Errata List for the AIAA Education Series Text Book
 Analytical Mechanics of Space Systems
 $1^{\text {st }}$ Edition, $2^{\text {nd }}$ Printing

authored by H. Schaub \& J. L. Junkins
Last updated on December 1, 2009

This file contains various typos that were found in the first edition, $2^{\text {nd }}$ printing of the text book. Please use this page to update your book copy. If you find typos that are not listed here, please contact the author at schaub@vt.edu and email the typo type, as well as the typo location within the manuscript. A revision history is provided at the end of the document.

- p. 37, Figure 2.4: Change figure title to "Planar pendulum illustration"
- p. 37, 1st line within Example 2.4: Change to "Consider the motion of a planar pendulum of length L..."
- p. 42, 2nd to last equation: Last term in bracket is missing l and should read

$$
\left.\cdots-l \dot{\theta}^{2} \sin \theta\right)=\cdots
$$

- p. 45, Eq. (2.47) Left hand side should read $M \ddot{\boldsymbol{R}}_{c}=\cdots$
- p. 49, 4 lines before Eq. (2.63): change "... and the inertial force component..." to "... and the internal force component ..."
- p. 52, Figure 2.8 Replace figure with that in Figure 1

Figure 1: (Fig. 2.8) Illustration of two Particles Moving in a Circular Manner on a Level Plane

- p. 53, 1st equation Should read

$$
T\left(t_{0}^{-}\right)=\frac{m_{1}}{2} v_{1}\left(t_{0}^{-}\right)^{2}+\frac{m_{2}}{2} v_{2}\left(t_{0}^{-}\right)^{2}
$$

- p. 53, line after 1st equation Change this text to "while the momentum H about \mathcal{O} along the plane normal direction $\hat{\boldsymbol{\imath}}_{n}$ is"
- p. 53, 2nd equation Should read

$$
H\left(t_{0}^{-}\right)=R_{1} m_{1} v_{1}\left(t_{0}^{-}\right)-R_{1} m_{2} v_{2}\left(t_{0}^{-}\right)=R_{1}\left(m_{1} v_{1}\left(t_{0}^{-}\right)-m_{2} v_{2}\left(t_{0}^{-}\right)\right)
$$

- p. $53,3 r d+4$ th equation Should read

$$
\begin{aligned}
T\left(t_{0}^{+}\right) & =\frac{m_{1}}{2} v_{1}\left(t_{0}^{+}\right)^{2}+\frac{m_{2}}{2} v_{2}\left(t_{0}^{+}\right)^{2} \\
H\left(t_{0}^{+}\right) & =R_{1}\left(m_{1} v_{1}\left(t_{0}^{+}\right)-m_{2} v_{2}\left(t_{0}^{+}\right)\right)
\end{aligned}
$$

- p. 53,5 th +6 th equation Should read

$$
\begin{aligned}
& v_{1}\left(t_{0}^{+}\right)=\frac{m_{1} v_{1}\left(t_{0}^{-}\right)-m_{2}\left(v_{1}\left(t_{0}^{-}\right)+2 v_{2}\left(t_{0}^{-}\right)\right)}{m_{1}+m_{2}} \\
& v_{2}\left(t_{0}^{+}\right)=\frac{m_{2} v_{2}\left(t_{0}^{-}\right)-m_{1}\left(v_{2}\left(t_{0}^{-}\right)+2 v_{1}\left(t_{0}^{-}\right)\right)}{m_{1}+m_{2}}
\end{aligned}
$$

- p. $58,8^{\text {th }}$ line after Section 2.6: change the word "aftward" to "backwards"
- p. 58 , Section 2.6 , 2nd paragraph: change text to "... we utilize Eq. (2.64) or (2.93), which state ... "
- p. 74 , before (3.14) Reference should be " 6 ", not " 7 "
- p. 74, after (3.14) Reference should be " 7 ", not " 8 "
- p. 77, before (3.22) Reference should be " 8 ", not " 9 "
- p. 77, before (3.27) Reference should be " 9 ", not " 10 "
- p. 80 , end of first paragraph Reference should be ' 11 ", not " 12 "
- p. 81, before (3.33) Reference should be " 10 ", not " 11 "
- p. 82 , end of paragraph after (3.37) Reference should be " 4,12 ", not " 5,13 "
- p. 84 , middle of paragraph after (3.47) Reference should be " 4,12 ", not " 5,13 "
- p. 85, Ex. 3.2 the $(3,1)$ element of the $[B N]$ matrix should be 0.126826 , remove the negative sign.
- p. 87, section 3.4 Reference should be " 13,14 ", not " 14,15 "
- p. 88 , first line Reference should be " 7 ", not " 8 "
- p. 91, last line Reference should be " 15 ", not " 16 "
- p. 92, before (3.81) Reference should be " 4,15 ", not " 5,16 "
- p. 93, before (3.84) Reference should be " 4 ", not " 5 "
- p. 94, before (3.88) Reference should be " $4,16-18$ ", not " $5,17-19$ "
- p. 97, before (3.94a) Reference should be "19", not " 20 "
- p. 99, Example 3.7 The values of the $[F N]$ matrix at the end are switched. It should state

$$
[F N]=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0
\end{array}\right]
$$

- p. 102, 3rd line from bottom Reference should be " 20 ", not " 21 "
- p. 103, before (3.117) Reference should be " 20 ", not " 21 "
- p. 104, before (3.118) Reference should be " 3,20 ", not " 4,21 "
- p. 104, before (3.119) Reference should be " 4,20 ", not " 5,21 "
- p. 104, before (3.123) Reference should be " 4,21 ", not " 5,22 "
- p. 105 , before (3.127) Reference should be " 3 ", not " 4 "
- p. 105 , before (3.129) Reference should be " 4 ", not " 5 "
- p. 105, last line Reference should be " $3,4,9,15,22$ ", not " $4,5,10,16,23$ "
- p. 106 , middle of page Reference should be " 3,9 ", not " 4,10 "
- p. 106, before (3.132) Reference should be " $3,9,15$ ", not " $4,10,16$ "
- p. 107, before (3.134) Reference should be "4,20,23-25", not " $5,21,24-26$ "
- p. 109, before (3.139) Reference should be " 20,24 ", not " 21,25 "
- p. 110, before (3.143) Reference should be " $4,20,24,25$ ", not " $5,21,25,26$ "
- p. 110, before (3.144) Reference should be " 4,20 ", not " 5,21 "
- p. 111, before (3.147) Reference should be " 4 ", not " 5 "
- p. 112, before (3.149) Reference should be " 20,25 ", not " 21,26 "
- p. 112, before (3.150) Reference should be " 4,20 ", not " 5,21 "
- p. 112, before (3.151) Reference should be " 26 ", not " 27 "
- p. 113, before (3.154) Reference should be " 4 ", not " 5 "
- p. 113, before (3.155) Reference should be " 15,27 ", not " 16,28 "
- p. 113, middle of page Reference should be "15", not " 16 "
- p. 113,2 nd line from bottom Reference should be " 15 ", not " 16 "
- p. 115, section 3.8.1 Reference should be " 20 ", not " 21 "
- p. 116, section 3.8.2 Reference should be " 27 ", not " 28 "
- p. 118, section 3.8.3 (2nd line) Reference should be " 28 ", not " 29 "
- p. 118, section 3.8.3 (3rd line) Reference should be " 29 ", not " 30 "
- p. 119, section 3.8.4 (4th line) Reference should be " 14 ", not " 15 "
- p. 120, before (3.186) Reference should be " 30 ", not " 31 "
- p. 121, before (3.193) Reference should be " 3 ", not " 4 "
- p. 122, ref. 19: change reference author to "Sheppard, S. W. "
- p. 125, Problem 3.12 Replace [$\hat{e}]$ with $[\tilde{e}]$
- p. 129, Eq. (4.10): missing a subscript 2, should read

$$
\boldsymbol{r}=r_{1} \hat{\boldsymbol{b}}_{1}+r_{2} \hat{\boldsymbol{b}}_{2}+r_{3} \hat{\boldsymbol{b}}_{3}
$$

- p. 130, Eq. (4.17): Change equation to

$$
\boldsymbol{H}_{O}=M \boldsymbol{R}_{c} \times\left(\boldsymbol{\omega} \times \boldsymbol{R}_{c}\right)+\left[I_{c}\right] \boldsymbol{\omega}
$$

- p. 131, 4th line from top: Change sentence to "... the inertia matrix \mathcal{B} about O is given..."
- p. 133, Example 4.1: After the first equation on the top of p. 133, change the text to:

The normal force is defined as $\boldsymbol{N}=N \hat{\boldsymbol{e}}_{3}$, the surface friction force is $\boldsymbol{F}_{f}=F_{f} \hat{\boldsymbol{e}}_{\phi}$, and the gravity force is given by $\boldsymbol{F}_{g}=-m g \hat{\boldsymbol{e}}_{3}$. Note that at the hinge point only the torques $\boldsymbol{\tau}_{\phi}=\tau_{\phi} \hat{\boldsymbol{e}}_{\phi}$ and $\boldsymbol{\tau}_{3}=\tau_{3} \hat{e}_{3}$ are applied. The external torque about point O is

$$
\begin{aligned}
\boldsymbol{L}_{O} & =\boldsymbol{R}_{c} \times\left(\boldsymbol{R}_{c}+\boldsymbol{N}\right)+\boldsymbol{\tau}_{\phi}+\boldsymbol{\tau}_{3}+\left(\boldsymbol{R}_{c}-r \hat{\boldsymbol{e}}_{3}\right) \times \boldsymbol{F}_{f} \\
& =r F_{f} \hat{\boldsymbol{e}}_{L}+\left(L(m g-N)+\tau_{\phi}\right) \hat{\boldsymbol{e}}_{\phi}+\left(\tau_{3}+R_{c} F_{f}\right) \hat{\boldsymbol{e}}_{3}
\end{aligned}
$$

Note that by taking the moments about point O the reaction forces of the pin joint O do not appear. Using Euler's equation $\dot{\boldsymbol{H}}_{O}=\boldsymbol{L}_{O}$ and equating vector components, we find

$$
\begin{aligned}
N & =m g+\frac{I_{s}}{r} \dot{\phi}^{2}+\frac{\tau_{\phi}}{L} \\
\tau_{3} & =0 \\
F_{f} & =0
\end{aligned}
$$

To express τ_{ϕ}, we compute all moments and torque about the disk center of mass and find

$$
\begin{aligned}
\boldsymbol{H}_{c} & =\left[I_{c}\right] \boldsymbol{\omega}_{\mathcal{B} / \mathcal{N}}=-I_{s} \frac{L}{r} \dot{\phi} \hat{\boldsymbol{e}}_{L}+I_{t} \dot{\phi} \hat{\boldsymbol{e}}_{3} \\
\boldsymbol{L}_{c} & =F_{f} r \hat{\boldsymbol{e}}_{L}-\tau_{\phi} \hat{\boldsymbol{e}}_{\phi}-\tau_{3} \hat{\boldsymbol{e}}_{3}
\end{aligned}
$$

Using $\tau_{3}=F_{f}=0$ and $\dot{\boldsymbol{H}}_{c}=\boldsymbol{L}_{c}$, we find

$$
\tau_{\phi}=I_{s} \frac{L}{r} \dot{\phi}^{2}
$$

Note that if $\dot{\phi}$ were not 0 , then we would have a non-zero F_{f} term. Finally, the normal force magnitude is expressed as

$$
N=m g+2 \frac{I_{s}}{r} \dot{\phi}^{2}
$$

The polar moment of inertia of a circular disk of mass m and radius r is

$$
I_{s}=\frac{m}{2} r^{2}
$$

which allows N to be written as

$$
N=m\left(g+r \dot{\phi}^{2}\right)
$$

- p. 140, Ex. 4.3, 2nd equation from bottom: Should read $\ddot{\boldsymbol{r}}_{c}=-(R+r) \dot{\theta}^{2} \hat{\boldsymbol{e}}_{r}+(R+r) \ddot{\theta} \hat{\boldsymbol{e}}_{\theta}$
- p. 147, Fig 4.7: The sepratrix arrow directions were corrected, as shown in Fig. 2 of this document.

Figure 2: (Fig. 4.7) A Family of Energy Ellipsoid and Momentum Sphere Intersections

- p. 158, Eq.(4.113): 2 nd term of right hand side should be $-\boldsymbol{\omega} \times J_{s} \hat{\boldsymbol{g}}_{s}\left(\omega_{s}+\Omega\right)$
- p. 159, Eq. 4.116b: Should begin with $\tau_{t}=\ldots$
- p. 159, Eq. 4.199: Add brackets inside the summation terms to read $\sum_{i=1}^{N}\left(\dot{\gamma} u_{g_{i}}+\Omega_{i} u_{s_{i}}\right)$
- p. 161, Eq. 4.126: The last line of this equation should read

$$
\approx \frac{1}{R_{c}^{3}}\left(1-3 \frac{\boldsymbol{R}_{c} \cdot \boldsymbol{r}}{R_{c}^{2}}-\frac{3}{2}\left(\frac{\boldsymbol{r} \cdot \boldsymbol{r}}{R_{c}^{2}}\right)+\frac{15}{2}\left(\frac{\boldsymbol{R}_{c} \cdot \boldsymbol{r}}{R_{c}^{2}}\right)^{2}+\cdots\right)
$$

- p. 162, last sentence before Eq. 4.127: Change to "Substituting up to first order terms of Eq. (4.126) into Eq. (4.125) yields"
- p. 163, sentence before Eq. 4.136: " ... the resulting product, dropping terms higher than $2^{\text {nd }}$ order results in the gravity force vector \boldsymbol{F}_{G} being expressed as"
- p. 163, Eq. 4.136: change equation to:

$$
\begin{aligned}
\boldsymbol{F}_{G}=-\frac{G M_{e}}{R_{c}^{3}}\left[\int_{\mathcal{B}} \boldsymbol{r} \mathrm{d} m-\frac{3}{R_{c}^{2}} \int_{\mathcal{B}}\left(\boldsymbol{r} \cdot \boldsymbol{R}_{c}\right) \boldsymbol{r} \mathrm{d} m\right. & +\boldsymbol{R}_{c} \int_{\mathcal{B}} \mathrm{d} m-\frac{3}{R_{c}^{2}} \int_{\mathcal{B}}\left(\boldsymbol{R}_{c} \cdot \boldsymbol{r}\right) \boldsymbol{R}_{c} \mathrm{~d} m \\
& \left.-\frac{3}{2 R_{c}^{2}} \int_{\mathcal{B}} \boldsymbol{R}_{c}(\boldsymbol{r} \cdot \boldsymbol{r}) \mathrm{d} m+\frac{15}{2 R_{c}^{4}} \int_{\mathcal{B}}\left(\boldsymbol{R}_{c} \cdot \boldsymbol{r}\right)^{2} \boldsymbol{R}_{c} \mathrm{~d} m\right]
\end{aligned}
$$

- p. 163, paragraph prior to Eq. 4.137: Change to "Note that the first and third term in the ... "
- p. 163, Eq. 4.137: Change equation to:

$$
\begin{aligned}
\boldsymbol{F}_{G}=-\frac{G M_{e}}{R_{c}^{3}}\left[m \boldsymbol{R}_{c}-\frac{3}{R_{c}^{2}} \int_{\mathcal{B}}\left(\boldsymbol{r} \times\left(\boldsymbol{r} \times \boldsymbol{R}_{c}\right)\right.\right. & \left.+r^{2} \boldsymbol{R}_{c}\right) \mathrm{d} m-\frac{3}{2 R_{c}^{2}} \int_{\mathcal{B}} r^{2} \boldsymbol{R}_{c} \mathrm{~d} m \\
& \left.+\frac{15}{2 R_{c}^{4}} \int_{\mathcal{B}} \boldsymbol{R}_{c} \cdot\left(\boldsymbol{r} \times\left(\boldsymbol{r} \times \boldsymbol{R}_{c}\right)+r^{2} \boldsymbol{R}_{c}\right) \boldsymbol{R}_{c} \mathrm{~d} m\right]
\end{aligned}
$$

- p. 164 , top of page: delete the text "where the last term in the parenthesis is zero due to the definition of the center of mass."
- p. 164, top of page: Change 2 nd sentence to "Using the definition of the inertia matrix in Eq. (4.14), as well as $\hat{\boldsymbol{\imath}}_{r}=\boldsymbol{R}_{c} / R_{c}$ and $\int_{\mathcal{B}} r^{2} \mathrm{~d} m=\frac{1}{2} \operatorname{tr}([I])$, the gravity force vector of a rigid ... "
- p. 164, Eq. 4.138: Change equation to

$$
\boldsymbol{F}_{G}=-\frac{\mu m}{R_{c}^{3}}\left(1+\frac{3}{m R_{c}^{2}}\left([I]+\frac{1}{2}\left(\operatorname{tr}([I])-5\left(\hat{\boldsymbol{\imath}}_{r}^{T}[I] \hat{\boldsymbol{\imath}}_{r}\right)\right)\left[I_{3 \times 3}\right]\right)\right] \boldsymbol{R}_{c}
$$

- p. 164, after Eq. 4.138: add "where $\mu=G M_{e}$."
- p. 183, Eq. 5.21: summation limit, should read $\cdots+\sum_{k=1}^{n} \frac{\partial \boldsymbol{R}}{\partial q_{k}} \dot{q}_{k}, \cdots$
- p. 184, Eq. 5.23: summation limit, should read $\cdots+\sum_{k=1}^{n} \dot{q}_{k} v_{i k}, \cdots$
- p. 187, Eq. 5.38: should read

$$
\begin{aligned}
& {\left[\boldsymbol{f}_{1}-m_{1} \dot{\boldsymbol{V}}_{1}\right] \cdot \boldsymbol{v}_{11}+\left[\boldsymbol{f}_{2}-m_{2} \dot{\boldsymbol{V}}_{2}\right] \cdot \boldsymbol{v}_{21}=0} \\
& {\left[\boldsymbol{f}_{1}-m_{1} \dot{\boldsymbol{V}}_{1}\right] \cdot \boldsymbol{v}_{12}+\left[\boldsymbol{f}_{2}-m_{2} \dot{\boldsymbol{V}}_{2}\right] \cdot \boldsymbol{v}_{22}=0}
\end{aligned}
$$

- p. 187, Eq. 5.39: Lower right element should read $v_{22}=r \hat{\boldsymbol{e}}_{\theta}$
- p. 189, section 5.3.3 Replace "rheonomic" with "scleronomic"
- p. 190, Eq. 5.50: 3 rd equation should $\operatorname{read} \ddot{\boldsymbol{R}}=-\left(R \dot{\theta}^{2}\right) \hat{\boldsymbol{e}}_{r}+(R \ddot{\theta}) \hat{\boldsymbol{e}}_{\theta}$
- p. 191, Eq. 5.52: Should read $\boldsymbol{F}_{c}=\cdots$
- p. 194, Eq. 5.66: Replace L with R and change equation to

$$
x^{2}+y^{2}-R^{2}=0
$$

- p. 194, line before Eq. 5.67: Shoud read "...two time derivatives of Eq. (5.66) as"
- p. 195, Eq. 5.77: Should read

$$
\begin{aligned}
B(x, y, z, t) & =\frac{\partial \psi}{\partial t} \\
A_{1}(x, y, z, t) & =\frac{\partial \psi}{\partial x},
\end{aligned} \quad A_{2}(x, y, z, t)=\frac{\partial \psi}{\partial y}, \quad A_{3}(x, y, z, t)=\frac{\partial \psi}{\partial z}
$$

- p. 195, Eq. 5.78: Should read
- p. 203: replace text after Eq. (5.123) and right before (5.126) with:
"Substituting Eq. (5.123) into (5.122) and solving for λ yields:

$$
\begin{equation*}
\lambda=-1 \pm 5 \sqrt{2} \tag{5.124}
\end{equation*}
$$

Substituting these two λ values into Eq. (5.123) yields the following stationary points:"

- p. 211, first equation on page: Should read

$$
V=-m g r \cos \theta+\frac{1}{2} k\left(r-r_{0}\right)^{2}
$$

- p. 207, Ex. 5.8, 3rd line: should read " \cdot. unstretched length is d."
- p. 212, middle of page: T and V should read as

$$
\begin{aligned}
T & =\frac{1}{2}\left(m_{1}+m_{2}\right) \dot{x}^{2}+\frac{1}{2} m_{2}\left[r^{2} \dot{\theta}^{2}+2 \dot{x} r \dot{\theta} \cos \theta\right] \\
V & =\frac{1}{2} k x^{2}+m_{2} g r(1-\cos \theta)
\end{aligned}
$$

- p. 218, Eq. (5.183): Change last term to $B_{1}=-\Omega$
- p. 219 , between Eq. (5.191) and (5.192): should read "for vectors ${ }^{\mathcal{F}}\left\{\partial \boldsymbol{R}_{i} / \partial t\right\}$ "
- p. 219-220, Eq. (5.192), (5.193), (5.194): partial derivative sign missing in $\quad\left\{\frac{\mathcal{F}}{\{ }\left\{\boldsymbol{R}_{i}\right\}\right.$
- p. 241, after (6.16): Remove the "" symbol. Should read "is an extremum for a large..."
- p. 242, equation after (6.18): Remove subscript "j", should read $\delta W=\sum_{i=1}^{N} \boldsymbol{F}_{i} \cdot \delta \boldsymbol{R}_{i}$
- p. 243 , Eq. (6.21): change 2 nd equal sign to the " \approx " symbol
- p. 247, Eq. (6.37) : On the right hand side, change $m c$ to $m c^{2}$ by adding the square over the c variable
- p. 247, Eq. (6.38): 2nd line, change right hand side to $t_{f}<\frac{10}{\omega^{2}}$, 3rd line change right hand side to $t_{f}>\frac{10}{\omega^{2}}$
- p. 247, last equation of page): change 2 nd summation limit from N to n, should read

$$
\mathcal{B}=\sum_{i=1}^{N} m_{i} \dot{\boldsymbol{R}}_{i} \cdot \sum_{j=1}^{n} \frac{\partial \boldsymbol{R}_{i}}{\partial q_{j}} \delta q_{j}
$$

- p. 248, Eq. (6.40): change 1st summation limit from N to n, should read

$$
\mathcal{B}=\sum_{j=1}^{n} \sum_{i=1}^{N} m_{i} \dot{\boldsymbol{R}}_{i} \cdot \frac{\partial \boldsymbol{R}_{i}}{\partial q_{j}} \delta q_{j}
$$

- p. 248, Eq. (6.42): change 2 nd summation limit from N to n, should read

$$
\mathcal{B}=\sum_{i=1}^{N} m_{i} \dot{\boldsymbol{R}}_{i} \cdot \delta \boldsymbol{R}_{i} \equiv \sum_{j=1}^{n} \frac{\partial T}{\partial q_{j}} \delta q_{j}
$$

- p. 248, Eq. (6.43): change 2nd summation limit from N to n, should read

$$
\int_{t_{0}}^{t_{f}}(\delta T+\delta W) \mathrm{d} t=\left.\left(\sum_{j=1}^{n} \frac{\partial T}{\partial q_{j}} \delta q_{j}\right)\right|_{t_{0}} ^{t_{f}}
$$

- p. 249, Eq. (6.49): The partial derivative of u should be with respect to t and not x, equation should read:

$$
\delta \int_{t_{0}}^{t_{f}}(T-V) \mathrm{d} t=\delta \int_{t_{0}}^{t_{f}}[\underbrace{\frac{1}{2} \int_{0}^{L} \rho A\left(\frac{\partial u(x, t)}{\partial t}\right)^{2} \mathrm{~d} x}_{T}-\underbrace{\frac{1}{2} \int_{0}^{L} E A\left(\frac{\partial u(x, t)}{\partial x}\right)^{2} \mathrm{~d} x}_{V}] \mathrm{d} t
$$

- p. 252, 1st line: should read "... these into Eq. (6.43) with ... "
- p. 252, Eq. (6.61): should read $\cdots=\left.m(\dot{q} \delta q)\right|_{0} ^{t}$
- p. 252, line before Eq. (6.65): should read "... of terms of δa_{i} yields"
- p. 255, 2nd line after Eq. (6.72): change bracketed term to $\left\{\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{w}, \dot{\boldsymbol{w}}, \boldsymbol{w}^{\prime}, \boldsymbol{w}^{\prime \prime}\right\}$
- p. 255 , 3rd line after Eq. (6.72): change to "... is a function with similar a argument list as..."
- p. 255, 2nd line of Eq. (6.73): At the end of equation, change to

$$
\left.\cdots, \boldsymbol{w}^{\prime}(t, x), \boldsymbol{w}^{\prime \prime}(t, x)\right) \mathrm{d} x
$$

- p. 256, Eq. (6.74c): change to

$$
\hat{\mathcal{L}}=\hat{T}\left(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{w}(x), \dot{\boldsymbol{w}}(x), \boldsymbol{w}^{\prime}(x), \boldsymbol{w}^{\prime \prime}(x)\right)-\hat{V}\left(\boldsymbol{q}, \boldsymbol{w}(x), \boldsymbol{w}^{\prime}(x)\right)
$$

- p. 256 , first line of Eq. (6.76): \quad Should start with $\int_{t_{0}}^{t_{f}} \delta \mathcal{L} \mathrm{~d} t=\cdots$
- p. 256, end of second line of Eq. (6.76): Should end with

$$
\left.\cdots+\frac{\partial \mathcal{L}}{\partial \boldsymbol{w}^{\prime}} \delta \boldsymbol{w}^{\prime}+\frac{\partial \mathcal{L}}{\partial \boldsymbol{w}^{\prime \prime}} \delta \boldsymbol{w}^{\prime \prime}\right) \mathrm{d} x
$$

- p. 257, 2nd line after Eq. (6.77): change to "... on the variables $\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{w}, \dot{\boldsymbol{w}}, \boldsymbol{w}^{\prime}, \boldsymbol{w}^{\prime \prime}$, and \dot{w}."
- p. 259, 1st equation top of page: Should read $\int_{t_{0}}^{t_{f}} \delta \mathcal{L} \mathrm{~d} t=0$
- p. 259, (6.85): , equation should start out with $\delta V=\cdots$
- p. 302, last 2 equations in the example: The $(2,2)$ element of the matrix should read $-\frac{c}{m}$ in these last two equations.
- p. 307, 3rd line from top of page: should read $\dot{V} \leq-\lambda V$
- p. 307, Theorem 8.5: The V derivative should be with respect to time, thus it should read $\frac{\mathrm{d}^{i} V(\boldsymbol{x})}{\mathrm{d} t^{i}}$ and $\frac{\mathrm{d}^{k} V(\boldsymbol{x})}{\mathrm{d} t^{k}}$
- p. 312 , 1st equation on the page: the last term should read $\cdots-2 P \delta \dot{\boldsymbol{x}}^{T} \delta \dddot{\boldsymbol{x}}$
- p. 312, Eq. (8.19): move the $[\operatorname{bracket}$ to read $[M(\boldsymbol{q})] \ddot{\boldsymbol{q}}=-[\dot{M}(\boldsymbol{q}, \dot{\boldsymbol{q}})] \dot{\boldsymbol{q}}+\cdots$
- p. 313, Eq. (8.28): remove the $1 / 2$ term to read $\dot{V}=\delta \dot{\boldsymbol{q}}^{T}\left(-\frac{1}{2}[\dot{M}]\left(\dot{\boldsymbol{q}}+\dot{\boldsymbol{q}}_{r}\right)+\cdots\right)$
- p. 315, Eq. (8.36): Replace $\cdots+\omega \times \boldsymbol{\omega}_{r}-\cdots$ with $\cdots+[I] \boldsymbol{\omega} \times \boldsymbol{\omega}_{r}-\cdots$
- p. 315, Eq. (8.40): \quad Should read $\dot{\boldsymbol{p}}=-\frac{\partial \mathcal{H}}{\partial \dot{\boldsymbol{q}}}+\boldsymbol{Q}$
- p. 317, 1st equation in Example 8.8: The (2,3) matrix element should read $m_{3} l_{1} l_{3} \cos \left(\theta_{3}-\theta_{1}\right)$
- p. 326, line before Eq. (8.78): "Combining Eqs. (8.33) and (8.67)..."
- p. 326, Eq. (8.78): \quad Should read $V(\delta \boldsymbol{\omega}, \boldsymbol{\sigma})=\frac{1}{2} \delta \boldsymbol{\omega}^{T}[I] \delta \boldsymbol{\omega}+2 K \ln \left(1+\boldsymbol{\sigma}^{T} \boldsymbol{\sigma}\right)$
- p. 331, 5th line from top of page: Should read "...torque vector $\Delta \boldsymbol{L}=(0.05,0.10,-0.10)^{T}$ $\mathrm{N} \cdot \mathrm{m}$ is added."
- p. 332, Eq. (8.98): \quad Should read $V(\delta \boldsymbol{\omega}, \boldsymbol{\sigma}, \boldsymbol{z})=\ldots$
- p. 336, Eq. (8.113): The terms $\boldsymbol{\sigma}_{i}$ and $\delta \boldsymbol{\omega}_{i}$ should not be bold
- p. 336, Eq. (8.115): Remove the " $-2 P_{i}^{2 "}$ term
- p. 336, Eq. (8.116): Remove the " $-2 P_{i}^{2 "}$ term
- p. 342, Eq. (8.124): Change the end of the equation to read $\ldots+K \boldsymbol{\sigma}+\boldsymbol{L}$)
- p. 342, Eq. (8.125): The 2nd line on the right hand side should read

$$
u_{\max _{i}} \cdot \operatorname{sgn}\left(u_{\mathrm{us}_{i}}\right) \quad \text { for }\left|u_{\mathrm{us}_{i}}\right|>u_{\max _{i}}
$$

- p. 342, Eq. (8.126): Change the equation to read $\ldots-K \boldsymbol{\sigma}-\boldsymbol{L})_{i} \mid \leq u_{\max _{i}}$
- p. 343, 2nd line: Start sentence with "Assuming no external torque \boldsymbol{L}, this allows \dot{V}..."
- p. 346 , line before Eq. (8.141): change $[\dot{T}] \omega$ to $[\dot{T}] \boldsymbol{\omega}$
- p. 346, Eq. (8.141): Change equation to $[\dot{T}] \boldsymbol{\omega}=\cdots$
- p. 346, line after Eq. (8.141): change $[\dot{T}] \omega$ to $[\dot{T}] \omega$
- p. 350, Table 8.4: The units of $[P]$ should be " $\mathrm{rad} / \mathrm{s} "$, and the units for K should be " $\mathrm{rad}^{2} / \mathrm{s}^{2}$ "
- p. 351, Eq. (8.160): There is a dot missing over the $\boldsymbol{\omega}$, the equation should read $u_{s_{i}}=$ $J_{s_{i}}\left(\dot{\Omega}_{i}+\hat{\boldsymbol{g}}_{s_{i}}^{T} \dot{\boldsymbol{\omega}}\right)$
- p. 352, Eq. (8.164): Should read $\dot{V}=-\delta \boldsymbol{\omega}^{T}[P] \delta \boldsymbol{\omega}$
- p. 354, Eq. (8.171): Should read "... $+2 K \ln \left(1+\boldsymbol{\sigma}^{T} \boldsymbol{\sigma}\right)$ "
- p. 355, Eq. (8.174): Last bracket term should read $\cdots\left(\hat{\boldsymbol{g}}_{s_{i}} \hat{\boldsymbol{g}}_{t_{i}}^{T}+\hat{\boldsymbol{g}}_{t_{i}} \hat{\boldsymbol{g}}_{s_{i}}^{T}\right)$. The transpose on the 2nd $\hat{\boldsymbol{g}}_{t_{i}}$ should be removed.
- p. 355, Eq. (8.174): $\quad \gamma_{i}$ should be $\dot{\gamma}_{i}$
- p. 362, Eq. (8.196): \quad Should read $\dot{\boldsymbol{\eta}}=\left(\left[I_{2 N \times 2 N}\right]-[\hat{W}][Q]^{T}\left([Q][\hat{W}][Q]^{T}\right)^{-1}[Q]\right) \boldsymbol{d}=\ldots$
- p. 363, Eq. (8.203): Remove " ≤ 0 ", should read $\dot{V}_{e}=-k_{e} \boldsymbol{e}^{T}[\tau][\tau] \boldsymbol{e}$
- p. 363, Eq. (8.206): \quad Should read $\dot{\boldsymbol{\eta}}=k_{e}\left([Q]^{T}\left([Q][Q]^{T}\right)^{-1}[Q]-\left[I_{2 N \times 2 N}\right]\right)[A]\binom{\Delta \boldsymbol{\Omega}}{\Delta \gamma}$
- p. 364, Eq. (8.207): \quad Should read $\dot{\boldsymbol{\eta}}=k_{e}\left([\hat{W}][Q]^{T}\left([Q][\hat{W}][Q]^{T}\right)^{-1}[Q]-\left[I_{2 N \times 2 N}\right]\right)[A]\binom{\Delta \boldsymbol{\Omega}}{\Delta \boldsymbol{\gamma}}$
- p. 365, Tabe 8.5: The units of $\dot{\gamma}\left(t_{0}\right)$ should read "rad/s"
- p. 368, Eq. (8.213): change last term to $\cdots-\frac{\sigma_{1}}{\sigma_{3}^{2}} \frac{\partial \sigma_{3}}{\partial \gamma_{i}}$, it is missing a square in the first denominator
- p. 368, Eq. (8.216): last term in equation should read $\cdots+\hat{\boldsymbol{g}}_{t_{i}} J_{s_{i}}\left(\frac{\partial \hat{\boldsymbol{g}}_{s_{i}}}{\partial \gamma_{i}}{ }^{T} \boldsymbol{\omega}\right)$
- p. 368, Eq. (8.218): last term in equation should read $\cdots+\hat{\boldsymbol{g}}_{t_{i}} J_{s_{i}} \omega_{t_{i}}$
- p. 369, Tabe 8.6: The units of $\dot{\gamma}\left(t_{0}\right)$ should read "rad/s"
- p. 375, Problem 8.4 (c): Sentence should start with "Use higher order derivatives of the Lyapunov..."
- p. 376, Problem 8.8 (b): First sentence should read "... reference motion $x_{r}(t)$ and $\dot{x}_{0}=0$ m/s."
- p. 396, Ex. 9.1: 2nd equation should read $h P=2 A=2 \pi a b$
- p. 396, Ex. 9.1: After Eq. (9.68), it should read "... that the term P^{2} / a^{3} is a constant."
- p. 397, Eq. (9.75): Should end with $-\frac{\mu \alpha}{2}$
- p. 415, before Figure 9.11: In this second printing the typesetters forgot to add the second title here, as well as two lines of text? Please insert:

9.5.3 Lagrange/Gibbs F and G Solution

The orbit plane is defined through the two initial condition vector $\boldsymbol{r}\left(t_{0}\right)$ and $\dot{\boldsymbol{r}}\left(t_{0}\right)$ as shown in Fig. 9.11. Because any orbit position vector $\boldsymbol{r}(t)$ and velocity...

- p. 419, Eq. (9.180): Should read $F \dot{G}-G \dot{F}=1$
- p. 420, bottom of page: Typesetting error. Remove the title "Reference" and the 4 references listed at the bottom of page 420, they are repeated again at the top of page 421.
- p. 422 , top of page: the first part of the problem statement of 9.5 is missing. It should read: 9.5: Consider two spacecraft (A and B) in the same circular orbit of radius a. Spacecraft B is initially θ radians of true anomaly ahead of A. It is desired that the spacecraft A "catch up" (or rendezvous) with B by transferring temporarily onto a "chase" orbit, then transferring back onto the original circular orbit. Referring to Fig. P9.5, two options are being considered:
Option 1: Use an Interior Orbit Spacecraft A decreases its velocity (by amount Δv_{1}), so that it transfers at apogee onto a judicious chase orbit. Upon return to apogee, it increases its velocity by Δv_{1} to rendezvous with spacecraft B and maintain again a circular orbit of radius a.
Option 2: Use an Exterior Orbit Spacecraft A increases...
- p. 426, $4^{\text {th }}$ line after Eq. (10.16): Should read ".. motion of (m_{1}, m_{2}, m_{3}) will remain coplanar forever, ..."
- p. $427,1^{\text {st }}$ line after Eq. (10.22): \quad Should read "The resulting condition $\boldsymbol{r}_{i} \times \ddot{\boldsymbol{r}}_{i}=0$ dictates that the ..."
- p. 434, Eq. (10.55): Change equation (10.55) to:

$$
\operatorname{det}([B])=m_{3}\left(\frac{\omega^{2}}{G}-\frac{M}{\rho^{3}}\right)^{2}
$$

- p. 442, 2nd line after Eq. (10.76): Should read "Think of C as a relative energy measure."
- p. 453, Eq. (10.97): Left hand side should read $\stackrel{\circ}{\boldsymbol{r}}+2[\tilde{\boldsymbol{\Omega}}] \stackrel{\circ}{\boldsymbol{r}}+[\tilde{\boldsymbol{\Omega}}]^{2} \boldsymbol{r}=\cdots$
- p. 453, After Eq. (10.97): Change end of line to "..., and $\boldsymbol{\Omega}=(0,0,1)^{T}$ is ..."
- p. 454, Eq. (10.99): Missing a 2, should read $\delta^{\text {oo }}+2[\tilde{\boldsymbol{\Omega}}] \delta \boldsymbol{r}+[\tilde{\boldsymbol{\Omega}}]^{2} \delta \boldsymbol{r}=\ldots$
- p. 454, Eq. (10.101): The ρ_{2}^{3} term should be ρ_{2}^{5}. (second line, in the denominator)
- p. 455, Eq. (10.109): Equation should read $\lambda_{5,6}^{2}=-E$
- p. 469, Eq. (11.13): Change γ^{2} to γ, term 3 should read ... $\left(3 \cos ^{2} \gamma-1\right) \ldots$
- p. 470, Eq. (11.19): right hand side should read $=\frac{G}{2 r^{3}} \cdots$
- p. 471, Eq. (11.24): first term in integral should read $\left[x^{2}\left(\eta^{2}+\zeta^{2}\right)+\cdots\right.$
- p. 479, Eq. (11.61): change equation to $J_{k}=-\frac{A_{k}}{r_{\text {eq }}^{k} G M}$
- p. 481, Eqs. (11.65)-(11.68): There are some sign errors and one coefficient error in these equations. Replace with:

$$
\begin{aligned}
& \boldsymbol{a}_{J_{3}}=\frac{1}{2} J_{3}\left(\frac{\mu}{r^{2}}\right)\left(\frac{r_{\mathrm{eq}}}{r}\right)^{3}\left(\begin{array}{c}
5\left(7\left(\frac{z}{r}\right)^{3}-3\left(\frac{z}{r}\right)\right) \frac{x}{r} \\
5\left(7\left(\frac{z}{r}\right)^{3}-3\left(\frac{z}{r}\right)\right) \frac{y}{r} \\
3\left(1-10\left(\frac{z}{r}\right)^{2}+\frac{35}{3}\left(\frac{z}{r}\right)^{4}\right)
\end{array}\right) \\
& \boldsymbol{a}_{J_{4}}=\frac{5}{8} J_{4}\left(\frac{\mu}{r^{2}}\right)\left(\frac{r_{\mathrm{eq}}}{r}\right)^{4}\left(\begin{array}{c}
\left(3-42\left(\frac{z}{r}\right)^{2}+63\left(\frac{z}{r}\right)^{4}\right) \frac{x}{r} \\
\left(3-42\left(\frac{z}{r}\right)^{2}+63\left(\frac{z}{r}\right)^{4}\right)^{4} \frac{y}{r} \\
\left(15-70\left(\frac{z}{r}\right)^{2}+63\left(\frac{z}{r}\right)^{4}\right) \frac{z}{r}
\end{array}\right) \\
& \boldsymbol{a}_{J_{5}}=\frac{J_{5}}{8}\left(\frac{\mu}{r^{2}}\right)\left(\frac{r_{\mathrm{eq}}}{r}\right)^{5}\left(\begin{array}{c}
3\left(35\left(\frac{z}{r}\right)-210\left(\frac{z}{r}\right)^{3}+231\left(\frac{z}{r}\right)^{5}\right) \frac{x}{r} \\
3\left(35\left(\frac{z}{r}\right)-210\left(\frac{z}{r}\right)^{3}+231\left(\frac{z}{r}\right)^{5}\right) \frac{y}{r} \\
\left(693\left(\frac{z}{r}\right)^{6}-945\left(\frac{z}{r}\right)^{4}+315\left(\frac{z}{r}\right)^{2}-15\right)
\end{array}\right) \\
& \boldsymbol{a}_{J_{6}}=-\frac{J_{6}}{16}\left(\frac{\mu}{r^{2}}\right)\left(\frac{r_{\mathrm{eq}}}{r}\right)^{6}\left(\begin{array}{c}
\left(35-945\left(\frac{z}{r}\right)^{2}+3465\left(\frac{z}{r}\right)^{4}-3003\left(\frac{z}{r}\right)^{6}\right) \frac{x}{r} \\
\left(35-945\left(\frac{z}{r}\right)^{2}+3465\left(\frac{z}{r}\right)^{4}-3003\left(\frac{z}{r}\right)^{6}\right) \frac{y}{r} \\
\left(245-2205\left(\frac{z}{r}\right)^{2}+4851\left(\frac{z}{r}\right)^{4}-3003\left(\frac{z}{r}\right)^{6}\right) \frac{z}{r}
\end{array}\right)
\end{aligned}
$$

- p. 505, Eq. (12.69): 2 nd line of the $3 x 1$ matrix. The $\frac{\partial e}{\partial a}$ term should be $\frac{\partial E}{\partial a}$
- p. 510, Eq. (12.86c): This equation should read:

$$
\begin{aligned}
\frac{\mathrm{d} \omega}{\mathrm{~d} t} & =\frac{3}{2} J_{2} n \frac{a^{3}}{e b^{3}}\left(\frac{r_{\mathrm{eq}}}{r}\right)^{2}\left[e+\cos f\left(1+\frac{p}{r} e \cos f\right)+\frac{1}{2}\left(4 e \cos ^{2} i-3 e(3+\cos 2 f) \sin ^{2} i\right.\right. \\
& \left.\left.+\cos f\left(-3-e^{2}+\left(3+5 e^{2}\right) \cos (2 i)+6 e^{2} \sin ^{2} f \sin ^{2} i\right)\right) \sin ^{2} \theta-\frac{p^{2}}{r^{2}} \sin f \sin ^{2} i \sin (2 \theta)\right]
\end{aligned}
$$

- p. 510, Eq. (12.86e): Last term has the closing bracket off. This equation should read:

$$
\begin{aligned}
\frac{\mathrm{d} e}{\mathrm{~d} t}=- & -\frac{3}{2} J_{2} n \frac{a^{2}}{b r}\left(\frac{r_{e q}}{r}\right)^{2}\left[\frac{p}{r} \sin f\left(1-3 \sin ^{2} \theta \sin ^{2} i\right)\right. \\
& \left.+(e+\cos f(2+e \cos f)) \sin (2 \theta) \sin ^{2} i\right]
\end{aligned}
$$

- p. 510, Eq. (12.86f): This equation should read:

$$
\begin{aligned}
\frac{\mathrm{d} M_{0}}{\mathrm{~d} t} & =\frac{3}{2} J_{2} n \frac{a^{2}}{e b^{2}}\left(\frac{r_{\mathrm{eq}}}{r}\right)^{2}\left[\left(\eta^{2} \cos f-\frac{p}{r} e \sin ^{2} f\right)\left(3 \sin ^{2} i \sin ^{2} \theta-1\right)\right. \\
& \left.+\frac{p^{2}}{r^{2}} \sin f \sin ^{2} i \sin (2 \theta)\right]
\end{aligned}
$$

- p. 512, Eq. (12.95): The term $\frac{\partial R}{\partial \boldsymbol{s}}$ should be $\frac{\partial R}{\partial \boldsymbol{e}}$
- p. 516, Eq. (12.120): The left hand side of this equation should read $\operatorname{reh} \frac{\partial f}{\partial \boldsymbol{v}}=\cdots$
- p. 517, Eq. (12.126): The left hand side is missing a negative sign and should read $-\sin E(1+e \cos f) \frac{\partial E}{\partial v}=\cdots$
- p. 520, Eq. (12.145): The first fraction to the right of the equal sign should be $1 / h$. The final equation will read as $\frac{\mathrm{d} e}{\mathrm{~d} t}=\frac{1}{h}(\ldots)$
- p. 520, After Eq. (12.145): Change sentence to "After making use of the orbit equation in Eq. (9.6) and the semi-latus rectum relation in Eq. (9.9), the eccentricity ..."
- p. 522, Eq. (12.156): Change equation to $\boldsymbol{a}=a_{r} \hat{\boldsymbol{\imath}}_{r}+a_{\theta} \hat{\boldsymbol{\imath}}_{\theta}+a_{h} \hat{\boldsymbol{\imath}}_{h}=a_{n} \hat{\boldsymbol{\imath}}_{n}+a_{v} \hat{\boldsymbol{\imath}}_{v}+a_{h} \hat{\boldsymbol{\imath}}_{h}$
- p. 541, Problem 12.1 In the problem statement, change the equation reference from 11.57 to 11.64 .
- p. 542, Problem 12.8 Remove the word "optimal"
- p. 621, Problem 14.122a Equation should read $u(f) \approx \frac{\delta a}{a}-\cdots$
- p. 660, line before Eq. (14.232): change text to "...to the negative semi-definite quantity"
- p. 663, Eq. (14.241): change the location of the 2nd square symbol to make the equation read

$$
\Delta v_{h}=\frac{h}{r} \sqrt{\Delta i^{2}+\Delta \Omega^{2} \sin ^{2} i}
$$

- p. 667, Eq. (14.259): Second line of this equation should have the \boldsymbol{x} replace with \boldsymbol{v} and read

$$
+\left[\begin{array}{ccc}
0 & 2 \dot{\theta} & 0 \\
-2 \dot{\theta} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \boldsymbol{v}+\cdots
$$

- p. 688 , 3rd line from top:

$$
\tan \frac{f}{2}=\sqrt{\frac{e+1}{e-1}} \tanh \frac{H}{2} \quad \tanh \frac{H}{2}=\sqrt{\frac{e-1}{e+1}} \tan \frac{f}{2}
$$

- p. 697, Eq. (G.1): change to $\alpha=a / R$
- p. 697, Eq. (G.3): change to $\rho=R / p$
- p. 697, after Eq. (G.5): Add text: where R is the current orbit radius. The non-zero matrix...
- p. 698, Eq. (G.6j): change to $A_{41}^{-1}=\frac{1}{\rho R}(3 \cos \theta+2 \nu \sin \theta)$
- p. 698, Eq. (G.6k): change to $A_{42}^{-1}=-\frac{1}{R}\left(\frac{\nu^{2} \sin \theta}{\rho}+q_{1} \sin 2 \theta-q_{2} \cos 2 \theta\right)$
- p. 698, Eq. (G.6m): change to $A_{44}^{-1}=\frac{\sin \theta}{\rho V_{t}}$
- p. 698, Eq. (G.6n): change to $A_{45}^{-1}=\frac{1}{\rho V_{t}}(2 \cos \theta+\nu \sin \theta$
- p. 698, Eq. (G.6p): change to $A_{51}^{-1}=\frac{1}{\rho R}(3 \sin \theta-2 \nu \cos \theta)$
- p. 698, Eq. (G.6q): change to $A_{52}^{-1}=\frac{1}{R}\left(\frac{\nu^{2} \cos \theta}{\rho}+q_{2} \sin 2 \theta+q_{1} \cos 2 \theta\right)$
- p. 698, Eq. (G.6s): change to $A_{54}^{-1}=-\frac{\cos \theta}{\rho V_{t}}$
- p. 698, Eq. (G.6t): change to $A_{55}^{-1}=\frac{1}{\rho V_{t}}(2 \sin \theta-\nu \cos \theta)$

Revision History

- May 31,2005 : started new errata sheet for 2 nd printing
- May 31 , 2005: page 396, Ex. 9.1, p. 420
- June 5, 2005: pages 187, 190, 203, 207, 212, 219-220
- July 10, 2005: pages 426, 427
- Sept. 12, 2005: page 422, 396
- Sept 30, 2005: page 419
- Oct. 3, 2005: page 415
- Nov 14, 2005: page 187, Eq. 5.38
- Nov 14, 2005: page 189
- Nov 28, 2005: pages 252, 256, 259
- Jan. 5, 2006: pages 315, 336
- Jan. 6, 2006: pages 346
- Jan. 12, 2006: pages 159
- Jan. 13, 2006: pages 355
- Jan. 16, 2006: pages 363, 364
- Feb. 2, 2006: page 315
- Feb. 8, 2006: page 307
- Feb. 9, 2006: pages $74,77,80,81,82,84,87,88,91,92,93,94,98,102,104,105,106,107$, $109,110,111,112,113,115,116,118,119,120,121$ (bad day, I found that the entire chapter 3 seemed to have all reference numbers greater than 2 shifted by +1 ???)
- Feb. 28, 2006: page 336
- March 6, 2006: pages 469, 470
- March 29, 2006: pages 312, 313
- April 26, 2006: adjusted corrections on page 362, 363
- May 10, 2006: pages 302, 312
- May 15, 2006: pages 517, 519, 453, 454
- July 23, 2006: pages 621
- Sept. 4, 2006: page 397
- Sept. 11, 2006: page 58
- March 15, 2007: updated Example 4.1 on p. 133
- March 27, 2007: page 471, Eq. (11.24)
- March 31, 2007: page 350, Table 8.4
- April 11, 2007: page 479, Eq. (11.61)
- Feb. 2, 2008: page 351, Eq. (8.160)
- Feb. 14, 2008: page 99, Example 3.7
- Feb. 16, 2008: page 125, Problem 3.12
- April 8, 2008: p. 375, Problem 8.4 (c)
- April 11, 2008: Eq. (8.78), (8.98), (8.164), Problem 8.8(b)
- April 21, 2008: p. 342, 343
- April 21, 2008: p. 342 Eq. (8.125)
- June 19, 2008: p. 191, 194, 203
- July 17, 2008: p. 242
- July 18, 2008: p. 252
- July 21, 2008: p. 259 (6.85)
- September 5, 2008: p. 37
- September 8, 2008: p. 122
- September 9, 2008: p. 354
- September 25, 2008: p. 365, 369
- October 1, 2008: p. 159
- October 9, 2008: p. 368
- October 11, 2008: p. 45
- October 14, 2008: p. 195
- October 23, 2008: p. 368
- October 29, 2008: p. 243
- November 11, 2008: p. 218, 241, 248, 249, 252
- November 12, 2008: p. 255, 256
- November 21, 2008: p. 42, 194
- January 15, 2009: p. 481
- March 9, 2009: p. 49
- April 13, 2009: p. 326, 434
- April 20, 2009: p. 331
- April 22, 2009: p. 131
- October 6, 2009: p. 697, 698
- Nov 11, 2009: p. 660
- Nov 19, 2009: p. 663
- Dec 1, 2009: p. 247

