For the subsequent analysis the following notational short hand is used: orbit elements without subscripts are
implied to denote the formation chief or center of mass. To find approximate first order center of mass conditions
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using orbit element differences, we can exploit a relative motion description presented in References 13 and 14. Using
classical orbit element differences, non-dimensional(u, v, w) motion equations of each satellite can be written as

ui =
δai

a
− e δei

2η2
+

1
η2

δui
cos (f − fui

) +
e

2η2
δui

cos (2f − fui
) +O(δoe2) (8)

vi =
((

1 +
e2

2

)
δMi

η2
+ δωi + cos i δΩi

)
− 2

δui

η2
sin (f − fui)

− δui

η2

e

2
sin (2f − fui) +O(δoe2)

(9)

wi =
√

δi2i + sin2i δΩ2
i cos (θ − θwi

) +O(δoe2) (10)

where

δui
=

√
e2 δM2

i

η2
+ δe2

i (11)

fui
= arctan

(
e δMi

−ηδei

)
(12)

θwi = arctan
(

δii
− sin i δΩ

)
(13)

This relative motion description is convenient because it provides a direct description of the general relative motion
in terms of secular offsets and repeating trigonometric terms. Contrary to the analytical solution of the Clohessy-
Wiltshire-Hill equations, the first order relative motion solution is valid for both circular and elliptic chief motions.

For the barycenter conditions in Eq. (7) to be satisfied, the sum of the constant terms, terms depending oncos(f −
fui

), terms depending oncos(2f − fui
), terms depending onsin(f − fui

), and terms depending onsin(2f − fui
)

must vanish independently. Let us first analyze the
∑N

i=1 miui = 0 condition. For the constant terms to vanish, it
must be true that

N∑
i=1

mi

(
δai

a
− e δei

2η2

)
= 0 (14)

For the terms depending oncos(f − fui
) to vanish, we notice that

N∑
i=1

mi

η2
δui

cos(f − fui
) =

N∑
i=1

mi

η2

√
e2 δM2

i

η2
+ δe2

i cos(f − fui
) = 0 (15)

must hold. Note that the different phase anglesfui
make it non-trivial to further refine this condition. Using the

trigonometric identity

A sin f + B cos f =
√

A2 + B2 cos
[
f − tan−1

(
A

B

)]
(16)

we can rewrite condition (15) as

0 =
N∑

i=1

mi

η2

(
e δMi

η
sin f − δei cos f

)

=
1
η2

[(
N∑

i=1

mi e δMi

η

)
sin f +

(
N∑

i=1

(−mi δei)

)
cos f

]

=
1
η2

√√√√( N∑
i=1

mi e δMi

η

)2

+

(
N∑

i=1

(−mi δei)

)2

cos
(
f − f̂u

)
(17)
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where

f̂u = tan−1

( ∑N
i=1

mieδMi

η∑N
i=1(−mi δei)

)
(18)

With the last transformation, an expression is obtained where the phase angle is constant for all summation terms.
Hence, for Eq. (17) to be satisfied for all time, we find that

N∑
i=1

mi δei = 0 (19)

N∑
i=1

mi δMi = 0 (20)

must be true. Revisiting the condition in Eq. (14), Eq. (19) implies that

N∑
i=1

mi δai = 0 (21)

No new conditions on the orbit element differences are found examining thecos(2f − fui
) terms of

∑N
i=1 miui = 0.

Next, let us examine the condition
∑N

i=1 mivi = 0. The terms containingsin(f − fui
) andsin(2f − fui

) do not
provide any new information. Equivalent transformations can be performed to yield conditions in Eqs. (19) and (20).
Thus, let us focus on the constant terms ofvi and examine under what conditions their weighted sum vanishes.

N∑
i=1

mi

[(
1 +

e2

2

)
δMi

η2
+ δωi + cos i δΩi

]
= 0 (22)

which simplifies (using Eq. (20)) to

N∑
i=1

mi (δωi + cos i δΩi) = 0 (23)

This expression will be refined later on in the development. The final condition
∑N

i=1 miwi = 0 of Eq. (7), yields

N∑
i=1

mi

√
δi2i + sin2i δΩ2

i cos (θ − θwi) = 0 (24)

Using similar trigonometric transformations as were used examining the first moment constraint
∑N

i=1 miui = 0, the
following condition is found:√√√√( N∑

i=1

mi δii

)2

+ sin2i

(
N∑

i=1

mi δΩi

)2

cos(θ − θ̂w) = 0 (25)

which leads to the following orbit element constraints:

N∑
i=1

mi δii = 0 (26)

N∑
i=1

mi δΩi = 0 (27)

Substituting Eq. (27) into the condition in Eq. (23) we obtain

N∑
i=1

mi δωi = 0 (28)
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At first glance it might be odd that three Cartesian coordinate constraint equations in Eq. (7) yield six orbit element
difference constraints. Note however, that the full nonlinear mapping between orbit elements and Cartesian coordinates
also involves Cartesian velocities. Therefore, orbit elements are really a blended measure of both position and velocity
information, that is, Eq. (7) directly implies

N∑
i=1

miu̇i =
N∑

i=1

miv̇i =
N∑

i=1

miẇi = 0 (29)

Given relative position vectors of(N − 1) satellites with respect to the center of mass, Eq. (7) uniquely determines
theN th satellite relative position vector. Similarly, Eq. (29) determines theN th satellite relative velocity vector given
(N − 1) satellite relative velocity vectors. The equivalent orbit element difference expressions are summarized as

N∑
i=1

mi δai = 0
N∑

i=1

mi δei = 0
N∑

i=1

mi δii = 0 (30a)

N∑
i=1

mi δΩi = 0
N∑

i=1

mi δωi = 0
N∑

i=1

mi δMi = 0 (30b)

Note that Eqs. (30) are only first order approximations of the formation center of mass definition. While both the
Cartesian coordinate center of mass definition in Eq. (2) and (4) are rigorously true, the above orbit element difference
conditions are first order approximations where we assume that the orbit element differences are small compared to the
chief orbit elements. The result, that the mass-averaged sum of all relative orbit element differences must equal zero
is equivalent to the Cartesian version in Eq. (4). For the sake of clarity, we refer to the mass-averaged orbit element
difference location as the Orbit Element Barycenter (OEB). While not equal to the true Cartesian barycenter (CB) of
the formation, the OEB is of value when describing and controlling formations. Consider a simple leader-follower
2-satellite formation in circular orbit. The true Cartesian barycenter rotates at the same orbit period as the satellites
while having a slightly smaller orbit radius. Thus, the CB does not perform a Keplerian orbit motion.9 Computing
inertial formation barycenter position and velocity vectors(Rc, Ṙc), and translating these coordinates into equivalent
orbit elements, we find that Keplerian motion predicts the CB to move faster than the satellites. Considering a control
law that defines tracking errors with respect to the true formation Cartesian barycenter, the satellites are controlled
with respect to a chief location which has a slightly different orbit period. In contrast, if the OEB is computed using
Eq. (30) for the leader-follower example, the OEB assumes the same semi-major axis as the other two satellites. Both
satellites and barycenter orbit at the same rate assuming Keplerian motion. Thus, the OEB does indeed evolve in a
Keplerian manner. Note that the differences between the Cartesian and orbit element barycenter locations are very
small. A detailed error analysis follows in a later section.

Constraints in Eq. (30) on the motion of Coulomb formations are useful when analyzing orbit element based
feedback control laws. For example, for the dual-craft formation discussed in Reference 7, ifδa1 → 0, the center
of mass definition in Eq. (30) immediately implies thatδa2 → 0, as well. In other words, for the 2-satellite system,
showing convergence of one satellite is equivalent to showing convergence of the entire system.

IV. Angular Momentum
As pointed out before, the inertial angular momentum vectorH is a constant of motion for the formation because

Coulomb forces are internal forces of the spacecraft formation.9 Let Ri be theith inertial spacecraft position vector
andmi be the associated constant spacecraft mass. The spacecraft cluster is assumed to containN craft. The total
formation angular momentum is then expressed as10

H =
N∑

i=1

Hi =
N∑

i=1

Ri ×miṘi (31)

The derivative taken here is an inertial time derivative. In astrodynamics, the massless momentum vectorh is used to
describe the momentum of a spacecraft.

h = R× Ṙ = hı̂h (32)

6 OF 14
AMERICAN INSTITUTE OFAERONAUTICS AND ASTRONAUTICS



The scalarh is the massless momentum magnitude of the spacecraft, while the unit vectorı̂h is both a normal vector
to the orbit plane and collinear withh. Using theh definition, the formation angular momentum vectorH can be
written as

H =
N∑

i=1

mi(Ri × Ṙi) =
N∑

i=1

mihi (33)

Note thathi can be expressed in terms of the semi-major axisa and the eccentricity measureη =
√

1− e2 as

hi =
√

µaiηi (34)

The orbit normal vector is obtained as10

ı̂hi
=

 sin ii sinΩi

− sin ii cos Ωi

cos ii

 (35)

where the vector components are taken with respect to an inertial frameN . Using Eqs. (34) and (35), the total inertial
Coulomb formation angular momentum vector can be written as

H =
N∑

i=1

mi
√

µaiη

 sin ii sinΩi

− sin ii cos Ωi

cos ii

 (36)

If inertial orbit elements are used instead of orbit element differences to describe the satellite motion, then Eq. (36)
provides the full nonlinear formation angular momentum relationship. BecauseH is constant, Eq. (36) provides three
momentum constraints on the Coulomb relative motion. Note that so far no approximations have been introduced to
the momentum constraints.

Using the formation Cartesian barycenter location(Rc, Ṙc), the inertial angular momentum of the formation
center of mass is

Hc = Rc ×MṘc (37)

Note that in general the total formation inertial angular momentum vectorH is not equal to the formation chief
angular momentumHc. However, if relative spacecraft distances are small compared to the inertial chief orbit radius,
thenHc is reasonably close to the constant total formation inertial angular momentum, that is,Hc ≈ H. Since
the relative motion is expressed using orbit element differences, it is desirable to express the law of momentum
conservationH(t) = H(t0) in terms of orbit element differences, as well. Note that Eq. (36) provides the complete
nonlinear solution to the momentum conservation constraint. However, this vector equation is expressed in terms
of orbit elements, and not orbit element differences. To rewrite the formation angular momentum in terms of orbit
element differences, we expandH into a Taylor series about the center of mass states:

H = Hc +
N∑

i=1

∂Hi

∂oei

∣∣∣∣∣
c

δoei +O
(
δoe2

i

)
= Hc +

N∑
i=1

∂hi

∂oei

∣∣∣∣∣
c

mi δoei +O
(
δoe2

i

)
= Hc +

(
∂h

∂oe

∣∣∣∣∣
c

)
N∑

i=1

mi δoei +O
(
δoe2

i

)
= Hc +O

(
δoe2

i

)
(38)

In Eq. (38) corresponding first-order derivatives of the massless momentum vectorshi are evaluated at the common
formation center of mass and are therefore equal for all spacecraft. Pulling the derivatives in front of the summation
sign and using Eqs. (30) we find the angular momentum of the formation barycenter to be a second order accurate
approximation of the constant formation momentum vectorH. The next question is, what are the three momentum
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constraint equations in terms ofδoei? We point out that Eq. (38) do not yield any linearδoe terms. The answer
is that the three momentum constraint in terms ofδoei are inherently satisfied if the formation barycenter condition∑N

i=1 miδoei = 0 is satisfied. Thus, to first order, the six conditions in Eq. (30) include both the three barycenter and
three momentum constraints. Expressing the relative motion using the orbit element differencesδoei, we must assure
that

N∑
i=1

miδoei = 0 (39)

is true to satisfy all six combined barycenter and momentum CFF constraints of the barycenter-relative formation
description using orbit element differences. In case the true nonlinear constraints are to be used instead of the first-
order approximation, then the barycenter constraint in Eq. (4) and inertial momentum constraint in Eq. (36) must be
satisfied. The first-order approximation provides a much more convenient form for analysis of feasible relative motion
dynamics or charged relative motion control.

V. Center of Mass Definitions Error Analysis
As pointed out in a previous section, it proves advantageous for control analysis to define the center of mass of

CFF using orbital elements and orbital element differences. Note, that conditions (30) specify the Cartesian formation
barycenter location to first order, only. A more general nonlinear analysis shows how center of mass approximations
in the orbital element space map into actual position and velocity errors in inertial space.

Let Γ : R6 → R6 be the nonlinear mapping that transforms orbital elements into cartesian orbit position coordi-
nates, that is,

X = Γ(oe) , where X , (R, Ṙ) (40)

The coordinates transformationsR(oe) andṘ(oe) can be written as

R = % [C(Ω, i, ω)]

cos f
sin f

0

 and Ṙ =
√

µ

p
[C(Ω, i, ω)]

 − sin f
e + cos f

0

 (41)

where

% =
p

1 + e cos f
, p = a

(
1− e2

)
, and f = f(M, e) (42)

and

[C(Ω, i, ω)] = [C3(−Ω)][C1(−i)][C3(−ω)] (43)

with [Ci] being the single-axis rotation matrix for theith coordinate axis. While we are expressing position and velocity
in terms of true anomaly anglef , differences in mean anomalyM are used to express the relative motion, therefore
f = f(M, e). Let˜denote states of the OEB location

X̃ , Γ(õe) (44)

The Cartesian formation barycenter (CB) state vector (“true” formation center of mass) is then expressed as

X∗ ,
1
M

N∑
i=1

mi Γ(õe + δoei) (45)

Varying only one of the orbital elements at a time the center of mass error vector becomes

∆X , X∗− X̃

=
1
M

N∑
i=1

mi

[
Γ(õe) +

∂Γ
∂õei

∣∣∣∣∣
c

δoei +
1
2

∂2Γ
∂õe2

i

∣∣∣∣∣
c

δoe2
i +O

(
δoe3

i

)]
− Γ(õe)

=
1

2M

∂2Γ
∂õe2

i

N∑
i=1

mi δoe2
i +O

(
δoe3

i

) (46)
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Using similar arguments as were used to derive Eq. (38) first-order terms in Eq. (46) again vanish according to con-
ditions (30). Let us investigate barycenter model deviations behavior further. Using Eq. (46) it is straightforward to
show that with∆X = (∆R,∆Ṙ)

∆R =
1
M

N∑
i=1

mi

 ∞∑
j=2

1
j!

∂jR

∂oej
i

∣∣∣∣∣
c

(δoei)j


=

1
M

∞∑
j=2

1
j!

∂jR

∂oej

∣∣∣∣∣
c

(
N∑

i=1

mi (δoei)j

) (47)

and therefore

∆R = ‖∆R‖ =
1
M

1
2

∥∥∥∥∥∂2R

∂oe2
i

∣∣∣∣∣
c

∥∥∥∥∥
N∑

i=1

mi (δoei)2 +R∆R

(
O(δoei)3

)
= c∆R

1
2M

N∑
i=1

mi (δoei)2 +R∆R

(
O(δoei)3

) (48)

where we have introduced the symbolc∆R to simplify notation. A similar expression is obtained for∆Ṙ mutatis
mutandis; the RMS deviation ratioγ(δoei) then yields

γ(δoei) ,
∆Ṙ

∆R
=

c∆Ṙ

c∆R

[
1 + R̃∆Ṙ

(
O(δoei)

)][
1 + R̃∆R

(
O(δoei)

)] = c (1 +O(δoei)) (49)

Algebraic expressions for RMS deviation approximation constantsc∆R = c∆R(oe, δoei) andc∆Ṙ = c∆Ṙ(oe, δoei) are
listed in the Appendix.

As discussed in a previous section, both the Cartesian and the orbital element descriptions provide a meaningful
definition for the system barycenter. While traditionally the CB has been used extensively in the literature, the OEB
offers distinct advantages for formation control applications. From this point of view it is more adequate to refer to
the difference between the two barycenter definitions asdeviationsrather than errors. Consequently, we employ from
now on the terminologycenter of mass(or equivalentlybarycenter) deviation vectorto denote∆X and similarly∆R
and∆Ṙ.

Schaub and Alfriend15 present RMS deviations for a linearized relative motion description using orbital element
differences which can be explained analytically using Eq. (46). The RMS deviations show a quadratic behavior
in general with the exception of positional deviations due to variations in semi-major axis. In nonlinear mappings
between orbit element and inertial Cartesian coordinates in Eq. (40), the satellite semi-major axesai appear linearly.
Therefore, the position deviation vector yields∆R(δoei = δai) = 0, as expected.

The following numerical simulation illustrates the formation barycenter model deviations. The chief orbital el-
ement set is given in Table 1. The individual orbit element differences are varied for each case shown up to a
corresponding maximum satellites separation from the formation barycenter of 1000 meters.

Table 1: Chief orbital elements.

Orbital element a [km] e i [◦] Ω [◦] ω [◦] M [◦]

Value 6739.6 9.0× 10−4 51.7 14.6 −33.0 −19.0

Similarly to results published in Reference 15, Figure 1 illustrates how both RMS position and velocity deviations
∆R and∆Ṙ grow in near-quadratic fashion as the orbit element differencesδoei are increased. Figure 2 shows∆Ṙ
versus∆R for the same range of orbit element differences. Ten steps are used to sweep the orbit element differences.
Note the near-linear behavior plotting∆Ṙ vs. ∆R and predicted by Eq. (49).

With RMS deviation approximation constants readily available (Appendix) we introduce the quantitiesε(∆Ṙ) and
ε(∆R) to measure the accuracy of RMS deviation approximations via

ε(∆R) =
∆R− c∆R

1
2M

∑N
i=1 mi (δoei)2

∆R
=
R∆R

(
O(δoei)3

)
∆R

and ε(∆Ṙ) =
R∆Ṙ

(
O(δoei)3

)
∆Ṙ

(50)
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Figure 1: Center of mass RMS deviations∆R (solid lines) and∆Ṙ (dashed lines) as a function of orbital element
differencesδoei for a formation of two spacecraft and a maximal spacecraft-barycenter displacement of 1000
m.
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Ṙ

in
m

/s

δimax
i = 0.0085◦

∆R in m

c) C.M. error for varyingδii

0.00 0.02 0.04 0.06 0.08 0.100.00 

0.25 

0.50 

0.75 

1.00 × 10−4

δΩmax
i = 0.0085◦

∆
Ṙ
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Figure 2: Center of mass RMS deviations∆Ṙ versus∆R for a formation of two spacecraft and a maximal
spacecraft-barycenter displacement of 1000 m. Discrete data points— are plotted using equidistant step sizes
δoei.
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For the two-spacecraft formation example Table 2 lists RMS position and velocity deviations and corresponding rel-
ative errorsε(∆R) andε(∆Ṙ) for a spacecraft-barycenter displacement of 1000 m. The relative error magnitudes
justify approximating barycenter deviations using only the first term in the expansion in Eq. (48).

Table 2: Center of mass RMS deviations∆Ṙ and ∆R and relative errors of first-order center of mass RMS
deviation approximations ε(∆Ṙ) and ε(∆R) for a formation of two spacecraft and a spacecraft-barycenter
displacement of 1000 m.

δoei ∆Ṙ [m/s] ε (∆Ṙ) [%] ∆R [m] ε (∆R) [%]

δai 6.3545× 10−5 3.2974× 10−7 0 0
δei 2.7945× 10−5 5.3899× 10−3 5.5828× 10−3 2.0733× 10−2

δii 5.2028× 10−5 7.8786× 10−7 5.8517× 10−2 1.9257× 10−7

δΩi 7.4239× 10−5 2.5434× 10−7 5.8184× 10−2 7.0776× 10−8

δωi 8.4727× 10−5 5.2788× 10−7 7.4125× 10−2 1.5317× 10−6

δMi 8.4791× 10−5 1.9782× 10−7 7.4181× 10−2 3.3985× 10−8

VI. Conclusion
First order constraints of Coulomb formations are presented using orbit element differences. The formation chief

position is chosen to be the formation center of mass. Because all Coulomb propulsion forces are formation internal
forces, the inertial momentum vector of the entire formation is conserved. This constant vector, along with the center
of mass definition of the formation chief, impose 6 constraints on the Coulomb formation. Using orbit element dif-
ferences, first order approximations of the Cartesian barycenter are found. Further, the orbit element barycenter of the
formation is introduced. This barycenter definition has advantages if used as a referenced point for formation control
laws. The momentum constraint does not yield first order orbit element constraint conditions. Future research will
investigate the second order orbit element based momentum constraints. A careful analysis is presented detailing the
position and velocity differences between the Cartesian and orbit element barycenter definitions. First order analytical
solutions are presented to compute the barycenter differences.
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VII. Appendix
In starting to analyze mappings (41), we notice that the coordinate transformations can be written as products

[C(Ω, i, ω)] ξ(a, e, f(M, e)). Therefore, when evaluating derivatives with respect to a particular orbital element one
needs to focus only on either the rotation matrix or the respective vectorξ. We further note that for our analysis the
true anomaly is treated as a dependent variable, depending on independent variablesM ande.

Calculations of deviation constantsc∆Ṙ and c∆R for semimajor axis variations are straightforward. Deviation
constant computations for variations in orbit orientation parameters{Ω, i, ω} are facilitated by hand by using Singular
Value Decompositions (SVD) for the particular rotation matrix. Note that

d2

dα2
[Cj(α)] = [U(α)]j [S]j [V ]j , i = 1, 2, 3 (51)

where|det([U ]j) | = 1, [S]j projects vectors onto the 1–2 plane and[V ]j essentially simply reorders vector com-
ponents. For the inclination angle, for example, the problem of calculating(d2/di2) [C(Ω, i, ω)] can therefore be
replaced by the problem of computing[S]1[V ]1[C3(−ω)]. A similar analysis can be performed to yield deviation
constants for the ascending node angle and the argument of periapses.

Deviation constants for mean anomaly variations and eccentricity variations are more complex since mappings (41)
are expressed using true anomaly andf = f(M, e) as pointed out before. For eccentricity variationsc∆Ṙ andc∆R are

therefore calculated (using operator notation)[d/de]2 (·) .=
[
∂/∂e + (∂f/∂e)(∂/∂f)

]2(·). Deviation constants for
mean anomaly variations are obtained in a similar fashion.
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Table 3: First-order center of mass RMS deviation constantsc∆Ṙ and c∆R .∥∥∥∥∥∂2Ṙ

∂a2
i

∣∣∣∣∣
c

∥∥∥∥∥ =
√

µ

p

3
4a2

√
1 + 2e cos f + e2 (52)∥∥∥∥∥∂2Ṙ

∂e2
i

∣∣∣∣∣
c

∥∥∥∥∥ =
√

µ

p

1
16(1− e2)2

{[
−20 e + 2

(
−10 + 9 e2

)
cos f + 48 e cos(2f) +

(
36 + 11 e2

)
cos(3f) +

20 e cos(4f) + 3 e2 cos(5f)
]2

+ 4
[
12 + 29 e2 + 76 e cos f +

4
(
9 + 4 e2

)
cos(2f) + 20 e cos(3f) + 3 e2 cos(4f)

]2
sin2 f

}1/2

(53)

∥∥∥∥∥∂2Ṙ

∂i2i

∣∣∣∣∣
c

∥∥∥∥∥ =
√

µ

p

∣∣cos(ω + f) + e cos ω
∣∣ (54)∥∥∥∥∥∂2Ṙ

∂Ω2
i

∣∣∣∣∣
c

∥∥∥∥∥ =
√

µ

p

√
1 + 2e cos f + e2 − sin2 i

[
e cos ω + cos(ω + f)

]2
(55)∥∥∥∥∥∂2Ṙ

∂ω2
i

∣∣∣∣∣
c

∥∥∥∥∥ =
√

µ

p

√
1 + 2e cos f + e2 (56)∥∥∥∥∥ ∂2Ṙ

∂M2
i

∣∣∣∣∣
c

∥∥∥∥∥ =
√

µ

p

(1 + e cos f)3

(1− e2)3

√
2 + 4e cos f + 5e2 − 3e2 cos(2f)

2
(57)

∥∥∥∥∥∂2R

∂a2
i

∣∣∣∣∣
c

∥∥∥∥∥ = 0 (58)∥∥∥∥∥∂2R

∂e2
i

∣∣∣∣∣
c

∥∥∥∥∥ =
p

(1 + e cos f)
| sin f |√
8(1− e2)

√
20− 12 cos(2f) + 8e [5 cos f − cos(3f)] + e2[33− cos(4f)] (59)∥∥∥∥∥∂2R

∂i2i

∣∣∣∣∣
c

∥∥∥∥∥ =
p

1 + e cos f
| sin(ω + f)| (60)∥∥∥∥∥∂2R

∂Ω2
i

∣∣∣∣∣
c

∥∥∥∥∥ =
p

1 + e cos f

√
1− sin2 i sin2(ω + f) (61)∥∥∥∥∥∂2R

∂ω2
i

∣∣∣∣∣
c

∥∥∥∥∥ =
p

1 + e cos f
(62)∥∥∥∥∥ ∂2R

∂M2
i

∣∣∣∣∣
c

∥∥∥∥∥ =
a (1 + e cos f)2

(1− e2)2
(63)
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