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Thesis directed by Prof. Hanspeter Schaub

The coming decades of space exploration will require a massive increase in spacecraft auton-

omy due to an explosion in the number of Earth-orbiting satellites, which will tax current operations

infrastructure and capabilities, and the over subscription of deep space network services for deep

space and cislunar missions.

This dissertation investigates the use of reinforcement learning (RL) for spacecraft planning

and scheduling, which is the process by which the sequence of tasks a spacecraft must execute to

achieve its objectives is computed. RL is a machine learning technique that allows for autonomous

decision-making agents to learn an optimal policy that maps situations to actions to maximize

a numerical reward function. RL offers closed-loop decision-making, fast execution times after

training, and few constraints on problem representation.

This dissertation first investigates the application of RL to the single satellite Earth-observing

scheduling, taking into consideration various spacecraft resources, data downlink, and agile target-

ing of surface targets. RL-based formulations and methods are shown to meet or exceed the per-

formance of genetic algorithms and generalize over the state space. Then, scalable Earth-observing

constellation operations utilizing single-agent RL policies are investigated. Various communication

assumptions and target distribution methods are explored. A novel fully decentralized RL-based

architecture that can automatically adjust to a new constellation design or new distribution of

surface targets is developed and shown to be more performant than a centralized architecture that

relies on an integer program for target distribution. Finally, RL is applied to the problem of small

body science operations, demonstrating that RL is capable of autonomously managing maneuvers,

navigation updates, resources, and science operations to accomplish a mission.
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Chapter 1

Introduction

1.1 Motivation

As the cost of spaceflight decreases thanks to low-cost launch providers, the miniaturization of

space technology, and renewed interest in the commercialization of space, the number of spacecraft

in orbit is increasing exponentially. As of May 2022, approximately 5,000 operational satellites exist

in orbit [2]. A survey in 2019 concluded that over 20,000 satellites were announced to be launched

into orbit over the next decade [3]. SpaceX alone plans to operate at minimum a constellation

of 12,000 Starlink satellites in low Earth orbit to provide global low latency broadband internet

[4]. Other companies that aim to provide global internet coverage include OneWeb, Telesat, and

Amazon. Each of these constellations will be composed of thousands of spacecraft [5]. The global

internet market is not the only one that has seen renewed interest. Many companies are now

operating constellations of Earth-observing satellites, which provide a variety of imaging products

to government, academic, and industry partners. Planet, Spire Global, and Capella Space are just

a few examples of such companies. An example of one such constellation is provided in Figure 1.1.

This exponential increase in the number of satellites in orbit will necessitate increased capabilities

for spacecraft autonomy, from autonomous maneuver management to autonomous science collection

and resource management on board spacecraft.

Earth is not the only domain in which spacecraft will benefit from increased autonomous

capabilities. Both cislunar and deep space will require increased autonomy for a multitude of

reasons. The round-trip light-time delay is the amount of time it takes for a signal to leave the Earth,
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Figure 1.1: Spire Global Low Earth Multi-Use Receiver (LEMUR) CubeSat constellation. Credit:
Spire Global.

reach a spacecraft, and return to Earth. In deep space, the round-trip light-time delay is tens of

minutes depending on the distance from the Earth to the spacecraft in question. Spacecraft cannot

rely on input from Earth for unexpected events that occur during this time. To make matters worse,

a NASA Inspector General report found that the Deep Space Network (DSN), which responsible

for communication and navigation for 60 NASA and international space missions, is currently

oversubscribed and will remain oversubscribed as NASA’s Artemis Program, Perseverance Rover,

and James Webb Space Telescope compete for DSN access [6]. Future missions will need to integrate

advanced autonomous capabilities to reduce their reliance on the DSN. Finally, missions in deep

space are faced with uncertain and unexplored environments. As long as humanity is constantly

pushing the boundaries of exploration, there will be an unavoidable amount of epistemic uncertainty

that must be addressed during operations. Spacecraft must be able to reduce and respond to this

uncertainty without relying on Earth for input. When each of these challenges are considered, it is

clear that increased autonomous capabilities are a must for future deep space missions.

In the context of spacecraft operations, planning and scheduling is the process by which

https://spire.com/webinar/space-services/scaling-your-satellite-constellation-with-spire-global/
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the sequence of commands a spacecraft must execute to fulfill its mission objectives is computed.

Examples of planning and scheduling problems include:

(1) An Earth-observing satellite (EOS) scheduling a sequence of observation and downlink

tasks to maximize the amount of science data collected

(2) A spacecraft planning a sequence of maneuvers and science operations about an asteroid

to map the body with various instruments and determine a landing site

Autonomous, on-board planning and scheduling capabilities can help address some of the chal-

lenges facing the space industry in the coming decades. First, autonomous planning and scheduling

can reduce the burden on spacecraft operators. Currently, spacecraft operators must generate a

plan on the ground and uplink the plan to the spacecraft. This process can take anywhere from

several minutes to several hours, depending on the complexity of the problem, the selected so-

lution method, and the round-trip light-time delay. If the spacecraft is able to generate a plan

on board, the burden on spacecraft operators and operations infrastructure is reduced. Second,

autonomous planning and scheduling can enable opportunistic science. Following a ground-based

planning paradigm, if a spacecraft detects an interesting science event, it is unable to react to the

event and must wait for the next planning cycle. If the spacecraft is able to generate a plan on

board the spacecraft, it can react to the event and collect additional science data and even coordi-

nate on the fly with other spacecraft in the vicinity. Finally, autonomous planning and scheduling

can increase the robustness of a plan. If the spacecraft is able to generate a plan on board the

spacecraft, it can react to unexpected changes in the environment, such as a ground station outage

or a thruster failure.

However, on-board planning and scheduling for spacecraft is a challenging endeavor for several

reasons. The environment is dynamic, meaning that the state of the environment and the spacecraft

evolves with time, due in part to the actions of the spacecraft. In the Earth-observing satellite

example, the ground targets available to the spacecraft are constantly changing, and the resources

on board the spacecraft are impacted by the actions of the spacecraft. Autonomous decision-making
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agents must be able to take into account the dynamic nature of the environment. The environment

is also uncertain. The spacecraft must observe the state of the environment with noisy sensors,

and not all states are observable. For deep space missions, this can be especially challenging. A

belief state of the environment must be constructed using these measurements and our knowledge

of how the state of the environment and spacecraft evolves with time. The decision-making agents

must be able to account for this uncertainty in the planning problem and address it with whatever

means are available. Finally, the state and decision space are highly dimensional. Determining

which information is necessary to make decisions autonomously is non-trivial, and the number of

possible decisions is large. It is desirable to keep the state and decision space as small as possible

to reduce the computational complexity of the planning and scheduling problem. However, the

state and decision-space must be large enough to capture the relevant features and complexity of

the problem, allowing solution methods to produce performant plans.

To address the challenges facing the future of space exploration, and to enable

autonomous, on-board planning and scheduling capabilities, this dissertation investi-

gates the use of reinforcement learning (RL) for spacecraft planning and scheduling.

Reinforcement learning is a class of problem formulations and algorithms that generate autonomous

decision-making agents through repeated interaction with a real or simulated environment with the

goal of maximizing a reward signal. RL is an excellent choice for on-board planning and scheduling

due to minimal restrictions on the problem representation and cost function, the ability to learn

optimal behavior from experience, and the fast execution times of trained agents. In recent years,

reinforcement learning has been shown to achieve superhuman performance in several challenging

problems including the game of Go [1], Atari games [7], and Dota 2 [8]. This dissertation aims

to help bring about the ubiquitous adoption of reinforcement learning for spacecraft planning and

scheduling by investigating how reinforcement learning can be applied to planning and scheduling

problems in Earth-orbiting and deep space domains.
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Figure 1.2: Evolution of Go sequences learned by AlphaGo Zero. Credit: Silver et al. [1].

1.2 Related Work

1.2.1 Traditional Planning and Scheduling

Spacecraft planning and scheduling is traditionally a ground-based process. During the early

phases of mission development, and on a periodic basis during operations, an iterative process

between science planning and mission planning occurs to define the science objectives and spacecraft

trajectory at different levels of fidelity. These two items are then input into an activity planner,
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Science Planning Mission Planning Activity Planning Sequencing Uplink Execution

Figure 1.3: Traditional planning and scheduling process.

which generates an activity plan detailing the tasks the spacecraft must complete to meet the

science objectives. The activity plan may also take into account inputs from navigation and flight

dynamics teams, depending on the mission in question. After the activity plan is generated, it is

sequenced into commands, which are then uplinked to the spacecraft and executed open-loop on

board the spacecraft. This process is depicted in Figure 1.3.

This approach to spacecraft planning and scheduling introduces several challenges. First and

foremost, the plan is executed open-loop. This means that the spacecraft does not have the ability

to react to changes in the environment. If the spacecraft is unable to complete a task, or if the

spacecraft is unable to meet a constraint, the plan must be re-generated on the ground and uplinked

to the spacecraft. Again, this process can take anywhere from several minutes to several hours.

Furthermore, this approach is not extensible to opportunistic science events. If the spacecraft

detects an interesting science event, it is unable to react to the event and must wait for the next

planning cycle to react. Finally, this approach is not robust to changes in the environment, which

may require that the plan is re-generated on the ground and uplinked to the spacecraft. This is not a

problem for missions with a high level of predictability, such as Earth-observing satellites. However,

for missions with a relatively large amount of uncertainty, such as deep space missions, robustness

must be included in the spacecraft plan, which may come at the cost of science return, efficiency, or

science quality. Therefore, autonomous on-board planning and scheduling algorithms are desirable

to reduce the time required to react to changes in the environment, to enable opportunistic science,

and to increase the robustness of the plan.

Significant effort has been made to address these challenges by giving the spacecraft the

ability to modify the ground-based plan in the event of a contingency. CASPER is an on-board

planning and scheduling software developed by the National Aeronautics and Space Administration
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(NASA) that utilizes a technique known as iterative repair, which continually checks an existing

plan for resource constraint violations and modifies the plan on-board the spacecraft if necessary [9].

CASPER, in addition to an automated ground-based planning tool named ASPEN [10], have been

applied to several missions, such as EO-1 [11, 12] and IPEX [13], to demonstrate on-board schedule

modification of ground-based plans. These systems operate in combination with science detection

algorithms and sensor webs to mark future science targets [14, 15]. MEXEC is another on-board

planning and execution tool originally developed by NASA for the Europa Clipper mission [16].

An on-board scheduler is currently being flown on the Perseverance Rover to adjust activities to

account for variation in resources or task execution [17]. The Scheduling Planning Routing Inter-

satellite Network Tool (SPRINT) developed by the Massachusetts Institute of Technology (MIT)

takes a similar approach to address the replanning problem by using a global planner for scheduling

a constellation of Earth-observing satellites and on-board planners on each satellite for unexpected

opportunities [18, 19].

While on-board replanning tools address many of the challenges associated with ground-based

planning and scheduling, they require an apriori plan as an input. This plan is still generated on the

ground and uplinked to the spacecraft on a periodic basis, which is a time-consuming process during

regular operations. Providing spacecraft with even more control over their operational decisions

can reduce the burden on spacecraft operators, saving time and money.

1.2.2 Optimization-Based Planning and Scheduling

In addition to the challenges introduced by a ground-based planning and scheduling paradigm,

the solution method selected for the activity planning block can introduce even more challenges.

Optimization-based approaches to scheduling utilize heuristic, metaheuristic, or exact solution

methods [20]. Metaheuristic optimization algorithms such as genetic algorithms (GAs) have suc-

cessfully been applied to Earth-observing scheduling problems [21]. Genetic algorithms do not

place constraints on the fitness function. For instance, the fitness function could be a high-fidelity,

nonlinear spacecraft simulation that returns a cost function reflecting the number of collected and
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downlinked targets over the planning horizon. However, metaheuristic algorithms are sensitive to

initialization, often times do not guarantee global optimality, and can be slow to converge (espe-

cially if a high-fidelity simulator is used). Mixed integer linear programming approaches are perhaps

the most popular in the literature due to optimality guarantees and speed of convergence after the

relevant data is pre-processed [22, 23, 24, 25, 26, 27]. Spire Global [28] and Planet [29] utilize mixed

integer linear programming for their Earth-observing constellations. However, the linearity require-

ments of MILP formulations prohibits the accurate representation of nonlinear planning problems.

Some resources, such as wheel speeds, are not well modeled with a linear approach. While the

dynamics can be linearized, this requires a small enough discretization of the planning horizon,

which causes the number of decision variables to explode. Mixed integer nonlinear programming

(MINLP) formulations can certainly address these issues head-on, but many MINLP formulations

are difficult to solve, especially if the problem is non-convex [30]. Furthermore, even if these issues

are addressed, the computational cost of pre-processing the data can be significant. For instance,

access times between spacecraft and ground stations must be pre-computed. If a large planning

horizon or large number of ground stations is used, the pre-processing time can be too great to run

these algorithms on-board spacecraft.

1.2.3 Reinforcement Learning Approaches

Reinforcement learning (RL) has recently emerged as a potential solution method for space-

craft planning and scheduling. In comparison to the aforementioned optimization methods, rein-

forcement learning has the ability to leverage domain randomization to deal with model uncertainty

[31]. Furthermore, reinforcement learning places limited constraints on the model used to represent

the problem, which is a major benefit over exact solution methods like mixed integer programming.

The objective of reinforcement learning is to solve for a policy that maps states to actions to maxi-

mize a numerical reward function [32]. Once the optimal policy has been solved for, the action that

maximizes the reward function for any state is known. For simple RL problems with a discrete state

and action space or a discretized continuous state and action space, this policy can be represented
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Figure 1.4: Reinforcement learning-based planning and scheduling.

in the form of a lookup table. However, for complex planning problems with a continuous state

and action space, the policy must be represented in the form of a function approximator. Function

approximators can take many forms, such as neural networks, decision trees, or Gaussian processes.

Neural networks are the most popular form of function approximator for reinforcement learning.

Once trained, neural networks can be executed in near real-time, making them a promising solution

method for on-board planning and scheduling. References [33] and [34] demonstrate the execution

of neural networks on flight processors (or processors currently undergoing validation for flight),

ranging from milliseconds to seconds of execution time. Due to fast execution times, a low memory

footprint, the potential for optimal policies with respect to the reward function, and flexibility

in the choice of problem representation, reinforcement learning is an excellent candidate for both

low- and high-level spacecraft autonomy. A diagram of reinforcement learning-based planning and

scheduling is provided in Figure 1.4. The “activity planning” block is replaced with a “training”

block, and decision-making agent now executes the policy learned by the reinforcement learning

algorithm in closed-loop fashion on-board the spacecraft.

Much of the literature investigating reinforcement learning for spacecraft decision-making

problems falls within the domain of the guidance, navigation, and control (GNC) subsystem. Re-

inforcement learning has been used for planetary landing [35, 36, 37, 38], small body proximity

operations [39, 40, 41, 42], and spacecraft rendezvous, proximity operations, and docking (RPOD)

[43, 44, 45, 46, 47, 48]. Many of these works focus on using reinforcement learning algorithms

that can adapt to off-nominal conditions on the fly, such as thruster failures, and still successfully

complete the mission and/or use reinforcement learning to provide end-to-end solutions for some

or all aspects of the guidance, navigation, and control subsystem. A popular approach is the use of
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recurrent policies trained with reinforcement learning algorithms that maintain an internal belief

state to handle the partial observability of the associated problem. References [36], [38], [39], [40],

[42] integrate the full guidance, navigation, and control subsystem into a reinforcement learning-

only framework (i.e. they map observations to controls) using this approach. References [35], [45],

[47], [46], and [37] assume full observability over the state, while Reference [41] assumes that a

state estimate from a navigation subsystem is provided. While there are many interesting GNC

problems reinforcement learning can solve, this work focuses on planning and scheduling. The

aforementioned works may incorporate some aspects of planning and scheduling (e.g. maneuver

sequencing, maneuvering for science purposes, etc.), but are not planning and scheduling problems

due to the lack of focus on science objectives and the lack of resource constraints and management.

This work treats the GNC subsystem as an input into the problem formulation as opposed to being

the problem formulation itself.

In addition to solving GNC problems, reinforcement learning has been applied to many Earth-

observing satellite (EOS) scheduling problems. However, each paper solves a different problem using

a different algorithm, such as Asynchronous Advantage Actor-Critic (A3C) [49], REINFORCE [50],

and Deep Q-Networks (DQN) [51]. Furthermore, these works often insufficiently model resources

such as battery charge, data storage availability, and reaction wheel speeds, as well as their impact

on the EOS scheduling problem. Harris et al. demonstrate utilizing Shielded Proximal Policy Op-

timization (SPPO) for EOS scheduling with battery and reaction wheel speed constraints. SPPO

bounds the decision-making agent’s actions during training and deployment such that only safe

actions are taken [52]. Shielded deep reinforcement learning utilizes a linear temporal logic speci-

fication to monitor the actions output by the policy, overriding the actions if they violate the LTL

specification [53]. This approach is also taken by Dunlap et al. in Reference [48] for safe space-

craft docking. Eddy and Kochenderfer apply Monte Carlo tree search (MCTS) to a semi-Markov

Decision Process (SMDP) formulation of the EOS scheduling problem with battery and data stor-

age resource constraints, demonstrating near-optimal performance compared to a mixed integer

programming formulation and solution [54]. Monte Carlo tree search is an online reinforcement
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learning algorithm that searches over the state and action space to determine the best action to

take at each decision-making interval [55]. While there has been much work on EOS scheduling

with reinforcement learning, there is no standard of comparison for different problem formulations

and algorithms. Each paper solves its own flavor of EOS scheduling problem, and typically do not

compare RL methods to one another.

1.3 Summary of Objectives

In contrast to prior work, this dissertation systematically explores various EOS scheduling

problems with far more realistic problem dynamics and resource constraints. In addition to the

power and reaction wheel speed resources investigated by Harris and Schaub [52], this dissertation

investigates the addition of on-board data storage and data downlink, which can have serious im-

plications on learned policies. Storage limitations and downlink availability restricts when agents

can and cannot perform science activities. This thesis also investigates more challenging science

objectives, such as agile targeting of imaging targets. In the agile EOS scheduling problem, a

spacecraft with three-axis attitude control capabilities targets various imaging targets in different

along- and cross-track directions. The inclusion of hundreds or thousands of targets that may be

individually imaged impacts the size of the decision space, causing an explosion in the problem

complexity and requiring that care is taken when formulating the problem and deploying a solution

method such that training decision-making agents is tractable. This dissertation also addresses the

lack of standardization in the reinforcement learning literature for EOS scheduling by providing

common problem formulations and comparing the performance of different reinforcement learning

algorithms for these formulations. A comprehensive comparison between deep reinforcement learn-

ing, Monte Carlo tree search, and genetic algorithms is performed to determine which algorithm is

best suited for different classes of EOS scheduling problems.

This thesis then explores multi-satellite agile Earth-observing constellation operations, which

also can result in an explosion in problem complexity because the decision space is exponential in

the number of decision-making agents. Once again, care must be taken to ensure the problem
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is tractable to solve. Furthermore, solution methods must be scalable, allowing for the addition

and removal of satellites in the constellation without requiring retraining. To address these chal-

lenges, the decision-making agents trained for the agile EOS scheduling problem are deployed in

various Walker-delta constellations with various cross-link communication assumptions. Higher-

level coordination among the decision-making agents is investigated by using a centralized target

distribution method, which utilizes mixed integer programming to distribute the imaging targets

among the constellation of spacecraft.

Finally, this thesis investigates reinforcement learning for small body science operations prob-

lems, which are largely unexplored in the literature. Instead of studying the application of RL to

the GNC subsystem as past work does, this work treats the GNC subsystem as an input into the

problem formulation. The decision-making agent sets the attitude reference, translational reference

state about the small body, and the behavior of the navigation system. In addition to the prob-

lem features of EOS planning and scheduling, small body science operations includes translational

guidance and control due to the weak gravity around small bodies. A relatively large amount of

state uncertainty is also present in the problem, necessitating the handling of this uncertainty in the

problem formulation and solution method. The tools developed for and the lessons learned from

EOS scheduling are applied to small body science operations in order to develop robust and perfor-

mant decision-making agents that can autonomously operate on board spacecraft in the presence

of state uncertainty.

The objectives of this dissertation may be summarized as follows:

(1) Single Satellite Earth-Observing Scheduling: Formulate and solve Earth-observing

satellite scheduling problems as Markov decision processes with various science objectives

and resource constraints using deep reinforcement learning, Monte Carlo tree search, and

genetic algorithms. This work may be found in Chapters 3, 4, and 5.

(2) Multi-Satellite Earth-Observing Scheduling: Investigate the use of single agent re-

inforcement learning to enable scalable EOS constellation operations considering various
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cross-link communication assumptions and target distribution methodologies. This work

may be found in Chapter 6.

(3) Small Body Science Operations: Leverage the lessons learned in EOS planning and

scheduling to formulate and solve small body science operations problems as Markov deci-

sion processes, considering translational guidance and control and state uncertainty in the

problem formulation. This work may be found in Chapters 7 and 8.



Chapter 2

Reinforcement Learning

This chapter provides an overview of some fundamental concepts in reinforcement learning.

An overview of Markov decision processes, how to solve Markov decision processes, and reinforce-

ment learning algorithms is provided. The material in this chapter summarizes the core concepts

found in References [32], [55], and [56], which can provide more detailed explanations for those

interested.

2.1 Markov Decision Processes

Reinforcement learning problems are formulated as Markov decision processes (MDPs), se-

quential decision-making problems in which an agent observes some state si and selects and action

ai following a policy π : S → A, which maps states to actions. The set of all possible states is

referred to as the state space S, and the set of all possible actions is referred to as the action space

A. The agent observes a new state si+1 and receives a reward ri based on the reward function

R : S × A → R. This process is demonstrated in Figure 2.1. Markov decision processes follow the

Markov assumption, meaning the next state is conditionally dependent only on the current state and

action. Mathematically, this may be stated as T (si+1|si, ai) = T (si+1|si, ai, si−1, ai−1, ..., s0, a0).

The transition function can also be represented with a generative model, which integrates equa-

tions of motion or samples an underlying distribution to return a new state: si+1 ∼ G(si, ai).

The return is referred to as the sum of all rewards. For a finite-horizon problem with N
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s0 s1 s2

a0 a1

r0 r1

Figure 2.1: Markov decision process. A decision-making agent takes an action ai while in state si.
The decision-making agent transitions to a new state si+1 and receives a reward ri.

decision-making intervals, the return is given as:

N∑
i=0

ri (2.1)

In many cases, an infinite-horizon problem formulation is more appropriate. In this case, however,

the previous definition of the return can result in infinite returns. To avoid this, the return is

discounted by a discount factor, γ ∈ [0, 1). The discounted return is given as:

∞∑
i=0

γiri (2.2)

The goal of reinforcement learning is to find a policy π that maximizes the expected return.

The expected return is also referred to as the value function V (s). The value function associated

with some policy π when starting in some state si is given in Equation 2.3, where E is the expected

value operator. The value function can be thought of as a measure of how “good” a particular

state is.

V π(s) = Eπ

[ ∞∑
k=0

γkri+k

∣∣∣∣∣ si = s

]
(2.3)

A state-action value function may also be defined, which is the expected return when starting in

some state si, taking some action ai, and following some policy π thereafter. This is given in

Equation 2.4. This is useful when evaluating the value associated with a particular state-action
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pair. Similar to the value function, the state-action value function can be thought of as a measure

of how “good” a particular state-action pair is.

Qπ(s, a) = Eπ

[ ∞∑
k=0

γkri+k

∣∣∣∣∣ si = s, ai = a

]
(2.4)

2.2 Tabular Solution Methods

Tabular solution methods solve for the optimal value function or policy in tabular form,

which means that the value function or policy is represented with an array, a dictionary, or lookup

table. These methods are most useful for small problems, particularly those with discrete state and

action spaces. Furthermore, these methods introduce fundamental concepts used in more advanced

solution methods.

2.2.1 Optimal Policies and Value Functions

Solving Markov decision processes involves solving for the optimal policy π∗, which maximizes

the expected return. The optimal policy is given in Equation 2.5.

π∗(s) = arg max
π

V π(s) (2.5)

The optimal value function is the value function associated with following the optimal policy, and

is referred to as V ∗(s). The optimal value function can be defined recursively using the Bellman

optimality equation, given in Equations 2.6 and 2.7.

V ∗(s) = max
a

∑
si+1∈S

T (si+1|si, a) [R(si, a) + γV ∗(si+1)] (2.6)

Q∗(s, a) =
∑

si+1∈S
T (si+1|si, a)

[
R(si, a) + γmax

ai+1

Q∗(si+1, ai+1)

]
(2.7)

If the optimal value function has been solved for, the optimal policy can be extracted from

the optimal value function by using the expression in Equation 2.8.

π∗(s) = arg max
a

∑
si+1∈S

T (si+1|si, a) [R(si, a) + γV ∗(si+1)] (2.8)
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If the optimal state-action value function is known, this can be reduced to:

π∗(s) = arg max
a

Q∗(s, a) (2.9)

2.2.2 Dynamic Programming Methods

The question of exactly how the optimal value function or state-action value function can

be solved for still remains. If the transition probabilities and reward function are known, and

if the state and action spaces are discrete, the optimal value function can be solved for using a

variety of tabular solution methods that fall under the umbrella of dynamic programming. One

such technique is called value iteration. Value iteration is an iterative algorithm that begins with an

initial guess of the value function, which is continually updated by enumerating through the state

space and applying the Bellman optimality equations. Value iteration is guaranteed to converge

to the optimal value function given enough iterations regardless of the initial guess. The value

iteration algorithm is provided in Algorithm 1.

Algorithm 1 Value Iteration

1: k = 0
2: Initialize V k(s) arbitrarily for all s ∈ S
3: repeat
4: for s ∈ S
5: V k+1(s)← maxa

∑
s′∈S T (s′|s, a)

[
R(s, a) + γV k(s′)

]
6: k ← k + 1

7: until convergence

Similar to value iteration, policy iteration is an algorithm that can solve for the optimal policy

directly, provided that the same assumptions are made. However, the discrete state and action space

assumption can be difficult to apply to real world problems. Continuous state and action spaces

could be discretized, but this may not be feasible for large problems. Furthermore, the dynamics

of many problems cannot be easily modeled with an explicit transition function. While there are

techniques that can leverage linear dynamics and quadratic reward functions, these assumptions

also may not apply to real world problems.
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2.2.3 Online Methods

Online methods are a class of tabular methods that interact with a model of the environment

in order to learn an optimal policy or value function. Unlike the methods in the previous section,

online methods restrict computation to states that are reachable from the current state in the

environment, which is beneficial for problems with large state and action spaces. Examples of

online methods include forward search and branch and bound. Both methods construct a search

tree over the state and action spaces to search for the optimal policy. However, both of these

methods require explicit transition functions to compute the value of each node in the search tree.

To avoid these issues, one can use sampling-based online methods that only require a genera-

tive model of the transition function, si+1 ∼ G(si, ai). One such method is called Monte Carlo Tree

Search (MCTS). MCTS is an online method that uses a generative model of the transition function

to incrementally step through the environment by constructing a search tree over the state and

action spaces. At each step through the environment, MCTS runs a number of iterations to refine

Q̂(s, a), an estimate of the state-action value function. At each iteration, the algorithm selects an

action to transition to a leaf node in the search tree. The action is selected based on the current

estimate of the state-action value function and an exploration term. The exploration term, U(s, a),

is computed using the number of times the state has been visited, N(s), and the number of times

the action has been taken from the state, N(s, a), as shown in Equation 2.10.

U(s, a) = ε

√
log(N(s) + 1)

N(s, a) + 1
(2.10)

This step is referred to as the selection step. If the state has not been visited before, the algorithm

then expands the leaf node by adding a child node for each possible action. The estimate of the

state-action value function is initialized to some initial value when this happens. This is referred

to as the expansion step. In the next step, the rollout step, the algorithm then executes a rollout

policy until the specified depth, d, is met or the episode terminates. The return of this trajectory

is then used to update the value of the child node that the rollout execution began from. MCTS

then backpropagates the value of the child node all the way to the parent node in the backup step.
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Q0(s, a), N0(s, a)
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Rollout

Update Q
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Update Q
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Figure 2.2: Monte Carlo tree search algorithm. In the selection step, MCTS selects the action
that maximizes the state-action value estimate and an exploration term. In the expansion step,
MCTS initializes the state-action value function and the number of times each state-action pair
has been selected. During rollout, MCTS uses a rollout policy to select actions until a specified
depth. Finally, during backup, MCTS updates the state-action value estimates with the return
from rollout.

A diagram of this process is provided in Figure 2.2.

The full algorithm for MCTS is provided in Algorithm 2. In the main routine, the set of

visited states T is initialized to an empty set. The initial state is also set. Then, for some specified

number of steps K, the SIMULATE function is called, which iterates N times to refine the estimate

of the state-action value function before returning the best action. The environment is then stepped

through using this action, and the process repeats.

Monte Carlo tree search is guaranteed to converge to the optimal action as the number of

simulations-per-step approaches infinity [57, 58]. MCTS is also at the center of the AlphaGo Zero

algorithm, which achieved superhuman performance in the game of Go [1]. However, AlphaGo Zero

implements a number of improvements to the basic MCTS algorithm, including the use of a neural

network to guide the search process and generalize over the state space. One of the shortcomings

of MCTS is its inability to generalize over the state space as it is only concerned with building a

search tree based on reachable states. In the event that a different initial condition is used, the

entire algorithm must be run again, which can be expensive.
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Algorithm 2 Monte Carlo Tree Search

1: function select action(s, d, N)
2: for 1 : N
3: SIMULATE(s, d, π)

4: return arg maxa Q̂(s, a)

5:

6: function simulate(s, d, π)
7: if d = 0
8: return 0
9: if s /∈ T

10: for a ∈ A
11: N(s, a)← 0
12: Q̂(s, a)← 0

13: T ← T ∪ {s}
14: return ROLLOUT(s, d, π)

15: a← arg maxa Q̂(s, a) + ε

√
log(N(s) + 1)

N(s, a) + 1

16: q ← r + γSIMULATE(G(s, a), d− 1, π)
17: N(s, a)← N(s, a) + 1

18: Q̂(s, a)← Q̂(s, a) +
q − Q̂(s, a)

N(s, a)
19: return q

20:

21: function rollout(s, d, π)
22: if d = 0
23: return 0
24: a ∼ π(s)
25: s′, r ∼ G(s, a)
26: return r + γROLLOUT(s′, d− 1, π)

27:

28: main routine:
29: T ← ∅
30: s← s0

31: for i = 1 : K
32: a← SELECT ACTION(s, d, N)
33: s′, r ∼ G(s, a)
34: s← s′

35:
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2.3 Deep Reinforcement Learning

2.3.1 Function Approximation

A benefit to the dynamic programming algorithms discussed is that they solve for the value

function or policy over the entire state and action space. However, these algorithms require a

discrete state and action space as well as an explicit transition function. These types of algorithms

are referred to as tabular methods by Sutton and Barto and cover Monte Carlo methods (not to be

confused with Monte Carlo tree search), temporal-difference methods, and dynamic programming

[32]. MCTS is also considered to be a tabular method, but only solves for the value function

or policy over the reachable state space using a generative transition function. Only solving over

reachable states has its upsides in terms of computation, but also comes with a significant drawback,

as it means that the algorithm must be run again if the initial state is changed.

Approximate solution methods attempt to remedy these issues with the use of universal

function approximators. These methods are able to generalize over the state space by learning from

only a subset of the state space. Universal function approximators parameterize the value function

or policy using a set of parameters θ. In this dissertation, the parameterized value functions is

referred to as Vθ(s) and the parameterized policies are referred to as πθ(s). Many types of function

approximators exist, but the most popular for reinforcement learning is the artificial neural network

(ANN), a nonlinear function approximator made up of a series of interconnected layers that are

meant to model the neurons in a nervous system. A diagram of an artificial neural network is

provided in Figure 2.3. Each node in the ANN represents an activation function, and the lines

represent the edges, or outputs, from one node to another. Each edge has its own weight and bias

that determines the strength of the signal from the corresponding node.

An artificial neural network can be defined as the function g. The input vector is x, the target

output vector is y, and the predicted output vector is ŷ. The activation function is also referred

to as f . Assuming we have L hidden layers, the predicted outputs computed by the network are:

ŷ = g(x) = fL(WLfL−1(WL−1 · · · f1(W1x + b1) + bN−1) + bK) (2.11)
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where Wl and bl are the weights and biases for the lth layer (collectively referred to as θ). In

reinforcement learning, the input vector x is the state of the MDP, s. The target output vector y is

the value function V (s), the state-action value function Q(s, a), or the policy π(s). The predicted

output vector ŷ is the parameterized value function Vθ(s), the parameterized state-action value

function Qθ(s, a), or the parameterized policy πθ(s).

Figure 2.3: Diagram of an artificial neural network. This ANN has three inputs, two hidden layers
of four nodes each, and two outputs.

During training, the weights and biases of the neural network are updated incrementally over

many iterations. During each iteration, a forward pass of the network is performed, where the

predicted output ŷ is computed. Then, a loss computation is performed using the loss function,

J , which represents the error between the predicted output and the target output. Popular loss

functions include mean squared error or mean absolute error. Next, the backpropagation step is

performed, where the gradients of the loss function with respect to the weights and biases are

computed by recursively applying the chain rule. Finally, the weights and biases are updated

using these gradients and some type of optimizer, such as stochastic gradient descent or the Adam

optimizer.
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2.3.2 Deep Q-Networks

One of the first deep reinforcement learning algorithms is Deep Q-Learning, which learns a

parameterized state-action value function Qθ(s, a) referred to as a Deep Q-Network (DQN) [7]. To

stabilize the performance of Deep Q-Learning by removing correlations in observation sequences,

an experience replay buffer D is used to store previous state transitions. A target network Q̂θ−(s, a)

is also used to compute the target value for the loss function, which also stabilizes performance by

ensuring the policy does not change too quickly and decorrelates the target values. The weights

and biases θ− are updated periodically to match those of Qθ(s, a).

The full algorithm for Deep Q-Learning is provided in Algorithm 3. The algorithm in Refer-

ence [7] is modified slightly here to allow for M actors in parallel to interact with the environment,

which is common in practice. The algorithm begins by initializing the replay buffer, state-action

value function, and a target state-action value function. Then, for each iteration, each actor inter-

acts with the environment by selecting an action following an epsilon-greedy policy and storing the

transition in the replay buffer for the set of decision-making intervals I. |I| refers to the maximum

number of decison-making intervals. After each step, a gradient descent step is performed on the

value function using minibatches sampled from the replay buffer. The target network is updated

periodically to match the value function. In the parallel implementation, each actor steps forward

once at the same time and the gradient descent step is performed after all agents have stepped

forward.

2.3.3 REINFORCE

Policy gradient reinforcement learning algorithms learn a parameterized policy πθ(a|s), which

is a probability distribution conditioned on the state. For certain problems, it is easier to learn

a policy directly than it is to learn a value function. A small error in the learned value function

may lead to a large error in the policy if the value function is used to select actions. This provides

stronger convergence guarantees for policy gradient methods.
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Algorithm 3 Deep Q-Learning.

1: Initialize replay buffer D

2: Initialize state-action value function Qθ(s, a) with random weights and biases θ

3: Initialize target state-action value function Q̂θ−(s, a) with weights and biases θ− = θ

4: for iteration 1 : N

5: for i = 1 : |I|
6: for actor 1 : M

7: ai = arg maxaQθ(si, a) with probability 1− ε, otherwise select random action

8: si+1, ri ∼ G(si, ai)

9: Store transition (si, ai, ri, si+1) in D

10: Sample random minibatch of transitions (sj , aj , rj , sj+1) from D

11: yj =

{
rj if sj+1 is terminal

rj + γmaxa′ Q̂θ−(sj+1, a
′) otherwise

12: Perform gradient descent step on (yj −Qθ(sj , aj))2 wrt θ

13: Periodically reset Q̂θ− = Qθ

Policy gradient algorithms use the policy gradient theorem to compute the gradient of the

expected return with respect to the policy parameters θ without knowing how changes to the

policy affects the state distributions [32]. The policy gradient theorem provides an expression for

the gradient of performance with respect to the policy parameters, and is given by:

∇θJ(θ) =
∑
s

µ(s)
∑
a

∇θπθ(a|s)Qπθ(s, a), (2.12)

where µ(s) is a weighting over the state space denoting the probability of being in state s under

the policy πθ(a|s) and Qπθ(s, a) is the state-action value function for the policy πθ(a|s). The

REINFORCE algorithm is a policy-gradient method that uses the policy gradient theorem to

compute the following update for the policy parameters, where α is the step size:

θ ← θ + αγi

 |I|∑
j=i+1

γj−i−1rj

∇θ lnπθ(ai|si) (2.13)

To reduce variance, a baseline can be introduced to the policy gradient theorem, which is subtracted

from the return. The baseline is typically selected to be a parameterized estimate of the value func-

tion, Vθv(s), parameterized by the weights and biases θv. When introduced into the REINFORCE
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update, the update becomes:

θ ← θ + αγi

 |I|∑
j=i+1

γj−i−1rj

− Vθv(si)
∇θ lnπθ(ai|si) (2.14)

The REINFORCE algorithm is provided in Algorithm 4.

Algorithm 4 REINFORCE with Baseline algorithm.

1: Initialize policy πθ(s) and value function Vθv(s) with parameters θ and θv
2: for iteration 1 : N

3: for i = 1 : |I|
4: ai ∼ πθ(ai|si)
5: si+1, ri ∼ G(si, ai)

6: Store si, ai, ri
7: T = i

8: if si+1 is terminal

9: break

10: for i = 1 : T

11: Ri =
∑T

j=i+1 γ
j−i−1rj

12: θv ← θv + α(Ri − Vθv(si))∇θvVθv(si)
13: θ ← θ + αγiRi∇θ lnπθ(ai|si)

2.3.4 Advantage Actor-Critic

Actor-critic methods use a learned value function Vθ(s) to perform the policy update, just

as REINFORCE with a baseline does. However, REINFORCE only uses the parameterized value

function to estimate the value of the first state for each state transition. This estimate provides

a baseline, but does not assess the subsequent return of the action. Actor-critic methods use the

value function to estimate the value of the first state as well as the value of the second state. It

is for this reason that the actor-critic methods are called actor-critic methods, as they use both

an actor (policy) and a critic (value function). The advantage actor-critic algorithm is provided

in Algorithm 5. This algorithm is similar to the Asynchronous Advantage Actor-Critic (A3C)

algorithm [59]. The A3C algorithm uses multiple actors to collect experience and update the policy

and value function asynchronously. A2C does this synchronously.
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Algorithm 5 Advantage actor-critic algorithm.

1: Initialize policy πθ(s) and value function Vθv(s) with parameters θ and θv
2: for iteration 1 : N

3: for actor 1 : M

4: for i = 1 : |I|
5: ai ∼ πθ(ai|si)
6: si+1, ri ∼ G(si, ai)

7: Store si, ai, ri
8: if si+1 is terminal

9: break

10: R =

{
0 if si+1 is terminal

Vθv(si+1) otherwise

11: for j = |I| : 1

12: R = rj + γR

13: Compute advantage estimate Âj = R− Vθv(sj)
14: Accumulate gradients wrt θ: dθ ← dθ +∇θ log πθ(aj |sj)Âj
15: Accumulate gradients wrt θv: dθv ← dθv +∇θvÂ2

j

16: Perform gradient ascent step on θ and θv using dθ and dθv

2.3.5 Proximal Policy Optimization

While DQN, REINFORCE, A2C, and many other methods have advanced the state-of-the-

art of reinforcement learning and demonstrated excellent performance on a number of tasks, they

are not without their issues. None of these methods are particularly data efficient as each sample

is used only once for training. Furthermore, these algorithms are not particularly robust or stable,

requiring careful hyperparameter tuning for each task.

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm that addresses

these issues [60]. To improve sample efficiency, PPO trains on the sampled data for multiple

epochs. To improve stability, PPO uses a clipped objective function that ensures the size of the

policy update isn’t too large. The loss function for PPO is provided by:

LCLIP+V F+S
i (θ) = Êi

[
LCLIPi (θ)− c1L

V F
i (θ) + c2S[πθ](si)

]
, (2.15)

where

LCLIP (θ) = Êi
[
min

(
ri(θ)Âi, clip (ri(θ), 1− ε, 1 + ε) Âi

)]
, (2.16)
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LV F (θ) = Êi
[
(Vθ(si)− V )2

]
, (2.17)

S[πθ] is an entropy bonus, and ri(θ) is the probability ratio:

ri(θ) =
πθ(ai|si)
πθ−(ai|si)

(2.18)

θ− represents the parameters of the policy before the update.

The algorithm for PPO is provided in Algorithm 6. Here we assume that the parameters for

the policy and value function are shared.

Algorithm 6 Proximal Policy Optimization algorithm.

1: Initialize policy πθ(s) and value function Vθ(s) with parameters θ

2: Initialize policy πθ−(s) and value function Vθ−(s) with parameters θ−

3: for iteration 1 : N

4: for actor 1 : M

5: for i = 1 : |I|
6: ai ∼ πθ−(ai|si)
7: si+1, ri ∼ G(si, ai)

8: Store si, ai, ri

9: compute advantage estimates Â1 · · · Â|I|
10: optimize L(θ) wrt θ, with K epochs and batch size ≤ |I|
11: θ− ← θ

2.3.6 Shielded PPO

While PPO is a robust and stable algorithm capable of computing high performing policies

for a number of RL problems, PPO does not guarantee that unsafe actions will not be taken

and that resource constraint violations will not occur. In fact, none of the aforementioned DRL

algorithms do. Shielded deep reinforcement learning offers a solution to this problem by using a

linear temporal logic specification to monitor the MDP state and the actions output by the policy,

overriding unsafe actions if they violate the specification [53]. Harris and Schaub utilize a safety

shield within PPO for spacecraft planning and scheduling, which is shown to improve the speed

of convergence and guarantee that resource constraint violations do not occur. This algorithm is
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Figure 2.4: Shielded agent-environment interface.

referred to as SPPO [52, 61]. A diagram of the safety shield augmented agent-environment interface

is provided in Figure 2.4.

2.3.7 Conclusion

Reinforcement learning is a powerful collection of problem formulations and solution methods

for planning problems. This section detailed how reinforcement learning problems are formulated as

Markov decision processes and solved with a variety of solution methods. Tabular methods are very

powerful methods that can solve for optimal policies and value functions, but are typically reserved

for smaller problems with discrete state and action spaces. Deep reinforcement learning methods

parameterize the value function or policy with an artificial neural network, allowing these solution

methods to only learn from a subset of the state space and extrapolate experience. DRL methods

are extremely powerful and have been shown to solve complex problems with high-dimensional

state and action spaces.



Chapter 3

Earth-Observing Satellite Scheduling Problem Formulation

3.1 Introduction

In the Earth-observing satellite scheduling problem, one or more spacecraft in orbit about

the Earth attempt to maximize the amount of science collected and/or downlinked while avoiding

resource constraint violations. Many variations of this problem exist. Some variations consider

only one satellite, while other variations consider multiple satellites. Science objectives may include

area coverage objectives, ground target imaging objectives specific to a geographic location, or both

simultaneously. Furthermore, a variety of spacecraft resources such as battery charge, data buffer

storage capacity, or reaction wheel speeds may be considered in the problem formulation. The

agile EOS scheduling problem is one of the most common in the literature, especially in recent

years as satellites with three-axis attitude control capabilities have become more prominent. The

objective of the agile EOS scheduling problem is to maximize the weighted sum of imaging targets

collected and downlinked while avoiding resource constraint violations. The satellite is referred to

as “agile” because its three-axis attitude control capabilities enable attitude maneuvers about any

axis, as opposed to only pitch or roll maneuvers. This chapter only considers the single satellite

agile Earth-observing (SSAEO) scheduling problem, as opposed to the multi-satellite agile Earth-

observing scheduling problem.

In general, authors utilize simple models of the Earth-observing satellite scheduling problem

and do not adequately address resource constraints and their impact on the planning problem. In

the surveyed works, only two authors take into account power constraints [52, 54], two authors
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take into account data buffer constraints [49, 54], and one author takes into account momentum

management [52]. Three authors take into account none of these resource constraints [50, 51, 62].

Furthermore, many of these works rely on simplifying assumptions of the problem dynamics, with

the exception of Harris and Schaub who consider the full non-linear dynamics of the EOS scheduling

problem and leverage the black box optimization capabilities of DRL [52]. Eddy and Kochenderfer

make linearity assumptions regarding the power and data dynamics. While linear data dynamics

are sufficient, linear power dynamics may not be appropriate due to the dependency of power

generation on the sun’s incidence angle with respect to the solar panels. Eddy and Kochenderfer

also rely on an agility constraint to assess whether transitions between pointing configurations

are feasible [54]. The assumptions made by Eddy and Kochenderfer allow the authors to make

fair comparisons between methods like Monte Carlo tree search, graph search, and mixed integer

linear programming. Other authors use even more simple models of the problem. The target sets

are usually pre-processed from actual orbital dynamics, but the actions and subsequent problem

dynamics are oversimplified. Haijiao et al. only evaluate whether the next observation task is

accepted or rejected [49]. Zhao et al. formulate a two-phase combinatorial reinforcement learning

problem [50]. In phase 1, a recurrent neural network architecture based on reinforcement learning

is used to sequence a series of acquisitions. In phase 2, reinforcement learning is used to determine

the start time of the observation window of the next acquisition. He et al. investigate a problem

in which an observation task is added to a queue of observation tasks for execution [51]. Again,

these models of the EOS scheduling problem abstract away many of the complexities of the real

problem.

To address these shortcomings in the literature, this chapter formulates an SSAEO scheduling

problem that considers battery, data buffer, and reaction wheel resource constraints. Furthermore,

the problem is modeled using a high-fidelity astrodynamics simulation framework. The use of

this simulator allows for the nonlinear spacecraft dynamics, power and data subsystems, and real

flight software models to be used within the problem formulation. This work is published in

References [63] and [64].
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Figure 3.1: Single satellite agile Earth-observing scheduling problem.

3.2 Single Satellite Agile Earth-Observing Scheduling Problem

In the SSAEO scheduling problem, the satellite enters into different operational modes to

achieve its objective over the planning horizon. The planning horizon is the total amount of time

considered for operations and is divided into a set of equal length decision-making intervals. This

set is referred to as I. At the beginning of each decision-making interval i, the satellite either

stays in the same operational mode or enters a new operational mode. The operational modes

abstract high-level behaviors whose low-level behavior is dictated by the interaction between the

different subsystems of the satellite and the operational environment. The modes also dictate

the attitude reference and state of each satellite subsystem. This mode-based planning approach

breaks the complex, continuous behavior of the satellite and the scheduling problem into a set

of discrete actions to make the planning problem tractable [52]. Operational modes can include

science modes, momentum management modes, charging modes, or downlink modes. A diagram

of the EOS scheduling problem is provided in Figure 3.1.

The satellite has a set of targets available for imaging, ordered by the time the spacecraft

has access to the targets. This set of targets is referred to as T . An example of the set T may be

found in Figure 3.2. In this example, the ground targets are quite close to the ground track of the

satellite. A subset of T that includes the next J upcoming targets is also formulated, and this set

is referred to as U . The set D includes all targets that have already been passed or imaged by the
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Figure 3.2: Target distributions.

satellite.

U = {cj ∈ (T −D) | ∀ j ∈ [1, J ]} (3.1)

The sets U and D are updated at the end of each decision-making interval based on the actions of

the satellite and which target have been passed over already.

The satellite has three operational modes available for resource management and J opera-

tional modes available for science activities. The resource management modes include the charging

mode, desaturation mode, and downlink mode. In the charging mode, the satellite turns off its

instrument and transmitter and points its solar panels at the sun to charge its batteries. The

desaturation mode is the same as the charging mode, but the satellite uses its thrusters to perform

burns that remove momentum from the reaction wheels. In the downlink mode, the satellite points

in the nadir direction and downlinks its science data when a ground station is in view. A ground

station is within view when the satellite is within the elevation and range requirements of the

ground station. A diagram of these requirements is provided in Figure 3.3. The satellite’s position

is first transformed into the topocentric horizon coordinate system, i.e. the “South-East-Zenith”
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Figure 3.3: Elevation and range requirements.

or SEZ frame, and then the range and elevation are computed.

The science-related operational modes of the SSAEO scheduling problem deal with target

imaging. In the target imaging mode, the satellite turns off its transmitter, turns on its instrument,

and points the boresight of its instrument at the selected ground target in the set U . An image of

the ground target is collected once the elevation, range, and an additional attitude error requirement

are met. The collected image is then stored in the data buffer, where it is available to downlink in

the future.

3.3 Markov Decision Process Formulation

This section formalizes the SSAEO scheduling problem as a Markov decision process. The

state space, action space, and reward function are all explained in detail. The generative transition

function is explained in the next section.

3.3.1 State Space

One of the most challenging aspects of formulating a real-world problem as an MDP is

designing the state space. The state space must contain all information relevant to the decision-

making problem that ensures the Markov property is satisfied. For the EOS scheduling problem,

this is difficult to completely satisfy due to the complexity of the problem, which requires a massive
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state space to fully capture. Therefore, the state space is selected to contain the information that

is most relevant to the decision-making problem.

The state space for the agile EOS scheduling problem includes the state of the satellite, the

state of the ground stations, and the state of the ground targets. It may formally be defined as:

S = Ssat × Sground stations × Stargets, (3.2)

where state space of the satellite includes the position, velocity, attitude, wheel speeds, power

states, buffer states, and eclipse states. It is defined as

Ssat = Spos × Svel × Satt × Swheels × Spower × Sbuffer × Seclipse, (3.3)

Finally, for this variant of the SSAEO scheduling problem, the state space of the imaging targets

includes the positions and priorities of the targets and is defined as:

Stargets = Spos1 × Spriority1
× · · · × Spos|T | × Spriority|T | (3.4)

The state returned to the decision-making agent at decision interval i is defined as si ∈ S :

si = (Er, Ev, ‖σB/R‖, ‖BωB/N ‖, Ω, battery, · · ·

· · · eclipse,buffer,Hr1, p1, · · ·Hrj , pj).
(3.5)

The position and velocity of the spacecraft included in the state return are expressed in the Earth-

centered, Earth-fixed (ECEF) coordinate system, which is denoted by the left superscript E . Be-

cause these are expressed in the ECEF frame, they can be used to correlate positions over ground

stations to high value states in the solved MDP. Information regarding the attitude of the satellite

is provided with two separate state variables. The attitude of the satellite is provided as the magni-

tude of the modified Rodriguez parameters (MRP) σB/R, which is rotation from the reference frame

to the body frame. The magnitude of the angular velocity of the satellite BωB/N is provided in the

body frame. These two variables provide attitude error and the rotation rate of the satellite, with

the latter being important for momentum management. Regarding momentum management, each

of the reaction wheel speeds is given by Ω, which provides information regarding the wheels speeds
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and when a desaturation maneuver may be required. Information regarding power management is

included using the battery and eclipse state variables. The battery variable is the current charge

of the battery, and the eclipse variable is a binary variable that indicates whether the satellite is

currently in eclipse. Similar to the battery variable, a variable for the buffer storage level is also

provided, which provides information on when a downlink may be required.

Finally, state information is included for each target in the set of upcoming targets U . The

position of each target expressed in the spacecraft’s Hill frame Hrj is included in the state return.

The priority pj of each target is included as well. The priority of each target is a value between

1 and 3, where 1 is the highest priority and 3 is the lowest priority. The priorities are randomly

selected during the target generation step. The expression of the positions of the targets in the

satellite Hill frame is selected to provide a convenient state representation for the purposes of

function approximation. A diagram of the Hill frame is provided in Figure 3.4. Furthermore,

only the targets in the set of upcoming targets U are included in the state. While this does add

some observability challenges to the problem, there is a value for |U | that will render this impact

negligible because the added information of more targets will only marginally improve observability

while increasing problem complexity and required training time. If the agent has observability over

every target and their priorities, it would have perfect information and the ability to compute the

value exactly. In future chapters, the size of U is explored to determine when the agent has enough

information to extract the maximum possible reward from the environment.

As referenced before, each state return is normalized to ensure the problem is numerically well-

conditioned during function approximation. The normalization constants for each state returned

are provided in Table 3.1. States without any normalization listed are not normalized as their

values typically fall within the range of [-1, 1].
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Figure 3.4: Diagram of the Hill coordinate system.

Table 3.1: State normalization.

State Normalization
Er Radius of Earth
Ev Velocity of circular orbit at Earth’s surface
Hrj Radius of Earth
pj p2

j

||σB/R|| –

||BωB/N || –

Ω Maximum wheel speeds
Battery charge Maximum battery capacity
Stored data Maximum storage capacity
Eclipse indicator –

3.3.2 Action Space

An action space A is constructed for the SSAEO scheduling problem that allows the decision-

making agent to collect and downlink science data as well as manage its resources:

A = {Charge, Downlink, Desaturate, Image c1, · · · Image cj}. (3.6)

At each decision-making interval, the satellite turns on or off certain attitude references, instru-

ments, and transmitters for the duration of the decision-making interval. The continuous behavior

of the satellite system is thus abstracted using discrete actions, or modes. The action space, as well

as a description for each mode, is provided below:
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(1) Charge: The satellite points its solar panels at the sun, turning off all instruments and

transmitters to recharge the batteries.

(2) Desaturate: The satellite points its solar panels at the sun, turning off all instruments

and transmitters. Momentum is mapped to thrust commands, which the thrusters execute.

(3) Downlink: The satellite points the transmitter at the Earth. The transmitter is turned

on and data is downlinked if and when a ground station is available.

(3 + 1) Image target c1 ∈ U

...

(3 + J) Image target cj ∈ U : The satellite points the instrument at the target, taking an image

of the target when access requirements are met. The data is stored on-board the satellite.

3.3.3 Reward Function

A piecewise reward function, R(si, ai, si+1), is developed for the SSAEO scheduling problem

to ensure that science data is collected and downlinked and that resource constraint violations are

avoided. The reward function is provided in Equation 3.7.

R(si, ai, si+1) =



−10 if failure

∑|T |
j H(dj) if ¬failure ∧ ai is downlink

0.1H(wj) if ¬failure ∧ ai is image cj

0 otherwise

(3.7)

The failure condition is checked first. Failure occurs if the battery is drained to zero charge,

the data buffer is overfilled, or the reaction wheel speeds exceed the maximum speed. The failure

condition is provided in Equation 3.8. If a failure condition occurs, a reward penalty of -10 is

returned. This penalty is sized to incur a relatively large penalty if the decision-making agent
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fails. However, this dissertation also investigates different reward penalties relative to the positive

reward.

failure if battery = 0, any(Ω/Ωmax ≥ 1), or buffer ≥ 1 (3.8)

If a failure does not occur and the downlink action is taken, the local target list is checked

to determine if a target was downlinked for the first time or not. The function that performs this

check for imaging and downlink is provided in Equation 3.9. If a target is imaged or downlinked

for the first time, then 1 divided by the target priority is returned.

H(xj) = (1/pj) if ¬xji ∧ xji+1 (3.9)

A summation over Equation 3.9 is performed and normalized by the maximum number of decision-

making intervals, |I|, to ensure the reward contribution from downlinking targets does not exceed

1.

If no failure occurs and an imaging action is taken, Equation 3.9 is applied to that ground

target. This component of the reward is sized such that the maximum amount of reward from

imaging does not exceed 0.1. Without the small reward bonus for imaging, the sparsity of the

reward can impede learning. Furthermore, the decision-making agent needs a reward incentive to

image when all downlink windows have been passed but the end of the planning horizon has not

yet arrived.

3.4 Basilisk Gymnasium Interface

The generative transition function of the SSAEO scheduling problem si+1, ri ∼ G(si, ai)

is modeled using a high-fidelity astrodynamics simulation framework, Basilisk1 [65]. Basilisk

implements simulation and flight software code in C/C++, but provides a Python interface for

scripting. The Basilisk simulation is wrapped within a Gymnasium2 environment, which provides

a standard interface that allows reinforcement learning libraries to interact with the simulation. The

1 https://hanspeterschaub.info/basilisk/index.html
2 https://gymnasium.farama.org/

https://hanspeterschaub.info/basilisk/index.html
https://gymnasium.farama.org/
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Figure 3.5: Agent-environment interface.

agent passes actions to the Gymnasium environment, which turns certain Basilisk modules on or off.

The simulation is integrated forwards in time for six minutes at a one-second integration time step.

The environment constructs the observation and reward, which is returned to the decision-making

agent. This process is demonstrated in Figure 3.5.

A complete diagram of the associated Basilisk modules may be found in Figure 3.6. Each

module in the diagram represents a distinct, modularized block of code that receives inputs from

other modules, performs computations, and sends outputs to modules subscribed to its messages.

These connections are not shown in the diagram to maintain clarity of the figure. Each module

belongs to a task, which may be turned on or off depending on the operational mode. The dynamics,

environment, and Spice tasks are always on, but the flight software tasks depend on the operational

mode. There is no requirement on which tasks belong to the environment and dynamics tasks, as

long as they are added to the simulation in the correct order.

The Basilisk simulation includes a full attitude control system to simulate a representative

spacecraft mission where systems are coupled to the physical attitude dynamics. Several pointing

tasks are created, each of which contain a different location pointing or Hill pointing object that

computes an attitude reference for the corresponding celestial object or ground location. The

selected attitude reference is passed to the MRP feedback control law, which sends motor torque

commands to reaction wheels to change the dynamics of the spacecraft through the use of the

reaction wheel motor torque module. Both of these modules belong to the MRP feedback task,

which is always on. The reaction wheels are modeled after the Honeywell HR16 reaction wheels. In
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Figure 3.6: SSAEO Basilisk simulation architecture.

the desaturation task, the thruster momentum management, thruster force mapping, and thruster

momentum dumping modules work together to map reaction wheel momentum to thruster on-time

commands. The thrusters are modeled after the Moog Monarc-1 thrusters. Attitude perturbations

are incorporated through the use of random external disturbance torques to build up momentum

in the reaction wheels. Orbital perturbations like multi-body gravity effects (including Earth, sun,

and the moon) and Earth J2 perturbations are also implemented. A summary of the dynamics

models and the relevant states they impact are provided in Table 3.2, and the parameters of the

spacecraft may be found in Table 3.3.
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Table 3.2: SSAEO Basilisk tasks and models.

Operational Modes

Basilisk Tasks & Models Charge Downlink Desaturate Image

Location Point Task Disabled Disabled Disabled Enabled
Nadir Point Task Disabled Enabled Disabled Disabled
Sun-Point Task Disabled Enabled Disabled Disabled
MRP Control Task Enabled Enabled Enabled Enabled
RW Desat Task Disabled Disabled Enabled Disabled
Instrument Power Model Off Off Off On
Instrument Data Model Off Off Off On
Transmitter Power Model Off On Off Off
Transmitter Data Model Off On Off Off

A power system is modeled that includes solar panels, an instrument power model, a trans-

mitter power model, reaction wheel power models, and a battery. The solar panels generate power

based on their efficiency, surface area, and the incidence angle of the sun. The power generated by

the solar panels is stored within a battery, which has a maximum capacity. The battery is used

to power the instrument, transmitter, and reaction wheels. The instrument and transmitter power

models are used to determine the power draw of the instrument and transmitter based on the

current operational mode. The reaction wheel power models are used to determine the power draw

of the reaction wheels based on their current speed and commanded torque. The power system is

modeled in Basilisk, and the parameters of the power system may be found in Table 3.3.

An on-board data system is also modeled in Basilisk. The on-board data system includes an

instrument, a transmitter, and a data buffer. The parameters associated with these components

may also be found in Table 3.3. The ground segment of the data system includes several ground

stations located on the surface of the Earth. The ground stations are selected from NASA’s Near

Space Network [66], and their parameters may be found in Table 3.4. The ground stations are

selected to provide an adequate distribution on the Earth’s surface so that the satellite has at least

one downlink opportunity over its planning horizon.

Table 3.5 shows the distributions that the initial conditions are drawn from each time a new

SSAEO scheduling environment is initialized. The eccentricity, inclination, argument of periapsis,
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Table 3.3: SSAEO spacecraft parameters.

General Spacecraft Parameters Value

Mass 330 kg
Dimensions 1.38 x 1.04 x 1.58 m
Inertia diag(82.1, 98.4, 121) kg m2

Power System

Solar Panel Area 1.0 m2

Solar Panel Efficiency 0.20
Instrument Power Draw 30 W
Transmitter Power Draw 15 W
Battery Capacity 80 Whr
RW Base Power Draw 0.4 W
RW Efficiency 0.5

Attitude Control System

Max Wheel Speeds 3000 RPM
Max Wheel Torque 0.2 Nm
Max Thrust 0.9 N
Thruster Min On Time 0.02 s

Data & Communications System

Data Buffer Storage Capacity 20 Images
Instrument Baud Rate 1 Image/second
Transmitter Baud Rate 1 Image/second

Table 3.4: SSAEO ground station parameters.

Location Latitude Longitude Elevation (m) Min. El. Angle

Boulder, CO (USA) 40.015◦ N 105.27◦ W 1600 m 10◦

Ka Lae, HI (USA) 19.897◦ N 155.58◦ W 9.0 m 10◦

Merritt Island, FL (USA) 28.318◦ N 80.666◦ W 0.91 m 10◦

Singapore 1.3521◦ N 103.82◦ E 15 m 10◦

Weilheim, Germany 47.841◦ N 11.142◦ E 560 m 10◦

Santiago, Chile 33.449◦ S 70.669◦ W 570 m 10◦

Dongara, Australia 29.245◦ S 114.93◦ E 34 m 10◦

and true anomaly are drawn from fairly large distributions such that the agent experiences any

possible low-Earth orbit with the given semi-major axis. The semi-major axis is initialized to 6,871

km in all cases. While the semi-major axis is fixed, some variation in altitude is inherent due to the

eccentricity and the previously described perturbations. The longitude of ascending node is also

drawn from a small range. This allows for experiments to determine how well the decision-making

agents generalize to ranges outside of the training distributions. Also provided in Table 3.5 are the



43

Table 3.5: SSAEO simulation parameters.

Orbit Parameters Value

Semi-Major Axis, a 6871 km
Eccentricity, e U [0, 0.01]
Inclination, i U [40, 60] deg
Long. of Ascend. Node, Ω U [0, 20] deg
Arg. of Periapsis, ω U [0, 360] deg
True Anomaly, f U [0, 360] deg

Spacecraft Parameters

Disturbance Torque, τext 2× 10−4 Nm
Attitude Initialization, σB/R U [0, 1.0] rad

Rate Initialization, BωB/N U [-1e-05, 1e-05] rad/s

Reaction Wheel Speeds U [-1500, 1500] RPM
Initial Battery Charge U [30, 70] Whr

Planning Horizon
Length 270 minutes
Decision-Making Interval Length 6 minutes
Integration Time Step 1 second

initial conditions for the spacecraft attitude and rate, reaction wheel speeds, and initial battery

charge. A planning horizon of 270 minutes (approximately three orbits) is selected to balance

computation time with a challenging operational scenario. Furthermore, each decision-making

interval lasts for a total of six minutes. Six minutes is selected as the length of the decision-making

interval due to the time it takes for the attitude control system to converge to the new reference

if a change is made. Six minutes also provides adequate time for a desaturation maneuver to take

place. Finally, the dynamics are integrated with a 1-second time step.

3.5 Conclusion

This chapter presented a problem formulation for the single satellite agile Earth-observing

scheduling problem that adequately addresses resource constraints and leverages a high-fidelity

astrodynamics simulation framework to model the problem. The problem was described and for-

mulated as a Markov decision process, which includes the definition of the state space, action space,

reward function, and transition function. The parameters of the high-fidelity astrodynamics simu-
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lations were also presented. This problem formulation and simulator will be used in the following

chapters to develop and evaluate a variety of RL-based scheduling algorithms.



Chapter 4

MCTS-Train

4.1 Introduction

Monte Carlo tree search, introduced in Chapter 2, is an online search algorithm that may

be used to solve sequential decision-making problems [55, 57]. In this chapter, MCTS-Train is in-

troduced and deployed on two versions of the EOS scheduling problem. MCTS-Train is a training

pipeline that uses MCTS to generate estimates of the state-action value function and supervised

learning to produce a parameterized state-action value function Qθ(s, a). MCTS-Train takes in-

spiration from the AlphaGo algorithm, which uses neural networks in Monte Carlo tree search to

either guide rollouts or replace them entirely [1, 67]. The reason for this is that exhaustive search

in the game of Go is impossible because of the number of trajectories through the environment

(roughly 35 legal moves per board state assuming a game length of 80 moves, equating to ∼ 3580

trajectories). The AlphaGo Zero algorithm uses a neural network within MCTS to estimate the

state-action value function in place of executing rollouts [1]. This is an improvement over AlphaGo

Fan, which uses a neural network to execute the Monte Carlo rollouts [67]. One of the major

reasons that this is done is because it is difficult to craft a good rollout policy for the game of Go.

Even if a good rollout policy is crafted, the performance of MCTS may be limited by the quality

of the rollout policy for a given number of simulations.

While AlphaGo Zero achieves superhuman performance in the game of Go, this comes at

a computational cost. First, the algorithm requires approximately 70 hours of wall clock time

to produce a policy, with the search process, function approximation, and evaluation occurring
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asynchronously in parallel. Second, during the search step of Monte Carlo tree search, AlphaGo

Zero executes approximately 1,600 simulations in 0.4 seconds. This is likely due to the parallel

implementation and the relatively low computational cost of evaluating board states and rules.

In comparison, the SSAEO scheduling problem presented in Chapter 3 takes 0.11 seconds (µ =

0.11, σ2 = 0.0052) on a 2.8 GHz CPU to execute a single step. This is due to the fact that the EOS

scheduling problem requires equations of motion to be integrated and complicated observations to

be constructed. It’s worth noting that in comparison to the ∼ 3580 trajectories in Go, the SSAEO

scheduling problem has (3 + |U |)45 trajectories, where |U | is typically between one and five. While

this reduction in the number of total trajectories reduces the number of simulations required to

build an adequate search tree, it’s difficult to know for sure how this will manifest until the entire

training architecture is developed and the algorithm is benchmarked. Furthermore, because the

SSAEO scheduling problem is implemented using a high-fidelity simulation that cannot be saved

off in memory and restarted from some arbitrary state, the entire simulation must be rewound by

re-executing the action history at each simulation step. In contrast, a board state in the game of

Go is trivial to re-initialize.

Finally, it’s worth considering whether the power of AlphaGo Zero’s policy improvement

operation is really necessary for the EOS scheduling problems. While it may be difficult to construct

a rollout policy for the game of Go that will achieve good performance, the EOS scheduling problem

is well understood and a simple rollout policy that respects all safety constraints and collects and

downlinks science data can be constructed with relative ease. If the rollout policy is performant

enough, only a few search steps in MCTS can result in large performance improvements and a

near-optimal policy. The state-action value estimates generated with MCTS can then be regressed

over to approximate this near-optimal policy.

This chapter describes the MCTS-Train pipeline in detail and present two case studies on

how the algorithm can be used to solve and even parameterize EOS scheduling problems. Two

EOS scheduling problems are evaluated: a simple EOS scheduling problem [68, 69] and the agile

EOS scheduling problem presented in Chapter 3 (referred to as the SSAEO scheduling problem)
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Figure 4.1: MCTS-Train pipeline. MCTS is used to generate thousands of estimates of the state-
action value function. Various artificial neural networks are used to regress over the training data,
and each neural network is then validated and benchmarked in the environment.

[63, 64]. Each problem considers the same resources, but the science objectives of each problem

are quite different. The simple EOS scheduling problem only requires that the satellite points its

instrument in the nadir direction to collect data; no imaging targets are considered.

4.2 MCTS-Train

4.2.1 Overview

The full algorithm for MCTS-train may be found in Algorithm 7, and a corresponding figure of

the training pipeline may be found in Figure 4.1. The pipeline can be broken down into three distinct

steps, each of which is described here in detail. In step one, the training data set is generated using

hundreds or thousands of solutions found by MCTS. In step two, supervised learning is applied

to generate a parameterized state-action value function. In step three, the trained policies are

executed in the environment and their performance is benchmarked.

4.2.2 Training Data Generation

4.2.2.1 Overview

MCTS-Train first generates a training data set Q of state-action value estimates Q̂(s, a) by

solving the EOS scheduling problem for hundreds or thousands of unique initial conditions using
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Algorithm 7 MCTS-Train algorithm.

1: Initialize set of training data, Q

2: for iteration 1 : N

3: for iteration 1 : |I|
4: ai = MCTS.selectAction(si)

5: si+1, ri ∼ G(si, ai)

6: Add Q̂(si, ai) from MCTS to Q

7: Initialize set of hyperparameters

8: Initialize empty set of networks, Qθ

9: for hp ∈ hyperparameters

10: initialize Qθ with hp

11: Qθ.train(hp)

12: Qθ ∪ {Qθ}

13: for Qθ ∈ Qθ

14: reward sum = 0

15: for iteration 1 : |I|
16: ai = arg maxai Qθ(si, ai)

17: si+1, ri ∼ G(si, ai)

18: reward sum += ri

19: Save performance metrics

Monte Carlo tree search. For each unique initial condition, MCTS builds a search tree by simulating

hundreds of interactions with the environment. A state-action value estimate is maintained as

MCTS steps through the environment, which is exploited to select the next best action after a

pre-determined number of simulations have been executed.

4.2.2.2 Rollout Policy

The full algorithm for MCTS is described in detail in Chapter 2.2.3 (Figure 2.2 and Algorithm

2). The selection and expansion steps are described in detail there. After selection and expansion,

a rollout policy is executed to the desired depth of search. The rollout policy can take many

forms. A random rollout policy, πrand(s), randomly executes actions. A heuristic rollout policy

executes actions according to a pre-defined heuristic. In this work, both types of rollout policies

are compared. The random rollout policy simply selects from a uniform distribution over the set
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of available actions.

To create the rollout policy, a safety MDP is derived as described by Harris and Schaub

[52, 61]. The safety MDP discretizes the state space to reduce dimensionality to several safety

states. The state space of the safety MDP is defined as follows:

Ssafety = Stumbling × Ssaturated × Slow power × Sbuffer overflow (4.1)

The safety states take a boolean value of 0 or 1 based on whether the relevant resource state variables

are above or below a safety limit. When the safety MDP achieves a nominal state (si = (0, 0, 0, 0)),

meaning that any action can be safely taken, or if the safety MDP indicates the satellite is tumbling

only (si = (1, 0, 0, 0)), an imaging mode is selected. In the simple EOS scheduling problem, the

satellite only has one imaging mode. However, the SSAEO scheduling problem has many imaging

targets that may be selected. When MCTS is applied to the SSAEO scheduling problem, the closest

target in |U | is selected for imaging. For either problem, if the safety MDP is in any other state, a

resource management action is selected. The safety states are defined as follows:

stumbling = ‖BωB/N ‖ ≥ Rotation Rate Limit (4.2)

ssaturated = ‖Ω‖/Ωmax ≥Wheel Limit (4.3)

slow power = battery/max storage ≤ Battery Limit (4.4)

sbuffer overflow = buffer/max storage ≥ Buffer Limit (4.5)

The limits of the safety states are problem-specific and may be found in Table 4.1. The

differences in limits are largely due to the simple EOS scheduling problem having a larger maximum

reaction wheel speed and the instrument collecting far more data per decision-making interval than

the SSAEO scheduling problem.
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Table 4.1: State limits for shield.

State Simple EOS Agile EOS

Rotation Rate Limit 1e-2 rad/s 1e-2 rad/s

Wheel Limit 0.64 0.6

Battery Limit 0.5 0.25

Buffer Limit 0.8 0.95

To ensure a safe action is taken if the satellite is in an unsafe state, a policy is generated for

the safety MDP that guarantees a resource constraint failure does not occur if the safe action is

taken. This policy is referred to as πsafe(s). The MDP safety limits and policy actions are both

hand tuned and benchmarked to ensure no failures occur. The policy is provided in Table 4.2.

If the imaging action is selected, access to the ground stations is also checked, and if any ground

stations are accessible, a downlink mode is initiated instead.

Table 4.2: SSAEO rollout policy, πsafe(s).

stumbling ssaturated slow power sbuffer overflow Action

1 1 1 1 Charge

1 1 1 0 Charge

1 1 0 1 Desat

1 1 0 0 Desat

1 0 1 1 Charge

1 0 1 0 Charge

1 0 0 1 Downlink

1 0 0 0 Image

0 1 1 1 Desat

0 1 1 0 Desat

0 1 0 1 Desat

0 1 0 0 Desat

0 0 1 1 Charge

0 0 1 0 Charge

0 0 0 1 Downlink

0 0 0 0 Image
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4.2.2.3 Backup Operator

After the rollout step in MCTS, a backup operator is applied to update the state-action

value estimates of the nodes in the search tree. Vanilla MCTS utilizes an incremental averaging

backup operator, where q is the return from the trajectory and N(s, a) is the number of times the

state-action pair has been visited:

Q̂(s, a) = Q̂(s, a) +
q − Q̂(s, a)

N(s, a)
(4.6)

This backup operator is most appropriate for MDPs with non-deterministic state transitions.

While the models of the EOS scheduling problems utilized are complex, the state transitions are

deterministic, so an incremental averaging backup operator may result in suboptimal state-action

value estimates and require more simulations-per-step to converge to the optimal state-action value.

Therefore, a maximization operator is also explored in this work, where the state-action value

estimate is updated as follows:

Q̂(s, a) = max {Q̂(s, a), q} (4.7)

4.2.2.4 Training Data Construction

After MCTS finishes stepping through planning horizon, a trajectory of states and state-

action value estimates, Q̂(s, :), at those states exists. Only the state-action value pairs associated

with states that MCTS executes planning from are used for neural network regression. In other

words, only the main search tree is used because states far removed from the main tree are visited

very few times, resulting in poor state-action value estimates. In order for the trees generated by

MCTS to be used, the intermediate state-action value pairs found using MCTS must be updated

with the realized reward after MCTS finishes stepping through the EOS scheduling problem. Once

an entire planning problem has been solved by MCTS, the reward received while stepping through

the environment is used to compute new state-action values in the main tree for the actual actions

selected. The intermediate state-action value pairs for each other action are left as they are. This
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Figure 4.2: MCTS Final Value Computation

process is demonstrated in Figure 4.2, where the realized reward is backed up through the main

search tree.

This is the final step performed before the value estimates generated by MCTS are added to

the training data set. After all of the training data is generated, the training data is split up into

a training set and a validation set. The training set contains 90% of the data and is used to train

the neural network, while the validation set contains 10% of the data and is used to evaluate the

performance of the neural network during training. The training data is shuffled before being split

up into the training and validation sets to ensure the data is not ordered in any way.

4.2.3 Supervised Learning

After the training data is generated, supervised learning is applied over the training data set

to generate a neural network approximation of the state-action value function, Qθ(s, a). Hyper-

parameters that relate to the activation function, width and depth of the network, learning rate,

number of training epochs, etc. can be input into the algorithm to produce a number of neural
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networks. In this work, mean squared error is used for the loss function,

L(θ) =
1

|Q|
∑
si∈Q

(
Qθ(si, ai)− Q̂(si, ai)

)2
, (4.8)

and the Adam optimizer is selected as the optimization algorithm to update the weights of the

network(s). The neural networks are created and trained using the Keras1 deep learning API in

the Python programming language.

4.2.4 Validation and Benchmarking

After the neural networks are trained, they are validated in the environment using the policy

in Equation (4.9). Each neural network is executed on the same set of N initial conditions and

performance metrics are gathered. These performance metrics can be analyzed to determine the

impact of the algorithm’s hyperparameters as well as the parameters of the problem itself.

π(s) = arg max
a

Qθ(s, a) (4.9)

4.3 Solving the Simple EOS Scheduling Problem with MCTS-Train

4.3.1 Overview

The first problem solved using MCTS-Train is the simple EOS scheduling problem [69]. This

section briefly describes the simple EOS scheduling problem in relation to the agile EOS schedul-

ing problem and then discusses the use of MCTS-Train to develop a policy for the simple EOS

scheduling problem. This includes hyperparameter searches for MCTS, hyperparameter searches

for the supervised learning process, and various tests on the robustness of the trained policies.

In the simple EOS scheduling problem, a satellite in low-Earth orbit attempts to maximize

the amount of science data collected and downlinked while avoiding resource constraint violations.

In contrast to the agile EOS scheduling problem defined in Chapter 3, the simple EOS scheduling

problem collects science data by pointing its instrument in the nadir direction. No imaging targets

are collected in this problem. Data is collected throughout the entirety of the imaging mode.

1 https://keras.io/

https://keras.io/
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The state space of the simple EOS scheduling problem is the similar to that of the agile EOS

scheduling problem, but does not include state information on the imaging targets:

S = Ssat × Sground stations. (4.10)

The representation of the state is also different:

si = (Er, Ev, ‖σB/R‖, ‖BωB/N ‖, Ω, battery, eclipse, buffer, downlinked, · · ·

· · · station 1 access, · · · , station 7 access, planning horizon % complete)

(4.11)

The position, velocity, attitude, attitude rate, and reaction wheel speed states are identical be-

tween the simple EOS and agile EOS scheduling problems. Furthermore, the battery, buffer, and

downlinked states are also identical. However, instead of requiring that the network regress over

the position and velocity directly to learn where the ground stations are, ground station access

indicators are provided for each station. These ground station access indicators are represented as

the percent of the previous planning interval that the ground stations are accessible. The planning

horizon % complete state is also included to provide the neural network with information on how

far along the planning horizon the agent is. This is important because the agent should be able to

learn that it should downlink data when it is close to the end of the planning horizon.

The action space of the simple EOS scheduling problem is also slightly different

A = {Charge, Downlink, Desaturate, Image}. (4.12)

The first three modes of the simple EOS scheduling problem are identical to those of the agile EOS

scheduling problem. However, as previously stated, the imaging mode is a nadir-pointing mode

where data collection does not require access to an imaging target as there are no imaging targets

in this problem. The satellite points its instrument in the nadir direction and begins collecting

data.

The reward function is formulated to reflect an EOS scheduling problem where the objective

is to maximize the science data returned while managing resource constraints. The reward function

is defined as the amount of data downlinked over each planning interval in megabytes, Hi, if no
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resource management failure occurs. Note that no reward is returned just for imaging, unlike the

SSAEO scheduling problem. In the simple EOS scheduling problem, like the SSAEO scheduling

problem, a failure constitutes a violation of resource constraints. The failure modes considered are

zero charge in the battery, reaction wheels exceeding their maximum speeds, or an overflow in the

data buffer. The expression for this is provided in Equation 3.8. If a failure does occur, a large

penalty is returned.

R(si, ai, si+1) =



Hi if !failure

Hi + 1 if t ≥ tmax and !failure

−1, 000 if failure

(4.13)

The spacecraft, ground station, and simulation parameters of the simple EOS scheduling

problem are almost identical to those used for the SSAEO scheduling problem and are provided in

Tables 3.3, 3.4, and 3.5. The only exceptions are a few of the spacecraft parameters, specifically

those used for resource consumption. These are found in Table 4.3 and can be tied back to the

difference in rollout policy parameters in Table 4.1. Because the maximum reaction wheel speed is

almost twice as high in the simple EOS scheduling problem, the wheels can consume much more

power. Therefore, more aggressive safety MDP limits are selected for management of the charge

stored in the battery. As a result, the rollout policy executes trajectories where the battery is

above 50% and the wheel speeds are below ∼3000 RPM. This allows MCTS to improve upon these

power positive trajectories by trading off higher wheel speeds and lower battery charge for science

collection and downlink. Also of note is the relationship between the instrument baud rate and the

data buffer storage capacity. In the simple EOS scheduling problem, the decision-making agent can

fill up its data buffer in 2,000 seconds of science data collection time. This is approximately 5.5

decision-making intervals. Therefore, a more aggressive constraint is utilized for the data buffer fill

level.

A Basilisk Gymnasium interface for the simple EOS scheduling problem is also created. The

simulation architecture is largely the same as the one presented for the SSAEO scheduling problem
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Table 4.3: Simple EOS scheduling problem spacecraft parameters. Only the parameters that differ
from the SSAEO scheduling problem (Table 3.3) are shown.

Attitude Control System

Max Wheel Speeds 6000 RPM

Data & Communications System

Data Buffer Storage Capacity 1 GB
Instrument Baud Rate 4 Mbps
Transmitter Baud Rate 4 Mbps

in Figure 3.6. However, there is no imaging target modeled or simple instrument controller.

4.3.2 Monte Carlo Tree Search Hyperparameter Search

The first step of MCTS-Train is the generation of training data using MCTS. Before this can

be done, though, a hyperparameter search of MCTS must be conducted to ensure high-performing

policies are generated. In this section, a hyperparameter search is conducted to determine the best

MCTS hyperparameter combination for generating training data. In the following search, differ-

ent combinations of two key parameters for MCTS are tested: the exploration constant, ε, and

the number of simulations-per-step. The exploration constant scales the exploration bonus during

the search step, and the number of simulations-per-step determines how many simulations MCTS

executes at each step through the environment. The hyperparameter search is also conducted for

both types of rollout policies described in Section 4.2.2.2 - random and heuristic. Each hyperpa-

rameter combination is evaluated based on average episodic reward, downlink utilization, and the

resource management success rate. The downlink utilization is a measure of how effectively the

agent utilizes downlink opportunities. It is defined as the amount of time the agent downlinks data

(i.e. sends data to a ground station, not spends in the downlink mode) divided by the amount of

time downlink windows are available (i.e. the amount of time the spacecraft is within the ground

station’s field-of-view as specified by the elevation in Table 3.4).

Figure 4.3 displays both the average reward and average downlink utilization for MCTS with

a heuristic rollout policy, πsafe(s). To generate these plots, MCTS is executed on the same set of
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(b) Average Downlink Utilization

Figure 4.3: UCT Hyperparameter Search - Heuristic Rollout Policy

10 different initial conditions for each combination of ε and number of simulations-per-step. The

results show that the average reward and downlink utilization are much more dependent on the

exploration constant than the number of simulations-per-step. Adequate exploration ensures that

the high-reward states discovered by the rollout policy are found again during the simulation step.

Furthermore, adequate exploration allows MCTS to find higher value states than those discovered

during rollout. While the exploration constant appears to be the most important hyperparameter,

the number of simulations per step is important in terms of optimality. At 10 simulations-per-step,

MCTS achieves a maximum average reward of 459 and downlink utilization of 95.5%. At 100

simulations-per-step, MCTS achieves a maximum average reward of 469 and downlink utilization

of 97.1%. In the literature, MCTS is shown to converge to the optimal action as the number of

simulations-per-step approaches infinity [57]. While MCTS achieves acceptable performance for

this problem at 10 simulations-per-step, it takes at least an order of magnitude more simulations-

per-step to converge to the optimal solution.

The same hyperparameter search is conducted for a random rollout policy, πrand(s), and the
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Figure 4.4: UCT Hyperparameter Search - Random Rollout Policy

results are provided in Figure 4.4. Both average reward and downlink utilization are much lower

than the values generated by the heuristic rollout policy. In Figure 4.5, the resource management

success rate is shown. Fifty simulations-per-step is the minimum required number for most ex-

ploration constants to achieve a 100% success rate. In the case of the heuristic rollout policy,

the success rate is 100% regardless of the combination of hyperparameters. As hypothesized, the

heuristic rollout policy does a far better job at avoiding resource constraint violations. As a re-

sult, MCTS only explores states where there is high reward as the resource constraint violations

are avoided. Conversely, the random rollout policy provides no guarantees on avoiding resource

constraints, so MCTS spends its simulation budget learning where the low reward states are.

4.3.3 State-Action Value Network Hyperparameter Search

As described in Section 4.2.3, state-action value training data is generated by MCTS. The

selected MCTS hyperparameters for generating this data are an exploration constant of ε = 500,

10 simulations-per-step, and a heuristic rollout policy. The selected hyperparameters balance the

quality of the solutions with total execution time. For reference, MCTS can generate a solution
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Figure 4.5: Resource Management Success Rate

for a single initial condition in 25 minutes using 10 simulations-per-step and a 2.8 GHz CPU. This

can be extrapolated linearly for more simulations-per-step, demonstrating the need to keep this

parameter as low as possible. The training data is generated using 1,200 unique initial conditions.

To determine the best neural network architecture, a hyperparameter search is conducted over the

number of hidden layers, the number of nodes per hidden layer, the activation function, dropout

rate, and hyperparameters specific to the activation function. Each network is trained over 3000

epochs using a mean squared error (MSE) loss function.

The first hyperparameter search explores the performance of the state-action value networks

when varying the number of hidden layers, the number of nodes per hidden layer, and activation

functions of each layer. The dropout rate, which is the probability that a node will be dropped

during a training epoch to avoid overfitting [70], is held constant at 0.25. Furthermore, the α

parameter for Leaky ReLU is kept at the default of 0.3. The parameter α controls the slope

of the Leaky ReLU activation function for x < 0. The performance is benchmarked using total

reward, downlink utilization, and total time to execute. In Table 4.4, the performance of each

hyperparameter combination is provided. For each combination, the top number is the average

reward, and the bottom number is the average downlink utilization. Larger networks perform



60

Table 4.4: Leaky ReLU activation function general hyperparameter search. The top number is the
average reward, and the bottom number is the average downlink utilization.

Hidden Layers
Nodes 1 2 3 4 5 6

100
309 356 383 409 365 416

64.7% 75.6% 79.9% 84.4% 75.6% 87.4%

250
348 379 433 455 461 453

72.5% 78.3% 89.3% 94.2% 95.9% 94.0%

500
344 402 450 460 459 462

70.9% 82.4% 93.0% 95.5% 94.9% 95.8%

Table 4.5: Leaky ReLU activation function detailed search for 250 nodes per layer. The top number
is the average reward, and the bottom number is the average downlink utilization.

Dropout 0.05 0.10 0.25
α 0.01 0.10 0.25 0.50 0.01 0.10 0.25 0.50 0.01 0.10 0.25 0.50

H
id
d
en

L
ay
er
s

4
459 454 449 403 462 459 419 373 445 459 446 436

94.9% 94.5% 93.0% 84.3% 96.0% 95.0% 87.0% 77.0% 92.7% 95.1% 92.6% 90.9%

5
452 461 461 384 459 466 456 401 455 459 462 418

94.3% 95.4% 95.5 79.4% 95.3% 96.7% 94.6% 84.4% 94.1% 95.4% 95.8% 86.6%

6
455 462 463 403 455 462 453 362 451 463 460 453

94.7% 95.9% 96.1% 84.4% 94.5% 95.8% 94.4% 76.3% 93.7% 95.8% 95.3% 94.4%

better on average. Between four and six hidden layers with 250 or 500 nodes each achieves the

best performance, totaling between 2.0E5 and 1.3E6 trainable parameters. A smaller number of

trainable parameters is preferred to increase the speed of training and execution.

A more detailed hyperparameter search is performed to determine the best combination of

parameters when the number of nodes per hidden layer is held constant at 250 nodes per layer. The

dropout rate, the number of hidden layers, and α are all varied during the hyperparameter search.

As demonstrated in Table 4.5, the entire range of hyperparameters performs relatively well. Each

dropout rate produces networks that achieve greater than 95% downlink utilization. Furthermore,

each number of hidden layers produces networks that achieve greater than 95% downlink utilization.

α is the one parameter that does not produce more than 95% downlink utilization for all values.

In most cases, α = 0.50 struggles to produce networks that can achieve greater than 90% downlink

utilization.

In addition to performance, other metrics may give insight into the learned behavior of

each neural network architecture. One such metric, the average amount of time each network
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architecture spends in each mode, can give insight into how well the networks have learned which

planet-centered, planet-fixed position and velocity vectors are correlated with ground station access.

In Figure 4.6, the average time (expressed as the percent time over each planning interval) several

agents spend in each mode averaged over the 100 initial conditions is shown. For the purposes of

readability, only 10 agents that demonstrate the breadth of solutions are selected. Furthermore,

the selected agents are from Table 4.5 and achieve greater than 95% downlink utilization. Each

agent spends about the same amount of time in the imaging mode. However, the time split between

the charging, desaturation, and downlink modes varies widely for different architectures. Several

architectures spend between 30-40% of the time in the downlink mode but achieve 95% downlink

utilization. Other architectures spend 60-70% of the time in the downlink mode to achieve the same

performance. Downlink windows are available for an average of 5.98% of the planning horizon, so in

both cases the agents are spending more time attempting to downlink than is necessary. However,

it is unlikely that the agents are randomly achieving this high reward considering the consistency of

the performance over the 100 test conditions. This suggests that they have learned where the ground

stations are located in terms of the planet-centered, planet-fixed position and velocity vectors to

some degree. This is encouraging for future work, especially for multi-target scenarios in which the

radius and velocity of multiple targets are input states and each target is its own action.

Another insight into the learned behavior of each network is demonstrated by the small

variance in the percent of time each agent spends in the imaging mode. In Figure 4.6, each agent

spends around 10-15% of the time in the imaging mode. This is due to the spacecraft filling up

the data buffer quickly and only having a limited number of downlink opportunities available. As

previously stated, the satellite can fill up its data buffer in only 5.5 decision-making intervals of

continuous collection. The high-performing agents are limited by the size of the data buffer, and

the other spacecraft modes do not include a penalty (other than power draw), so the spacecraft can

split its time between the other three modes, converging to various local minima while achieving

the same performance. This fact is the primary motivation in increasing the size of the data buffer

relative to how much data a particular imaging mode can generate in the agile EOS scheduling
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Figure 4.6: Average Action Percentages - Specific Search

problem. Another learned behavior demonstrated by a few networks highlights the dependence on

the activation function. When the hyperparameter search in Table 4.4 is repeated for a hyperbolic

tangent activation function, several architectures achieve an average reward of 1.00 and average

downlink utilization of 0.00%. This is because the state-action value approximation converged to

a local minimum where spacecraft charging was always the highest-value action in Qθ(s, a).

4.3.4 Robustness

The data presented in the previous section makes a strong case for generalization within

the training data distributions provided in Table 3.5 because each initial condition generated uses

a different set of orbital parameters. However, the training data distributions do not cover all

low-Earth orbits. Specifically, the semi-major axis is always initialized to 6,871 km. Furthermore,

the initial epoch is held constant in training. Each planning horizon begins on May 4th, 2021. In

this section, the effects of an erroneous orbit insertion into a higher semi-major axis orbit and a

changing epoch are studied.

The performance of six neural network architectures is measured as the change in semi-

major axis is increased from 0 to 2,000 km in increments of 100 km. In Figure 4.7, the average

episodic reward increases with the semi-major axes of the orbits until ∆a is between 500-750 km.

This initially happens because the agents have more ground station access as the semi-major axis
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Figure 4.7: Average Episodic Reward as a Function of Semi-Major Axis

increases. Average episodic reward then begins to decrease as resource constraint failures begin to

occur, as shown in Figure 4.8. The reward decreases before reaching a local minimum, where the

reward penalty for failing to manage resources is offset by the increase in the length of the downlink

windows. The resource management failures occur almost entirely due to data buffer overflows.

While this may seem non-intuitive at first due to the increase in the length of the downlink windows,

consider the fact that the frequency of new downlink windows decreases because of the larger semi-

major axis. The agent anticipates upcoming downlink opportunities based on the planet-centered,

planet-fixed position and velocity vectors. However, these do not occur and the agent overflows the

data buffer. To rectify this issue, a state would need to be included in the state space that quantifies

the relative size of the semi-major axis within the training distribution, normalized between [0, 1].

Regardless of the resource constraint violations for large deviations in semi-major axis, the trained

neural networks can safely generalize up to a ∆a of 500 km.

The initial epoch of each simulation is moved three, six, and nine months forward in time and

the effect on performance, specifically resource management, is studied. When the epoch is moved

to three and nine months in the future, some network architectures from Table 4.5 fail to manage

power on-board the spacecraft and drain the battery, receiving a large reward penalty. For the
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Figure 4.8: Resource Management Success Rate as a Function of Semi-Major Axis

3-month change in epoch, 13 of the 36 trained agents produce resource management failures. For

the 9-month change in epoch, 18 of the 36 trained agents produce resource management failures.

When the epoch is moved six months into the future, the performance of the agents in Table 4.5

degrades the most. 29 of the 36 agents produce resource management failures. This is largely due

to the change in the position of the sun relative to the Earth and the spacecraft and some agents

becoming overfit on the relative position of the three during training. Furthermore, some agents

anticipate ground station availability that never happens, suggesting they are overfit on the state

that represents the percent of the planning horizon that has passed. This demonstrates the need

to vary the epoch during training to prevent this type of overfitting. However, it is encouraging

that a number of agents generalize to epochs outside the training distributions without producing

failures.

4.3.5 Genetic Algorithm Comparison

To determine the optimality gap of Monte Carlo tree search and the resulting value networks

for the given spacecraft configuration, a genetic algorithm is also tested on the same set of ini-

tial conditions. The genetic algorithm yields open-loop tasking solutions based on the expected
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Algorithm 8 Genetic algorithm.

1: Initialize population

2: Evaluate fitness of each individual in population

3: for generation 1 : N

4: Generate offspring by mating and mutating population

5: Evaluate offspring

6: Add offspring to population

7: Perform selection on population and offspring

environment, while MCTS and the neural networks yield closed-loop tasking solutions specific to

observations generated by stepping through a real environment. Regardless, the genetic algorithm

solution provides insight into how optimal the particular MCTS and neural network solutions are

with respect to the reward function. The genetic algorithm is inspired by the biological processes

of evolution and natural selection. The genetic algorithm begins by initializing a population of

individuals, each of which is a sequence of actions for the EOS scheduling problem. Each individ-

ual is evaluated using a fitness function, which is simply the reward function of the corresponding

EOS scheduling problem. The population of individuals then mates, and then their offspring are

mutated. The offspring are then added to the overall population, and a selection operator is applied

to select the best individuals within the population. This process repeats for a specified number of

generations. The pseudocode for the genetic algorithm is provided in Algorithm 8.

The DEAP evolutionary computational framework is used to implement the genetic algo-

rithm2 . The DEAP framework has a number of pre-defined operators for selection, mating, and

mutation. A one point crossover with a probability of 0.25 is used for mating. The selection op-

erator utilized is the selection tournament in which the best individual from three individuals is

returned. The population mates using a one point crossover operator, and the population mutates

using a uniform mutation operator where each sequence has a 0.25 probability of mutating, and

each attribute of a mutating sequence has a 0.3 probability of mutating. The number of generations

and population size are varied between 45-200 and 10-20, respectively. In Table 4.6, the genetic

algorithm achieves the optimal solution of 472 reward and 99.8% downlink utilization. Only the

2 https://deap.readthedocs.io/en/master/index.html

https://deap.readthedocs.io/en/master/index.html
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Table 4.6: Genetic algorithm performance. The top number in each cell is the average reward and
the bottom number is the average downlink utilization.

Population Generations

Size 45 100 200

10
445 463 447

94.0% 98.3% 96.2%

20
467 472 472

98.9% 99.8% 99.8%

first 10 of the 100 initial conditions used for the previous benchmarks are used due to computational

limitations.

4.3.6 Final Comparison

Table 4.7 displays the reward, downlink utilization, execution time, and total number of

Basilisk simulations required for each MCTS method implemented in this paper. The hyperpa-

rameter combination that achieves the highest reward is selected for each method. MCTS with

a random rollout policy achieves its maximum reward at 100 simulations-per-step with a rather

large optimality gap. MCTS with a heuristic rollout policy achieves its maximum reward at 75

simulations-per-step with an optimality gap of only 0.64%. After training, the neural networks

achieve near-optimal performance with an optimality gap of 1.3%. However, the total execution

time is several orders of magnitude less than any other algorithm implemented in this work. The

value network is the only candidate algorithm in this work for on-board execution where execution

speed is paramount on resource-constrained flight processors. Blacker et al. demonstrate that neu-

ral networks of a comparable size can execute on radiation hardened processors like the LEON3 in

under 10 seconds [33].

The number of Basilisk simulations refers to the number of simulations required to generate

one solution that achieves the demonstrated performance metrics in Table 4.7. For MCTS, this is

computed by multiplying the number of simulations-per-step by the total number of planning in-

tervals. Note that the state-action value networks achieve near-optimal performance by interacting
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Table 4.7: Comparison of Algorithms

Random MCTS Heuristic MCTS Value Network

Avg. Reward 407 469 466
Avg. Downlink Util. 83.9% 97.1% 96.7%
Avg. Exec. Time 19,100 s 11,400 s 0.0672 s
Num. Simulations 4,500 3,375 0

with the environment only one time, and never with a simulated environment, selecting an action

after each observation. MCTS and the genetic algorithm require many simulated environment

interactions to solve the planning problem. Furthermore, the genetic algorithm yields open-loop

tasking solutions. While MCTS technically yields closed-loop tasking solutions, it is given the truth

model of the environment for the purposes of this work. Due to the power of neural networks to

generalize across training data, the state-action value networks are able to interpolate and com-

pute solutions to planning horizons with initial conditions they have never experienced before in a

closed-loop implementation.

4.4 Solving the Agile EOS Scheduling Problem with MCTS-Train

4.4.1 Overview

The previous section provides an interesting case study for how MCTS-Train may be applied

to a simple EOS scheduling problem. Several important conclusions may be drawn from it. First,

a good rollout policy both improves performance and reduces the required computation. Artificial

neural network approximations of the state-action value function that meet or exceed the perfor-

mance of MCTS at multiple orders of magnitude less computation time are also possible. Insights

are also shown regarding how the policies generalize. The trained neural networks generalize across

the state space, and some trained networks perform just as well for semi-major axes and epochs

outside the training distributions. Finally, both the MCTS and neural network solutions are near-

optimal with respect to the reward function, which is determined through the use of the genetic

algorithm (Algorithm 8).
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However, several questions still remain, and several modifications should be made to the

planning problem based on the insights gathered. The size of the data buffer relative to the amount

of science data collected during a decision-making interval should be increased in order to formulate

a problem where more precise management of the resources is required in order to maximize science

data collected. Furthermore, the simple EOS scheduling problem is aptly named because it is a

simplified version of the real problem, particularly in regard to its science objective. No imaging

targets are considered. To address these issues, this section explores the single satellite agile EO

scheduling problem. In the SSAEO scheduling problem, the objective of the decision-making agent

is to maximize the number of imaged and downlinked targets while avoiding resource constraint

violations. This problem is described in Chapter 3 and Reference [64]. The decision-making agent

in the SSAEO scheduling problem has J imaging targets available in the set U for targeting at any

given decision-making interval. A key question is to what value J should be set in order to maximize

science return. If J is set to 1, then the agent only ever considers the next upcoming target.

However, if J is set too large, then the action space becomes unnecessarily large as targets that are

not available to the agent at the current decision-making interval are considered. Furthermore, the

question of how the backup operator impacts performance also remains. This section investigates

how MCTS may be used to tune J , and how different MCTS backup operators impact performance.

The solutions generated by MCTS are again generalized with a neural network using the MCTS-

Train pipeline. Finally, the genetic algorithm is again used to provide a performance benchmark

for MCTS and the learned policies.

4.4.2 Action Space Parameterization

To parameterize the size of U , a constant target density of 45 possible targets per orbit (135

total targets in T over three orbits) is assumed. Only 45 decision-making intervals are utilized,

so the agent will not be able to collect and downlink more than 45 targets. However, this target

density provides a reward-rich environment in which the agent constantly must make trade-offs

between high and low priority targets. It is worth mentioning that in addition to target density,
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the required number of targets in U is also a function of the length of the planning interval. A

spacecraft that makes a decision every three minutes will be able to collect more targets than a

spacecraft that makes a decision every six minutes, assuming the spacecraft can slew from target

to target fast enough. This work only considers six-minute planning intervals.

To determine how the size of U impacts performance, an experiment is conducted in which the

number of targets in the action space is increased from one through five. A range of |U | = {1, · · · , 5}

is selected because the spacecraft rarely has access to more than five targets. MCTS with an incre-

mental average operator, MCTS with a maximization backup operator, and the genetic algorithm

are applied to solve the problem for each size of U . For each |U |, the MCTS hyperparameters

that balance performance and execution time are selected. For the incremental average backup, an

exploration constant of ε = 10 is selected. For the maximization backup, an exploration constant

of ε = 20 is used because of the higher state-action value estimates. The number of simulations-

per-step for each |U | is linearly increased from 15 to 35, with |U | = 1 at 15 simulations-per-step

and |U | = 5 at 35 simulations-per-step. These numbers are roughly based on the hyperparameter

searches in the previous section, and the increase in simulations-per-step is selected due to the

increase in problem complexity due to additional actions in the action space. The number of times

future state-action pairs are visited is on the order of

1

|A|depth
, (4.14)

where the depth is the depth of the search. To equalize exploration between the different experi-

ments, the number of simulations-per-step is marginally increased to account for this decay. The

simple EOS MCTS hyperparameter searches show that additional simulations-per-step in the EOS

scheduling problem do not result in a large difference in the quality of MCTS solutions. Therefore,

the smallest number of simulations-per-step is selected for each |U | such that an MCTS performance

plateau is achieved.

Once again the genetic algorithm is implemented for comparison purposes. The genetic

algorithm is initialized with a population of 80 for |U | = 1 and is linearly increased to 160 for
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|U | = 5 to account for the increase in problem complexity as the action space grows. For each size

of U , the number of generations is set to 100. Note that the initial population size is much larger

than that of the simple EOS scheduling problem (Table 4.6). This is done because the SSAEO

scheduling problem is more complex than the simple EOS scheduling problem, with far more science

modes possible due to the change in data buffer size and instrument baud rate.

In Figure 4.9, the average reward, number of imaged targets, and number of downlinked tar-

gets for each size of U is plotted, along with the 95% confidence intervals for each. These metrics

are provided to give detailed insights into the performance of the decision-making agents. The

maximum possible number of imaged targets is 45. However, this is impossible to obtain because

of the data buffer constraint. Therefore, MCTS with the maximization backup operator is used

to generate a value for each metric’s maximum expected value (75 simulations-per-step, 10 tar-

gets in the action space). This is provided using the dotted black line, with the 95% confidence

intervals provided in gray. The solid blue line is generated from MCTS using the maximization

backup operator. The solid green line is generated from MCTS using the incremental averaging

backup strategy. Finally, the orange line is generated using the genetic algorithm. The reward

asymptotically approaches the maximum possible reward for each backup strategy as |U | increases.

However, the maximization backup strategy consistently achieves more reward. The maximization

backup operator also images and downlinks more targets on average. This is because the incre-

mental averaging operator averages in the return from future low-value states. The maximization

backup operator does not average in this return and instead sets the action-value estimate to the

maximum return found during search. Consider a scenario in which the agent is close to filling

up the spacecraft’s data buffer. The state-action value estimates along the optimal trajectory of

actions will be lower than the true optimal state-action value the closer the agent is to filling up

the data buffer. In contrast, the maximization operator will not consider the low return from a

data buffer overflow until it reaches a state in which it will overfill the data buffer at the next time

step if it takes an image.

An interesting result in Figure 4.9 is that the mean number of imaged and downlinked targets
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(b) Mean number of imaged targets.
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1 2 3 4 5
Targets in Action Space

100

200

300

400

500

600

700

800

M
ea

n 
Si

ng
le

 C
or

e 
W

al
l C

lo
ck

 T
im

e 
[m

in
] |U|=10 Benchmark

Maximization
Incremental Average
Genetic Algorithm

(d) Mean single core wall clock time.

Figure 4.9: MCTS performance metrics for different sizes of U with associated 95% confidence
intervals.

are relatively constant for each backup operator as the size of U increases. The average reward,

however, increases as |U | increases. The reason for this disparity is that as more targets are

included in the action space, MCTS has more of an opportunity to select high priority targets over

low priority targets. The target priorities are uniformly sampled from a range of one to three. With

one target in the action space, there is a probability of 1/3 that the target will be priority one.

However, this probability increases with the size of U using the following equation: 1 − (2/3)|U |.

With five targets in the action space, the probability that MCTS will have at minimum one priority
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one target is approximately 0.868.

Another observation to note is that the maximum number of imaged targets hovers around

33. Therefore, it is possible for the decision-making agents to select the imaging mode roughly 75%

of the time. This is a major increase in contrast to the simple EOS scheduling problem where the

imaging mode is selected for at most 15% of the time due to the small size of the data buffer. The

SSAEO scheduling problem therefore requires more precise management of power, reaction wheel

speed, and data buffer storage and is a more appropriate problem for future chapters.

In terms of reward, the genetic algorithm performs better than MCTS with the incremental

averaging operator, but not as good as MCTS with the maximization operator. Generally speaking,

this is true for the number of imaged targets as well. However, the genetic algorithm usually

downlinks more targets than the maximization operator and incremental averaging operator. The

GA seems to take better advantage of downlink opportunities, but does not leverage the imaging

target priorities quite as well. The mean single core wall clock time of each algorithm is plotted

in Figure 4.9d. The MCTS computation time is typically between 10-20% of that of the genetic

algorithm. The reason for this is that MCTS leverages expert knowledge in the rollout policy to

find high-value states, so the MCTS algorithm is more sample efficient. This implementation of the

genetic algorithm does not have an analogous mechanism. It should be noted that the computation

times are on the order of hours long for each algorithm. If a faster simulator were used, especially

one that makes linear assumptions about the dynamics of the problem, these simulation times could

be greatly reduced.

In Figure 4.10, the normalized frequency of the number of accessible targets at any given

step is provided. The 1σ standard deviation of the frequencies between different initial conditions

is plotted in orange. This is computed by generating the normalized frequencies for each unique

initial condition and computing the associated standard deviations between each initial condition.

The agent has no targets available to image in the next decision-making interval approximately

10% of the time. The agent has two targets available to image in the next decision-making interval

about 28% of the time. Finally, the agent rarely has eight targets available for imaging and never
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Figure 4.10: Normalized frequency of the number of accessible targets at each planning interval.
|T | = 135.

has nine targets available for imaging. Therefore, ten targets in the action space provides MCTS

with the maximum amount of targets required to get the maximum reward at any step, with some

margin added. The frequencies of available targets also shed light on the curves in Figure 4.9. The

spacecraft has five or more targets available for imaging less than 10% of the time. The magnitudes

of the frequencies between one through four targets is much larger and therefore has a much higher

impact on the performance.

4.4.3 State-Action Value Function Approximation

Similar to the simple EOS scheduling problem, a hyperparameter search is conducted over

the number of nodes, number of hidden layers, activation function, dropout rate, and α parameter

(specific to the Leaky ReLU activation function) to determine the appropriate artificial neural

network hyperparameters for approximating the state-action value estimates generated by MCTS.

The complete network parameters are included in Table 4.8. The training data generation and

neural network hyperparameter search were conducted on a computer with a Windows operating

system, a 24-core AMD Threadripper 3960x processor, NVIDIA RTX 3090 graphics card, and 128

GB of RAM. In general, training data generation takes between 1-2 days with multiprocessing

being utilized. Each network requires approximately 5-10 minutes of training using the GPU. If
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Table 4.8: Neural network hyperparameters for the SSAEO scheduling problem.

Parameter Value

Nodes Per Hidden Layer {50, 100, 200, 300}
Hidden Layers {1, · · · , 5}

Activation Function {Leaky ReLU, tanh}
α {0.1, 0.2}

Dropout {0.01, 0.1}
Epochs 10,000

Batch Size 45,000
Loss Function Mean Squared Error

the CPU is utilized instead, this training time increases dramatically.

To approximate the state-action value estimates, fully connected feedforward neural networks

with linear output layers are implemented with various hyperparameters. Dropout is again added

to each hidden layer to avoid overfitting [70]. Two dropout rates are explored - 0.01 and 0.1. If

the dropout rate is too low, it will not have the desired effect. If the dropout rate is too large,

the network may not sufficiently learn. These dropout rates are significantly smaller than the

simple EOS scheduling problem. Larger dropout rates appeared to hurt performance more for

the SSAEO scheduling problem than the simple EOS scheduling problem. In order to determine

the appropriate number of hidden layers and width of these layers, a hyperparameter search is

conducted over a range of these parameters. The number of hidden layers is increased from one to

five. Four network widths are considered - 50, 100, 200, and 300 nodes. These ranges of values were

iteratively increased until a depreciation in performance was present. In general, it is desirable to

keep the network as small as possible to increase the speed of training and decrease the memory

footprint and execution time of the network, especially when on-board execution is desired.

Both the Leaky ReLU and hyperbolic tangent activation functions are considered. The hyper-

bolic tangent activation function is a popular activation function that may be used for regression,

but suffers from the vanishing gradient problem for deep networks [71]. Therefore, Leaky ReLU is

also considered, which has become a popular choice for regression because it does not suffer from

the vanishing gradient problem (for sufficiently large values of α) or the dying ReLU problem asso-
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ciated with the ReLU activation function. The α-parameter in the Leaky ReLU activation function

is the slope of the activation function for x < 0. Two α-parameters are explored - 0.1 and 0.2. If

the α-parameter is too small, Leaky ReLU may also suffer from the vanishing gradient problem.

MCTS is used to generate 45,000 data points (1,000 unique planning horizons solved). 90%

of the data is used for training, and 10% of the data is used for validation. The data generated

by MCTS is not pre- or post-processed (outside of MCTS-Train updating the state-action value

estimates after it steps through the environment). The networks are trained for 10,000 epochs

using the mean squared error (MSE) loss function, a popular choice of loss function for regression

problems. In general, the mean squared error for the training and validation set is between 10-20.

The mean absolute error is also logged and is found to be in between 2-4. Overfitting is observed

as the networks became larger, but in general this is not an issue for smaller networks with 1-3

hidden layers and 50-200 nodes.

To validate the performance of each trained neural network, the state-action value networks

are used to generate the policy in Equation 4.9, which is executed on a standard set of initial

conditions. An example of this hyperparameter search is shown with the number of targets in the

action space set to three, |U | = 3. The same hyperparameter search is performed for the other sizes

of U , but these are not shown here for brevity. The general trends shown here are consistent among

the other numbers of targets in the action space. In Figure 4.11, a surface plot is shown that plots

normalized reward against the number of nodes per hidden layers and number of hidden layers.

The normalized reward is the average reward divided by the reward of the best hyperparameter

combination. A surface plot is generated for each activation function. However, for each data point

in the surface plot, the reward is averaged among the remaining hyperparameters. In the case of

Leaky ReLU, the α parameter and dropout rate rewards are averaged. In the case of hyperbolic

tangent, only the dropout rate reward is averaged. In general, performance is not as sensitive to

the dropout rates and α parameters as it is to the width of the hidden layers and number of hidden

layers.

A general trend can be extracted from the plots in Figure 4.11. One to two hidden layers
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(a) Leaky ReLU activation function.
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(b) Hyperbolic tangent activation function.

Figure 4.11: Hyperparameter surface plots for mean reward normalized by the mean reward of best
performing network. |U | = 3.

is typically insufficient to produce high-performing policies, particularly when small layer widths

are used. Furthermore, performance is relatively poor for large layer widths and large numbers of

hidden layers, albeit not as poor as the former case. In the former case, the network does not have

enough parameters to sufficiently approximate the state-action value estimates. In the latter case,

the network has too many parameters and becomes overfit. In the region that excludes these two

conditions, performance is relatively high. It’s also worth mentioning that no combination of layer

widths or hidden layers produces less than 85% normalized reward. Therefore, the performance is

relatively robust to the network architecture, which is an encouraging result.

4.4.4 Comparison Between MCTS and Learned Policies

Once the state-action value network hyperparameterization is performed for each |U | as

described in the previous section, the best state-action value networks for each |U | are selected

to compare against MCTS. Each of these networks are trained using data generated from MCTS

with the maximization operator solving approximately 1,000 unique initial conditions. The average
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reward, number of imaged targets, number of downlinked targets, and the wall clock time, along

with the 95% confidence intervals, for both MCTS and the best-performing neural networks are

plotted in Figure 4.12. For each |U |, the neural network policies image and downlink anywhere

between 0.5 - 1.0 more targets on average. There is a significant overlap in the confidence intervals,

but the network policies image and downlink more targets for every number of targets in the action

space. Because of this and the fact that the reward achieved by MCTS and the neural network

policies is almost identical, it is likely that the neural network policies are slightly worse at imaging

the high-priority targets. However, this difference is quite small, so it can be concluded that the

neural network policies approximate the MCTS policy very well. Finally, the learned policies find

a solution three orders of magnitude faster than MCTS.

4.4.5 Robustness to New Target Densities

In the last experiment, the robustness of the trained state-action value function approximators

is explored for various sizes of the total target set, T . During training, |T | is set to 135. However,

in a real operational scenario, this number will not be constant. The trained networks are deployed

in environments with |T | = {45, · · · , 270} in increments of 45. The results of this experiment are

presented in Figure 4.13a where the average reward and associated 95% confidence intervals are

plotted. At |U | = 1, there is little difference between the performance of the trained network for the

different numbers of targets in the total target set. This is because the agent is only ever considering

the next upcoming target. Adding or subtracting targets typically does not impact the performance,

except when |T | = 45. In this case, the targets are very sparse and performance is limited by the

number of targets available for imaging and downlink, not the agent’s ability to discern between

different priorities. However, as the number of targets in the action space increases, a separation in

performance emerges for |T | = {90, 135, 180}. These three target densities are fairly distinct from

one another, although there is some overlap in confidence intervals. For |T | = {225, 270}, there is a

lot of overlap in the means and confidence intervals for all numbers of targets in the action space.

This is expected because priority one targets become more available as the target density increases.
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(c) Mean number of downlinked targets.
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(d) Mean wall clock time.

Figure 4.12: MCTS and learned policy performance for different sizes of |U |.

In Figure 4.14, the normalized frequencies of available targets at each planning interval are plotted

for |T | = 270. In contrast to Figure 4.10, the most commonly available number of targets is four

as opposed to two. The agent has higher priority targets available to it more frequently, which

increases the average reward.

A comparison to the genetic algorithm is performed once more, this time on different tar-

get densities. In Figure 4.13b, the average reward of the genetic algorithm is plotted for |T | =

{45, 135, 270}, which provides a lower, middle, and upper bound on the performance of the GA. At

|T | = 45, the performance of the trained networks and the GA immediately plateau because the
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Figure 4.13: Average reward for different sizes of T

MDP limits the ability of either decision-making agent to prioritize high-priority targets over low-

priority targets. However, the GA performs slightly better at this target density because it makes

no assumptions about the underlying density. At the nominal size of T , |T | = 135, the GA fails to

match the reward of the networks trained using MCTS, which is discussed in the original compari-

son. However, at |T | = 270, the GA begins to slightly outperform the trained networks again. The

networks are trained for a nominal density of 135 total targets. Therefore, the state-action value

outputs assume a given target density, which may result in sub-optimal results. The GA makes no

such assumptions and simply searches for the sequence of actions that will maximize the reward

signal, albeit at a high computational cost. Hypothetically, the networks could be retrained using

MCTS assuming the lower or higher target density, and the discrepancy in performance would

disappear while maintaining the low-computational cost of the trained networks.

4.5 Conclusion

This chapter describes the MCTS-Train pipeline and presents two case studies on using the

pipeline to parameterize the EOS scheduling environments and generate artificial neural network

approximations of the state-action value function generated by MCTS. The trained neural networks
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Figure 4.14: Normalized frequency of the number of accessible targets at each planning interval.
|T | = 270.

are able to meet or exceed the performance of MCTS for a fraction of the computational cost after

training, generalize across the training distribution, and even generalize to distributions outside

those used in training. MCTS and the trained agents are also shown to be comparable to a genetic

algorithm. It is for these reasons that the MCTS-Train pipeline is a promising approach for on-

board planning and scheduling of the EOS scheduling problem.



Chapter 5

A Comparative Analysis of Reinforcement Learning Algorithms for EOS

Scheduling

5.1 Introduction

The previous chapter introduces MCTS-Train and provides two case studies on how the

algorithm may be deployed on EOS scheduling problems to parameterize the environments and

produce near-optimal policies that may be executed on-board spacecraft in milliseconds. Further-

more, the previous chapter investigates how these networks perform outside the nominal training

distributions and compare to solutions computed by a genetic algorithm. However, several ques-

tions remain unanswered. First and foremost, it is unclear how MCTS-Train compares to other

state-of-the-art reinforcement learning algorithms in regard to performance, performance variance,

training wall clock time, and safety. In fact, this is a common issue facing the literature today.

Each paper studying reinforcement learning for EOS scheduling implements a different algorithm

on a different planning problem. Examples of EOS scheduling work using different algorithms in-

clude asynchronous advantage actor-critic (A3C) [49], REINFORCE [50], deep Q-networks (DQN)

[51], PPO [52], and Monte Carlo tree search [54]. While each of the aforementioned works provide

novel contributions to the field of EOS scheduling, any comparisons are relatively limited in scope.

Harris and Schaub compare PPO and shielded PPO (SPPO), demonstrating that SPPO improves

resource constraint satisfaction and convergence time [52]. Eddy and Kochenderfer provide an ex-

cellent comparison for MCTS, forward search, rule-based, and graph-based methods, but do not

consider deep reinforcement learning algorithms. In addition to these gaps in the literature, the re-
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lationship between the different DRL algorithms, their hyperparameters, and performance variance

between different initial seeds is not well documented for EOS scheduling problems.

In addition to the shortcomings in regard to DRL comparisons for EOS scheduling in the

literature, the impact of the length of the planning horizons (i.e. number of decision-making

intervals) and the parameters of the reward function are not explored either. The majority of

authors train their decision-making agents on relatively small planning horizons (i.e. a few orbits)

and do not investigate how these agents perform long-term (i.e. days of operations). Furthermore,

little to no experiments are performed to tune the components of the reward functions. For a

given state and action space, different reward functions can produce wildly different behaviors in

decision-making agents, depending on the problem.

To address these shortcomings, this chapter provides a comprehensive comparison, complete

with hyperparameter searches, between various reinforcement learning algorithms for two EOS

scheduling problems: the aforementioned SSAEO scheduling problem and a new multi-sensor EOS

scheduling problem. To evaluate the impact of the length of the decision-making interval, the

multi-sensor EOS scheduling problem is evaluated for two numbers of decision-making intervals,

|I| = 45 and |I| = 90. The SSAEO scheduling problem is only evaluated for |I| = 45. This

work implements PPO, SPPO, advantage actor-critic (A2C), MCTS-Train, and DQN to solve each

scheduling problem. Hyperparameter searches are shown for each algorithm, and each algorithm

is compared on the basis of performance across various hyperparameters, performance variance

between training seeds, and wall clock time. Each algorithm is also compared to a genetic algorithm

performance baseline. Finally, PPO and MCTS-Train are used to evaluate long-term deployment

and training of the decision-making agents, as well as the structure of the reward function. Part of

this work is published in Reference [72].
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5.2 Problem Formulations

5.2.1 Single Satellite Agile EO Scheduling Problem

The SSAEO scheduling problem is described in detail in Chapter 3. However, several mod-

ifications are made to the environment in this chapter. First and foremost, the reward function

R(si, ai, si+1) is modified to have a minimum reward sum of -1 and a maximum reward sum of 1

as follows:

R(si, ai, si+1) =



−F if failure

A

|I|
∑|T |

j H(dj) if ¬failure ∧ ai is downlink

B

|I|
H(wj) if ¬failure ∧ ai is image cj

0 otherwise

(5.1)

The failure constant, F , is set to 1. A downlink constant, A, is utilized to weight the positive

reward component from downlink. An imaging constant, B, is utilized to weight the positive

reward component from imaging. A = 0.9 and B = 0.1 is selected to provide more weight towards

downlinking images as opposed to only collecting images on-board. Furthermore, each component is

normalized by the number of decision-making intervals, |I| = 45, because the number of decision-

making intervals is the limiting factor regarding the reward (i.e. there are more targets in the

set T than there are decision-making intervals, |T | > |I|). Another change to the environment

parameterization is a modification to the range of ascending nodes in Table 3.5. The range of

ascending nodes is modified to be [0, 360) deg as opposed to [0, 20] deg. This is done to increase the

generalizability of the trained networks. Finally, the set of imaging targets in the action space, U ,

is sized to |U | = 3. Chapter 4 demonstrates that the performance gains for |U | > 3 are minimal.
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5.2.2 Multi-Sensor EOS Scheduling Problem

A multi-sensor EOS scheduling problem is also formulated to provide a basic training en-

vironment in comparison to the SSAEO scheduling problem that uses a target imaging objective

as opposed to a quasi-area imaging objective. In the multi-sensor EOS scheduling problem, a

nadir-pointing satellite attempts to maximize the sum of imaging targets collected with one of two

sensor types, A or B, while managing power and reaction wheel speeds. No data buffer constraints

or data downlink is considered, which makes the reward less sparse. Like the SSAEO scheduling

problem, the set of all imaging targets is referred to as T . However, the satellite only ever considers

the next upcoming target. The planning horizon is divided into two separate lengths: 45 and 90

decision-making intervals. Each decision-making interval lasts for three minutes, which is different

from the six-minute intervals explored thus far.

5.2.2.1 State Space

The state space for the multi-sensor EOS scheduling problem is defined as:

S = Ssat × Stargets, (5.2)

where state space of the satellite is defined as:

Ssat = Spos × Svel × Satt × Swheels × Spower × Seclipse. (5.3)

The state returned to the decision-making agent at decision interval i is defined as si ∈ S :

si = (SEZr, SEZv, ‖σB/R‖, ‖BωB/N ‖, ‖Ω‖, battery, access, sensor, eclipse). (5.4)

The position and velocity, SEZr and SEZv, of the satellite are expressed in the topocentric horizon

coordinate system, or SEZ frame. This coordinate system is defined relative to the imaging target

and is selected to ensure the policy is target agnostic. Attitude information is provided in the form

of spacecraft attitude, angular velocity, and reaction wheel speeds. The attitude of the satellite is

provided as the magnitude of the modified Rodriguez parameters (MRPs) [73] σB/R, which is the
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rotation from the reference frame to the body frame. The magnitude of the angular velocity of

the satellite, BωB/N , is provided in the body frame. The magnitude of the reaction wheel speeds

is given by ‖Ω‖. Several states are also included for the purposes of power management. The

percent charge of the battery is provided using the battery variable, and the eclipse variable is

a binary variable that indicates whether the satellite is in eclipse. The last few states deal with

target access and which type of sensor the target should be imaged with. The access variable is a

binary variable that indicates whether the satellite has access to the next upcoming imaging target,

and the sensor variable is a binary variable that indicates which type of sensor the satellite should

image the upcoming target with.

5.2.2.2 Action Space

Like the state space, the action space is designed to fulfill the science objectives and manage

the resource constraints. Each action represents a distinct spacecraft mode. Descriptions of each

are provided below:

(1) Charge

• The satellite turns off its imager and points its solar panels at the sun to charge the

battery.

(2) Desaturate

• The satellite turns off its imager and points its solar panels at the sun. Reaction wheel

momentum is mapped to thrust commands, which are executed to remove momentum

from the wheels.

(3) Image with sensor A

• The satellite turns on imager A, and points it in the nadir direction. An image is

taken when requirements are met.

(4) Image with sensor B
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• The satellite turns on imager B, and points it in the nadir direction. An image is

taken when requirements are met.

5.2.2.3 Reward Function

A piecewise reward function is developed to mathematically formalize the objectives of the

multi-sensor EOS scheduling problem. Like the SSAEO scheduling problem in this chapter, the

reward function is formulated such that the minimum sum of the reward is -1 and the maximum

sum of the reward is 1. The first condition checked for is failure. Failure is true only if the reaction

wheels exceed their maximum speed or if the batteries are empty. Again, no data buffer constraints

are considered. If failure does not occur, the imaging mode is checked next. If the satellite images

the next upcoming target with the correct sensor type, a small reward bonus is returned. This

reward bonus is equal to one 1 divided by the product of the total number of targets (50 targets

per 90 decision-making intervals) and the summation of 1 and the square of the attitude error. The

component due to imaging has a maximum reward of 1, which assumes the satellite images every

target with the correct sensor type and zero attitude error. In this problem, the limiting factor is

the number of targets in T as opposed to the number of decision-making intervals, so that’s why

the positive reward component is normalized by |T |.

R(si, ai, si+1) =



−1 if failure

1

|T |(1 + ε2att)
if elsc > elmin and ai is preferred

0 otherwise

(5.5)

5.2.2.4 Gymnasium Environment

The generative transition function si+1, ri ∼ G(si, ai) for the multi-sensor EOS scheduling

problem is also modeled using a Basilisk simulation. The multi-sensor EOS simulator is largely the

same as that of the simple EOS and SSAEO scheduling problems. However, no ground stations or

on-board data systems are modeled.
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5.3 Performance Comparisons

In this section, DQN (Algorithm 3), A2C (Algorithm 5), PPO (Algorithm 6), SPPO (Section

2.3.6), MCTS-Train (Algorithm 7), and the GA (Algorithm 8) are benchmarked in each environment

and compared to one another on the basis of performance, performance variance, and wall clock

time. DQN, A2C, PPO, and SPPO are all Stable-Baselines31 (SB3) implementations. Stable-

Baselines3 is a Python package with a collection of reliable implementations of various reinforcement

learning algorithms. Each SB3 algorithm utilizes multiprocessing, and each implementation is

synchronous, meaning that each actor takes a step at the same time in parallel. If one environment

fails and must be reset, all the other actors must wait for the reset environment to initialize.

The first step of the performance comparison is to parameterize MCTS-Train and the genetic

algorithm to ensure each of the algorithms are performing well given the available computational re-

sources. These results can also provide baseline performance metrics for the reinforcement learning

algorithms. Chapter 4 and past work tunes the hyperparameters regarding the activation function,

number of training epochs, learning rate, batch size, dropout, loss function, and optimizer for the

supervised learning portion of MCTS-Train [69, 64]. The optimized hyperparameters are fixed

in each MCTS-Train experiment and are summarized in Table 5.1. The Leaky ReLU activation

function is used for each hidden layer. The activation function is defined as follows:

Leaky ReLU(x) =


x if x ≥ 0

αx otherwise

(5.6)

Each network is trained for a maximum of 10,000 epochs with a batch size of 45,000 to ensure

stable convergence. The Adam optimizer with an initial learning rate of 1e-3 is utilized. The mean

squared error loss function is used to train each network. Furthermore, a small amount of dropout

is added to each hidden layer to help prevent overfitting. The probability of dropout is 0.01.

The hyperparameters of each SB3 algorithm (PPO, SPPO, A2C, and DQN) are tuned using

a two-step process. In the first step, parameters such as the batch size, number of steps before an

1 https://stable-baselines3.readthedocs.io/en/master/guide/algos.html

https://stable-baselines3.readthedocs.io/en/master/guide/algos.html
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Table 5.1: Optimized hyperparameters for MCTS-Train.

Hyperparameter Value

Activation Function Leaky ReLU

α 0.1

Number of Training Epochs 1e4

Learning Rate 1e-3

Batch Size 4.5e4

Loss Function Mean Squared Error

Optimizer Adam

Dropout 0.01

update, number of training epochs, etc. are optimized for a network with 4 hidden layers and 20

nodes per hidden layer. Each algorithm utilizes the Leaky ReLU activation function with the same

α parameter in Table 5.1. However, no dropout is utilized for these algorithms. In the second step,

these optimized hyperparameters are deployed in a search over the number of hidden layers and

the number of nodes per hidden layer. For PPO and shielded PPO, only one policy is trained for

each hyperparameter combination because the algorithms are relatively stable. For A2C and DQN,

five policies are trained and evaluated because the performance of the algorithms can vary widely

between different seeds.

After the benchmarks are presented over the number of hidden layers and nodes for MCTS-

Train and the SB3 algorithms, the optimized hyperparameters are selected for each algorithm

and the algorithms are benchmarked once more. Five trials of training are performed for each

algorithm. The training curves with variance between trials are evaluated to determine how quickly

each algorithm converges and how much the algorithms can vary in performance between seeds.

5.3.1 MCTS Hyperparameter Tuning

Before MCTS can be used to generate training data, the hyperparameters of MCTS must

be tuned. The two tunable hyperparameters of MCTS are the number of simulations-per-step and

the exploration constant. The number of simulations-per-step is the number of simulations MCTS
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runs per step through the environment. Generally speaking, the more simulations-per-step, the

better the state-action value estimate. The exploration constant is used to scale the exploration

term in MCTS, which is the square root of the log of the number of times a state has been visited

divided by the number of times the state-action pair has been visited. The exploration constant is

used to balance exploration and exploitation. The higher the exploration constant, the more that

exploration is favored.

For each EOS scheduling problem, each combination of [5, 10, 20, 40, 80] simulations-per-

step and [0.1, 0.5, 1, 2, 4] exploration constant are deployed for 30 trials. The results of the

hyperparameter search are shown in Figure 5.1, where the solid line represents the average reward

across the 30 trials and the transparent highlighting represents the 95% confidence intervals. For

each EOS scheduling problem, higher exploration constants result in higher rewards. The number

of simulations-per-step also has a significant effect on performance, but after a certain number there

are depreciating returns for adding more simulations. This is especially true for the multi-sensor

EOS scheduling problem with 45 decision-making intervals and the agile EOS scheduling problem,

which also has 45 decision-making intervals. Simulations beyond 20 or so simulations-per-steps

result in little performance improvement. For the multi-sensor EOS scheduling problem with 90

decision-making intervals, this is not necessarily true. The large confidence interval bounds and

spread between the exploration constants suggests that even more simulations-per-step could be

beneficial. However, the computational cost of running MCTS increases linearly with the number

of simulations-per-step, so additional steps are not added.

The results in Figure 5.1 also provide an indication for the performance that can be expected

from the RL algorithms. The multi-sensor EOS scheduling problem with 45 decision-making in-

tervals appears to have a maximum reward between 0.7 - 0.75. The multi-sensor EOS scheduling

problem with 90 decision-making intervals appears to have a maximum reward between 0.6 - 0.7.

The same is true for the agile EOS scheduling problem.
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(a) Multi-sensor EOS scheduling problem with 45
decision-making intervals.
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(b) Multi-sensor EOS scheduling problem with 90
decision-making intervals.
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(c) Agile EOS scheduling problem.

Figure 5.1: MCTS hyperparameter search results: average reward with 95% confidence intervals.

5.3.2 Genetic Algorithm Hyperparameter Tuning

The genetic algorithm in Algorithm 8 is implemented for each EOS scheduling problem and

benchmarked for various population sizes and generations to ensure the GA is correctly parame-

terized. A large enough population size is required to increase the probability to genetic algorithm

will start with decent individuals that can then be evolved over many generations to produce bet-
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Figure 5.2: Example convergence curve for the genetic algorithm.

ter offspring. These hyperparameter searches are presented alongside the benchmarks of the RL

algorithms in Figures 5.3f, 5.4f, and 5.5f and discussed in relation to the RL benchmarks in the

corresponding sections. In comparison to the MCTS benchmarks in Figure 5.1, the GA is able to

match the performance for the Multi-Sensor EOS scheduling problem. The GA performs slightly

worse than MCTS for the Agile EOS scheduling problem for the number of generations and popula-

tion sizes explored. More computation in the form of larger population sizes and more generations

could close the performance gap, but at a computational cost.

An example convergence curve for the genetic algorithm is provided in Figure 5.2. In this

curve, a genetic algorithm with a population size of 400 is run for 400 generations on the SSAEO

scheduling problem. The genetic algorithm converges to a good solution in the first 50 generations,

largely due to the large population size. The genetic algorithm then continues to improve the

solution over the next 350 generations, but the improvement in average reward is marginal.

5.3.3 Multi-Sensor EOS Scheduling Problem Benchmarks

Each algorithm discussed thus far is benchmarked for two versions of the multi-sensor EOS

scheduling problem, one with 45 decision-making intervals (|I| = 45) and one with 90 decision-

making intervals (|I| = 90). In the former case, there are 25 total targets in the set T . In the latter

case, there are 50 total targets in the set T . Multiple decision-making intervals are evaluated to
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determine the effect on the trained policies for each algorithm.

5.3.3.1 45 Decision-Making Intervals

The results for the hyperparameter searches of each algorithm are presented in Figure 5.3.

MCTS-Train is benchmarked for networks with [1, 2, 4] hidden layers and [10, 20, 40, 80, 160, 320,

640] nodes per hidden layer. The SB3 algorithms (PPO, SPPO, A2C, and DQN) are benchmarked

for networks with [1, 2, 4] hidden layers and [10, 20, 40, 80, 160] nodes per hidden layer because

performance does not tend to improve outside these more limited parameters. Conversely, MCTS-

Train sometimes benefits from few hidden layers but many nodes per hidden layer. Finally, the GA

is benchmarked for [100, 200, 400] generations and population sizes of [100, 200, 400]. This range

of parameters is sufficient to provide a good benchmark in a reasonable amount of time.

After each policy is trained for MCTS-Train and the SB3 algorithms, the performance of

each is evaluated in the environment with approximately 150 trials. The genetic algorithm hy-

perparameter search is performed with only 20 trials for each hyperparameter combination. In

this case, the genetic algorithm provides the upper bound on performance at around 0.8 average

reward across all numbers of generations and population size. Each of the other algorithms is able

to compute policies that are close to this upper bound. PPO is shown to be extremely stable

over the entire range of network size hyperparameters selected and produces the best performance

of all the RL algorithms across the board. Shielded PPO is shown to be slightly less stable and

performant than PPO, but produces a policy that is close to the upper bound that never violates

the resource constraints due to the shield. PPO itself is not guaranteed to never produce resource

constraint violations, but it is easier for the algorithm to find high-performing policies because it

is not constrained to a subset of the state space. MCTS-Train, DQN, and A2C are typically able

to produce good performing policies, but are shown to be less stable than PPO and shielded PPO.

Furthermore, MCTS-Train requires much larger network sizes to produce high performing policies.

The maximum number of nodes evaluated for MCTS-Train is 640, compared to just 160 from the

other algorithms. At face value, this study would indicate that PPO is marginally better than the
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(a) MCTS-Train.
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(b) PPO.
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(c) SPPO.
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(d) A2C.
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(e) DQN.
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(f) GA.

Figure 5.3: Multi-sensor EOS scheduling problem, |I| = 45. The average reward for each hy-
perparameter combination is displayed for each algorithm. Reward < 0 clipped for readability.
(A) MCTS-Train average reward, hyperparameters: Table 5.1. (B) PPO average reward, hy-
perparameters: LR = 3e-4, batch size = 2070, epochs = 50. (C) SPPO average reward, hyper-
parameters: LR = 3e-4, batch size = 2070, epochs = 50. (D) A2C average reward, hyperpa-
rameters: LR = 7e-3, steps before update = 22. (E) DQN average reward, hyperparameters:
LR = 1e-4, batch size = 2070, buffer size = 5e4. (F) GA average reward, hyperparameters:
mutation rate = 0.25, crossover probability = 0.25, tournament size = 3.

other RL algorithms. However, the number of decision-making intervals utilized in this experiment

is relatively small. The number of decision-making intervals is doubled in the next experiment to

determine if the performance of the algorithms changes.
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5.3.3.2 90 Decision-Making Intervals

An identical experiment is performed for the multi-sensor EOS scheduling problem with 90

decision-making intervals. This experiment is performed to determine how the size of the search

space impacts performance. The hyperparameters swept over in this experiment are the exact same

as those in the previous experiment for each algorithm. However, there are slight differences in

the hyperparameters regarding batch size, epochs, etc. The results of this search are presented in

Figure 5.4.

In this case, both the genetic algorithm and MCTS-Train are capable of producing good

performance, but in general struggle to match the performance of the other algorithms. MCTS-

Train is only able to find one policy that achieves more than 0.5 average reward. The reason for this

is that both of these algorithms are searching over the action space to find optimal policies. The

total number of possible trajectories through the environment is |A||I|. 90 decision-making intervals

results in vastly more possible trajectories, which makes it more difficult for these algorithms to

find good solutions. This indicates that the genetic algorithm and MCTS-Train may not be well

suited if a long planning horizon is desired for training, i.e. training for a full day or a full week

of operations. PPO, SPPO, and A2C are shown to be the most stable and performant algorithms.

They are all able to produce good performing policies as they are optimizing over the state space

instead. Furthermore, these are all policy gradient algorithms, which might also help explain why

they perform better. DQN’s performance is more on par with the genetic algorithm or the best case

scenario for MCTS-Train, but is certainly worse than the performance of DQN on the 45 decision-

making interval version of the multi-sensor EOS scheduling problem. Regardless of the degradation

in performance, DQN is fairly stable over the selected hyperparameters, which MCTS-Train is not.

MCTS-Train is likely unstable for this problem because MCTS has not properly converged, as

demonstrated by the large confidence intervals and spreads between hyperparameters in Figure

5.1b. Again, this indicates that MCTS-Train may not work well for long planning horizons. PPO,

SPPO, A2C, and DQN could all be trained on even longer decision-making intervals without much
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(a) MCTS-Train.
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(b) PPO.
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(c) SPPO.
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(d) A2C.
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(e) DQN.
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(f) GA.

Figure 5.4: Multi-sensor EOS scheduling problem, |I| = 90. Average reward for the selected
hyperparameters of each algorithm. Reward < 0 clipped for readability. (A) MCTS-Train aver-
age reward, hyperparameters: Table 5.1. (B) PPO average reward, hyperparameters: LR = 3e-
4, batch size = 4140, epochs = 50. (C) SPPO average reward, hyperparameters: LR = 3e-4,
batch size = 1040, epochs = 50. (D) A2C average reward, hyperparameters: LR = 7e-3, steps be-
fore update = 45. (E) DQN average reward, hyperparameters: LR = 1e-4, batch size = 2070,
buffer size = 5e4. (F) GA average reward, hyperparameters: mutation rate = 0.25, crossover prob-
ability = 0.25, tournament size = 3.

increase in computational complexity provided that the same number of steps are used for each.

However, DQN is likely not a good candidate as the number of decision-making intervals increases,

as evidenced by the reduction in performance in the 90 decision-making interval version of the

multi-sensor EOS scheduling problem.
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5.3.4 SSAEO Scheduling Problem Benchmarks

A final hyperparameter experiment is performed for the agile EOS scheduling problem. The

results are presented in Figure 5.5. The same MCTS-Train and genetic algorithm hyperparameter

combinations used in the last two experiments are again used in this one. However, the sizes of

the neural networks for the SB3 algorithms are increased to ensure a large enough search space is

explored. The SB3 algorithms are benchmarked for [1, 2, 4] hidden layers and [10, 20, 40, 80, 160,

320, 640] nodes per hidden layer.

In this case, only MCTS-Train and the genetic algorithm are able to produce high-performing

policies. Each of the other algorithms converges to some locally maximal policy. PPO, SPPO,

and A2C are shown to be the most stable, while DQN is shown to have large instability and

poor robustness for neural networks with more than 160 nodes per hidden layer. The reason

for the relatively poor performance of the SB3 algorithms is likely due to the fact that the agile

EOS scheduling problem is more complex than the multi-sensor EOS scheduling problem in terms

of resource management and science objectives. The agile EOS scheduling problem has a more

complex reward function, an additional resource constraint, more sparse reward, and a larger action

space. MCTS-Train is able to leverage its high quality rollout policy, which initially finds a safe

trajectory of actions that MCTS can improve upon. The state-action value estimates produced by

MCTS are closer to the optimal state-action value function, which are then regressed over using

the artificial neural networks. While a similar shield is used within shielded PPO, shielded PPO

ultimately bounds the decision-making agent’s actions to the safety states. MCTS, however, allows

the agent to explore actions that may violate these safety limits with exceeding the limits used

within the reward function. When this difference in performance is compared to the multi-sensor

EOS scheduling problem results, it is evident that MCTS-Train may be an excellent choice of

algorithm as long as the number of decision-making intervals is not too large. A key question that

remains, however, is how the EOS scheduling problems formulated in this thesis translate to real-

world EOS scheduling problems with larger data buffers and less aggressive momentum buildup. If
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(a) MCTS-Train.
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(b) PPO.
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(c) SPPO.
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(d) A2C.
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(e) DQN.
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(f) GA.

Figure 5.5: Agile EOS scheduling problem. Average reward for the selected hyperparameters of each
algorithm. Reward < 0 clipped for readability. (A) MCTS-Train average reward, hyperparameters:
Table 5.1. (B) PPO average reward, hyperparameters: LR = 3e-4, batch size = 4140, epochs = 100.
(C) SPPO average reward, hyperparameters: LR = 3e-4, batch size = 2070, epochs = 100. (D)
A2C average reward, hyperparameters: LR = 3e-4, steps before update = 11. (E) DQN average
reward, hyperparameters: LR = 1e-4, batch size = 2070, buffer size = 5e4. (F) GA average reward,
hyperparameters: mutation rate = 0.25, crossover probability = 0.25, tournament size = 3.

the problems can be scaled such that only 45 decision-making intervals are required to sufficiently

model the problem, MCTS-Train may make an excellent choice of algorithm due to its ability to

handle many resource constraints and complex science objectives.
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5.3.5 Performance Variance

To evaluate the consistency of each algorithm between different training runs and initializa-

tions of the neural networks, a performance variance experiment is performed. For PPO, SPPO,

A2C, and DQN the best performing hyperparameters in step one of the optimization process are

deployed for five trials of training, each with different initial random seeds. For MCTS-Train, the

best-performing network hyperparameter combination is selected for the five trials. The genetic

algorithm is not considered in this experiment as the results from the GA are not generalized with a

neural network. The average reward curves with 1σ standard deviation for each algorithm and each

problem are plotted in Figure 5.6. PPO and SPPO are shown to produce the smallest standard

deviation between policies and converge the quickest. This result is not necessarily surprising, as

Reference [60] touts PPO as being a reliable algorithm needing little hyperparameter tuning. This

claim is also backed up with the hyperparameter searches presented within this chapter that find

that vanilla PPO is extremely stable across the range of hyperparameters. SPPO is not as stable

as PPO over the entire range of hyperparameters, but is found to be very stable when a good hy-

perparameter combination is selected. This is likely due to the fact that it is more difficult to find

a high-performing policy that avoids the limits of the safety MDP. A fundamental trade-off exists

between resource utilization and science collection. In contrast to the other algorithms, A2C and

DQN are shown to be more unstable both across the entire range of hyperparameters and between

different runs of the same hyperparameters, particularly for <1e4 episodes. As a result, they take

longer to converge. In fact, the maximum number of episodes in Figure 5.6 is primarily driven

by these two algorithms. Finally, MCTS-Train is shown to have a very small variance between

the different network seeds for the same hyperparameters. While MCTS-Train can be relatively

unstable across the entire range of hyperparameters, it is on par with PPO and SPPO in terms of

stability when optimized hyperparameters are utilized. When examining the performance variance

of each algorithm in addition to the performance across the hyperparameters presented in the last

section, it is evident that PPO, SPPO, and MCTS-Train should be among the top candidates for
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(a) Multi-sensor EOS, |I|=45.
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Figure 5.6: Average reward and 1σ standard deviation across 5 trials using the optimized hyperpa-
rameters for each algorithm. PPO, SPPO, A2C, DQN: nodes = 20, hidden layers = 4. MCTS-Train
utilizes the sizes of the best networks from Figures 5.3a, 5.4a, and 5.5a.

solving EOS scheduling problems. However, MCTS-Train should only be used in cases where the

number of decision-making intervals is relatively small (i.e., |I| ≤ 45).

5.3.6 Wall Clock Time

The wall clock times for each algorithm using the hyperparameters in Section 5.3.5 are dis-

played in Figure 5.7. The computational experiments resulting in these wall clock times were per-

formed on an AMD 3960X Threadripper CPU with 64 GB of RAM and an NVIDIA 3070 graphics
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card. The wall clock times in Figure 5.7a are for the total number of episodes for each algorithm,

and the wall clock times in Figure 5.7b are capped at 10,000 episodes. MCTS-Train is the most

computationally expensive algorithm because of the amount of data generated and the number

of neural networks produced during the training process. Furthermore, MCTS requires that the

Basilisk simulation is rewound by stepping through the trajectory of past actions to create a new

child node during the simulation step. This results in a lot of wasted computation. On average,

half of the trajectory of executed actions during tree generation are wasted. If Basilisk simulations

can be deep copied at the Python level in the future, which could be made possible by moving away

from SWIG, then this computational performance could be drastically improved (likely at the cost

of increased RAM utilization). Until this happens, MCTS-Train should only be used for complex

problems that other algorithms struggle to generate high-performing policies for. PPO, A2C, and

DQN are typically in the same ballpark computationally, with the relative performance dependent

on the specific problem. In comparison to MCTS-Train, they are single trajectory algorithms that

do not rely on building a search tree, so they do not suffer from the need to rewind the simulation

in the same manner. SPPO is the least computationally expensive algorithm. The reason for this is

that SPPO guarantees that resource constraint violations do not occur during execution. When a

resource constraint violation occurs for any of the SB3 algorithms, the simulation is reset, meaning

that an entire new target set must be generated by executing a Basilisk simulation and computing

access times to construct the list of targets. This is an expensive procedure. Because the SB3

algorithms are synchronous implementations, all the workers must wait until the reset environment

is ready to step through the environment again before they can begin stepping again. As a result,

overall CPU utilization decreases and wall clock time increases. Therefore, future works may want

to consider using asynchronous implementations of these algorithms. The risk of this is potentially

giving up the performance and stability of the SB3 implementations.
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Figure 5.7: Wall clock times associated with each algorithm. Times are displayed for all episodes
used in Figure 5.6 and for 10,000 episodes.

5.4 Long Duration Deployment

The performance comparisons provided in Section 5.3 provide insight into which algorithms

are best suited for EOS scheduling problems in terms of average reward, performance variance,

and wall clock time. However, all of these results are gathered for policies and value functions

that are trained to operate in planning horizons that are between one and three orbits long. In

a real operational scenario, a satellite will operate until it is decommissioned, which may take

years. Therefore, it is important to understand how the performance of these algorithms changes

as the planning horizon increases, particularly regarding safety. Furthermore, it’s also important

to understand the capabilities of each algorithm in terms of the length of planning horizon used

in training. In its current configuration, MCTS-Train struggles to train high-performing policies

for planning horizons with more than 45 decision-making intervals. On the other hand, PPO can

be easily configured to train policies for planning horizons that are hundreds of decision-making

intervals long. To address these questions, this section benchmarks the safety of policies trained by

MCTS-Train and PPO. While the policies may be trained in different ways, each policy is deployed

in the SSAEO environment for a day of operations. The total number of decision-making intervals
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increases from |I| = 45 to |I| = 240. The sum of the reward function still has a range of [-1, 1]

because the relevant components are normalized by the total number of decision-making intervals.

Lastly, the same target density of 135 targets per three orbits is assumed. Over the new planning

horizon, each agent has 720 targets in the set T available for imaging.

The policies generated by MCTS-Train in Section 5.3 are deployed in day-long planning

horizons in two configurations. The first configuration simply uses the policy in Equation (4.9)

to select the next action. The second configuration wraps the MCTS-Train policy with the shield

policy in Table 4.2 to guarantee safety during long-duration deployment. Nominal safety states

result in the shield policy deferring to the action recommended by MCTS-Train. Off-nominal

safety states result in the shield action. Finally, two training configurations for PPO are utilized.

In the first configuration, the policies generated by PPO in Section 5.3 are deployed in day-long

planning horizons. In the second training configuration, various PPO policies are trained to operate

in day-long planning horizons, which MCTS-Train cannot be set up to do without exceeding the

capabilities of the available computational resources. The policies trained in day-long planning

horizons are then deployed in day-long planning horizons.

The performance of each deployment method may be found in Figure 5.8. The evaluated

metric is the per-step probability of success. This is the probably that the policy will select an

action at each step that does not violate a resource constraint. In Figure 5.8a, the performance of

MCTS-Train deployed in the day-long planning horizon is displayed. Note that the z-axis begins at

0.97. MCTS-Train is able to produce policies that have at minimum a 98% chance of selecting an

action that avoids failure and at maximum a 99.5% chance of selecting an action that avoids failure.

While these probabilities may seem high, they typically result in a failure somewhere along the 240

decision-making intervals. In Figure 5.8b, the performance of the MCTS-Train policies wrapped

in the safety shield are displayed. The safety shield ensures that a safe action is always taken,

bringing the probability of success to 100%. The results for PPO are provided in Figures 5.8c and

5.8d. Compared to the unshielded MCTS-Train policies, PPO policies trained with 45 decision-

making intervals perform much better, with all policies achieving over a 99.7% chance of success at
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(a) MCTS-Train. Short duration training. Long du-
ration unshielded deployment.
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(b) MCTS-Train. Short duration training. Long du-
ration shielded deployment.
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(c) PPO. Short duration training. Long duration de-
ployment.
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(d) PPO. Long duration training. Long duration de-
ployment.

Figure 5.8: Per-step probability of success for each training and deployment method.

each step. In Figure 5.8d, the performance of the PPO policies trained with 240 decision-making

intervals is displayed. Each of these policies achieves greater than a 99.99% probability of success.

In Figure 5.9, the average reward for the shielded MCTS-Train policies and PPO policies
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(a) MCTS-Train. Short duration training. Long du-
ration shielded deployment.
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(b) PPO. Long duration training. Long duration de-
ployment.

Figure 5.9: Average reward for each training and deployment method.

trained for 240 decision-making intervals is displayed. The shielded MCTS-Train policies perform

slightly better across the board. MCTS-Train solves for very greedy policies that attempt to

collect and downlink as many images as possible. As evidenced by Figure 5.1c, there is a lot more

reward possible in the environment if the approximated policy or value function can capture all

of the nuances of the environment. MCTS-Train attempts to, but the errors in the value function

manifest in the form of worse safety guarantees if shielding is not utilized. The shielding bounds

the decision-making agents’ greedy behavior, resulting in high-performing polices that respect the

safety constraints.

5.5 Reward Function Engineering

The last question this chapter addresses is how the reward function for EOS scheduling

problems should be engineered, specifically the SSAEO scheduling problem, which is the most
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challenging of the problems explored thus far. The reward functions in Equations 3.7 and 5.1

mathematically formalize the objectives of the SSAEO scheduling problem. In the first iteration

of the SSAEO scheduling problem reward function, Equation 3.7, the failure penalty is set to -10.

The agent receives 0.1/pj reward for every new target imaged and 1/pj reward for every new target

downlinked. The minimum reward possible is -10, and the maximum reward is shown to be around

29 (Figure 4.9). In this chapter, the reward function is modified slightly to ensure that minimum

reward is no less than -1 and the maximum reward is no more than 1. The failure penalty is

adjusted accordingly, the imaging (B = 0.1) and downlink (A = 0.9) constants are adjusted from

their original values of 0.1 and 1, and the image and downlink reward components are both divided

by the maximum number of decision-making intervals (|I| = 45). The first question to address is

how these changes to the minimum and maximum reward impact the learned policies, if at all.

The second question to address is why the failure penalty, downlink constant, and imaging

constant are set as they are. The current formulation of the reward function heavily prioritizes

downlink, which can make reward more sparse. Furthermore, the failure penalty is quite large

in comparison to the maximum possible reward. In Chapter 4, the maximum reward achieved

is almost three times larger than the failure penalty. In this chapter, the maximum reward is

half of the failure penalty. How does this change effect the learned policies? Finally, can the

reward function be engineered to be more friendly to algorithms like PPO? PPO offers excellent

convergence properties, is shown to be stable and robust across a range of hyperparameters, and

can be trained in larger planning horizons with ease. However, it seems to have a tendency to get

stuck in a local minimum. Can this be addressed with a slight modification to the reward function?

5.5.1 PPO Reward Engineering

To begin answering this question, a search over the parameters in the reward function in

Equation 5.1 is conducted. A policy is trained using PPO for each combination. The following

imaging constants, B = [0.25, 0.5, 0.75, 1.0], are utilized. The downlink constant A is calculated

as A = 1−B to ensure that the maximum possible reward is equal to 1. Finally, failure penalties
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(a) Stochastic policy.
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(b) Deterministic policy.

Figure 5.10: Deterministic vs. stochastic policy for the reward function engineering experiment
using PPO. Hidden layers = 1. Nodes = 640. Batch size = 517. Training epochs = 50. Training
episodes = 10,000. Validation episodes = 100.

of [0, 0.5, 1] are applied for each imaging constant. In Figure 5.10b, the average reward for each

combination is displayed. Two types of policy execution are explored: deterministic and stochastic.

In the deterministic case, the action with the highest probability is selected. In the stochastic case,

the action is sampled from the probability distribution. The average reward for the stochastic

case is displayed in Figure 5.10a, and the average reward for the deterministic case is displayed

in Figure 5.10b. The deterministic policy outperforms the stochastic policy, which makes sense

because the cost of violating a resource constraint is large.

The first observation over the reward function sweep is that the failure penalty does not

appear to have a large impact on performance. The reason for this is likely due to the fact that the

decision-making agent is still incentivized not to fail in order to avoid early episode termination,

which will reduce the maximum possible reward possible. The second observation regarding the

reward function sweep is that reward tends to increase as the imaging is weighted more heavily

over downlink. However, it’s difficult to tell from Figure 5.10 whether this has a meaningful impact
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on the behavior of the learned policy.

To explore this in greater detail, the average priority of each image, average simulation

length, average number of imaged targets, and average number of downlinked targets are plotted

in Figure 5.11. The average simulation length, average number of images, and average number of

downlinked targets are roughly the same over the parameters. However, the average priority of

each image gets lower as the imaging component gets larger. Recall that a target with a priority of

1 is the “highest” priority target possible in that it leads to the largest reward bonus because the

reward is formulated as 1/pj . Therefore, lower numerical priorities on average are preferred. As

reward is more heavily weighted towards imaging, reward becomes far less sparse, and PPO is able

to infer which priorities are the most worth imaging. This is the best explanation for the increase

in reward in Figure 5.10.

5.5.2 MCTS-Train Reward Engineering

While the PPO reward engineering experiments present interesting results for PPO, they may

not hold up for MCTS-Train, which is a much different algorithm. Furthermore, the question of

whether or not the transition from Equation 3.7 to Equation 5.1 for the reward function leads to any

appreciable difference in metrics regarding the average number of targets imaged and downlinked

remains. Of most interest is whether a larger reward penalty fundamentally changes the learned

policy. Furthermore, closer examination of the policies generated by MCTS-Train may help explain

why PPO performs suboptimally for the SSAEO scheduling problem. To address these questions,

the MCTS-Train policies presented in Figure 5.5a are examined in more detail. Furthermore, an

additional MCTS-Train experiment with A = 0.9, B = 0.1, and F = 0.25 is performed, and the

results of this experiment are examined in detail.

In Figure 5.12, the average reward, success rate, average number of imaged targets, and aver-

age number of downlinked targets are plotted for the SSAEO scheduling problem with a downlink

component of 0.9, imaging component of 0.1, and failure penalty of 1. In comparison to Figure 4.9,

which corresponds to the reward function in Equation 3.7, the average number of imaged and
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(b) Average simulation length.
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(c) Average number of images.
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(d) Average number of downlinked images.

Figure 5.11: Reward function engineering experiment using deterministic policy trained with PPO.
Hidden layers = 1. Nodes = 640. Batch size = 517. Training epochs = 50. Training episodes =
10,000. Validation episodes = 100.

downlinked targets is slightly lower. In Figure 4.9, the learned policies achieve 34 images collected

on average and 30 images downlinked on average. In Figure 5.12, the highest-performing agents



109

Nodes

10 20 40 80160320720

Lay
ers

1

2

4

Av
er

ag
e 

Re
wa

rd

0.0
0.2
0.4
0.6
0.8
1.0

(a) Average reward.
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(b) Success rate.
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(c) Average number of imaged targets.
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(d) Average number of downlinked targets.

Figure 5.12: MCTS-Train policy metrics. Reward components: A = 0.9, B = 0.1, F = 1.

achieve 2-3 images collected and downlinked lower on average. This difference is likely not due to

the difference in failure penalty relative to the upper bound on positive reward, but instead due to

slight changes in the simulator regarding the desaturation mode.

In Figure 5.13, MCTS-Train is applied to the SSAEO scheduling problem with the following
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reward components: A = 0.9, B = 0.1, and F = 0.25. The average reward of the learned policy

is quite a bit lower than that of the learned policies in Figure 5.12. This is partially due to a few

more failures in the highest performing policies and an overall reduction in the average number of

downlinked targets. For the high-performing policies, the average number of downlinked targets

is far lower. A possible reason for this is that the larger failure penalty incentivizes the decision-

making agent to prefer downlink over imaging in many cases in order to avoid resource constraint

violations due to buffer overflows. The lower failure penalty agent tends to collect more images

than the higher failure penalty agent, which also supports this argument.

5.6 Conclusion

This chapter compares MCTS-Train, several SB3 implementations of state-of-the-art deep

reinforcement learning algorithms, and a genetic algorithm for two EOS scheduling problems on

the basis of performance, performance variance, wall clock time, and long duration deployment.

MCTS-Train is shown to meet or exceed the performance of the SB3 DRL algorithms for small

numbers of decision-making intervals, |I| ≤ 45. However, for larger numbers of decision-making

intervals, the SB3 algorithms are shown to outperform MCTS-Train. MCTS-Train is also the most

computationally expensive algorithm, not including the genetic algorithm. Of the SB3 algorithms,

PPO is shown to be the most stable and quick to converge. Shielded PPO is shown to be less

performant than PPO, but does guarantee safety during training and deployment. A2C and DQN

are typically able to produce high-performing policies, but are shown to have high variance between

training runs and across hyperparameters. Therefore, PPO and MCTS-Train are the recommended

algorithms for EOS scheduling, depending on the problem formulation.

This chapter also investigates long-duration deployment of the policies trained by MCTS-

Train and PPO. Various methodologies are used to determine how policies can be used for planning

horizons with 240 decision-making intervals for the SSAEO scheduling problem. The MCTS-Train

policies trained using 45 decision-making intervals do not generalize to longer decision-making

intervals without being wrapped with the safety shield. The PPO policies trained using 45 decision-
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(b) Success rate.
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(c) Average number of imaged targets.
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(d) Average number of downlinked targets.

Figure 5.13: MCTS-Train policy metrics. Reward components: A = 0.9, B = 0.1, F = 0.25.

making intervals perform slightly better, but to achieve comparable performance to shielded MCTS-

Train, PPO must be trained with 240 decision-making intervals. Fortunately, this is a possibility

for PPO, but unfortunately is not a possibility for MCTS-Train without a dramatic increase in

computational resources. Regardless, MCTS-Train emerges as the recommended algorithm for
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the SSAEO scheduling problem due to its performance and safety guarantees in long duration

deployment after being wrapped in the safety shield.

Finally, this chapter investigates how MCTS-Train and PPO respond to changes in the reward

function. Different imaging, downlink, and failure constants are tested for each algorithm. PPO

is shown to respond well to reward functions with more weight given to imaging, which results in

slightly higher priority targets getting selected on average. Interestingly enough, the failure penalty

is not shown to have a large impact on the performance of PPO. Because the episodes terminate

when resource limits are exceeded, the decision-making agents are penalized by not being able to get

more positive reward from collecting science data. For MCTS-Train, two separate failure penalties

are tested. The higher failure penalty results in better policies that downlink more images on

average. The larger failure penalty incentivizes the agent to downlink more in order to avoid data

buffer overflows. Similar to PPO, however, the reduced failure penalty does not seem to impact

the success rate of the decision-making agents. Again, agents are incentivized not to fail because

they cannot collect more science data if they do.



Chapter 6

Multi-Satellite Agile EO Scheduling Problem

6.1 Introduction

The problem of scheduling the sequence of observation, downlink, and resource management

tasks performed by a constellation of Earth-orbiting satellites with three-axis attitude control ca-

pabilities is commonly referred to as the multi-satellite agile Earth-observing (MSAEO) scheduling

problem. Like the SSAEO scheduling problem, the primary challenge associated with the MSAEO

scheduling problem is formulating performant, accurate, and computationally tractable problems

that are flexible and fast enough to modify and re-solve in the inevitable event that replanning is

required. However, the solutions should also be robust and scalable to support the addition and

removal of satellites, which is a normal part of sustained constellation operations as new satellites

are launched and old satellites are decommissioned. In the case of performance, problem formu-

lations and solutions must optimal with respect to observations collected and downlinked while

respecting the relevant resource constraints. Problem formulations must also be accurate, i.e. rep-

resent the real life problem with sufficient fidelity to minimize the frequency in which re-planning

is required due to mismodeling. Finally, problem formulations and corresponding algorithms must

be computationally tractable enough to solve during nominal operations and also fast enough to

re-solve when replanning is required, such as when opportunistic science events present themselves.

The same challenges in applying optimization-based solutions (i.e. MILP or GAs) to the SSAEO

scheduling problem are present in the MSAEO scheduling problem. However, the computational

cost of these algorithms is exacerbated by the increased number of decision-making agents and
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subsequent problem complexity.

While RL for single satellite EOS scheduling is gaining traction in the literature, few authors

have explored utilizing RL for MSAEO scheduling. Cui et al. apply double Deep Q-Networks for

communication scheduling of a constellation of Earth-orbiting satellites [74] and demonstrate that

their algorithm is superior to a genetic algorithm in terms of performance and computation time.

Dalin et al. formulate a scheduling problem for multi-satellite tasking and apply the multi-agent

deep deterministic policy gradient (MADDPG) algorithm to solve the problem [75]. The perfor-

mance of the MADDPG algorithm is shown to be comparable to other solvers for the problem.

While each of these authors make important contributions to RL for MSAEO scheduling, the han-

dling of resource constraints and their relationship to spacecraft position, velocity, and attitude is

quite limited. The authors do not fully leverage the black-box optimization capabilities of rein-

forcement learning and rely on simple models of the problem. Furthermore, References [74] and

[75] do not demonstrate the scalability of their algorithms to constellation parameters beyond those

fixed during training.

Largely unexplored for MSAEO scheduling, multi-agent reinforcement learning (MARL) is

a collection of problem formulations and algorithms associated with solving multi-agent decision-

making problems. Various reward structures may be utilized, such as fully cooperative (agents

receive a single global reward signal), competitive (each agent receives an individual reward sig-

nal), and mixed cooperative/competitive (agents receive local rewards, but their global reward is

evaluated) [76]. While the fully cooperative reward structure intuitively makes sense, the challenge

of credit assignment makes learning difficult. In addition to different reward structures, different

training methodologies exist, such as independent learning (each agent independently learns its own

policy, considering other agents part of the environment), centralized learning (a centralized pol-

icy is learned for the joint action space), and centralized training, decentralized execution (agents

learn in a centralized manner, but are deployed in a decentralized manner). Independent learning

algorithms include independent Q-learning (IQL) [77], independent advantage actor-critic (IA2C)

[78], and independent proximal policy optimization (IPPO) [79]. Independent learning MARL
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paradigms must overcome the challenge of non-stationarity in the environment, as well as the chal-

lenge of the partial observability regarding other agents and their actions. However, in practice they

work quite well. Centralized learning paradigms do not suffer from these issues, but the associated

problems are difficult to solve due to the exponential increase in the joint action space with the

number of decision-making agents. Any of the single agent RL algorithms discussed thus far can be

utilized for the centralized training methodology if they are deployed over the full state and action

space. However, they also cannot be executed in a decentralized manner. Centralized training, de-

centralized execution (CDTE) can overcome the limitations of each of the aforementioned training

methodologies by leveraging the full observability of all agents during training, but only require that

agents observe their local states during deployment. CDTE algorithms include multi-agent deep

deterministic policy gradient (MADDPG) [80], counterfactual multi-agent (COMA) policy gradi-

ent [81], central-V [78], value decomposition networks (VDN) [82], and QMIX [83]. The relative

performance of each independent learning and CDTE algorithm is problem dependent.

While RL may pose many benefits for MSAEO scheduling, the primary challenge is the

computational complexity of the multi-agent problem, especially if a high-fidelity simulation is

utilized. The most general formulation of a multi-agent RL problem is a decentralized partially

observable Markov decision process (Dec-POMDP). However, a Dec-POMDP is non-deterministic

exponentially complete (NEXP-Complete) [84]. If free communication is assumed, a Dec-POMDP

can be reduced to a multi-agent MDP [56, 85]. However, the size of joint action space in both Dec-

POMDPs and MMDPs is exponential in the number of decision-making agents. Chapters 4 and 5

demonstrate that a single agent can be trained in several hours to several days with MCTS-Train.

A multi-agent reinforcement learning problem with comparable simulation fidelity could take much

longer to train because of the exponential increase in computational complexity. While it may be

tempting to deploy a multi-agent version of the other DRL algorithms in Chapter 5, it is likely

that the gap in performance for the SSAEO scheduling will only grow in the MSAEO scheduling

problem. To avoid the increase in computational complexity, but maintain the performance of

MCTS-Train, this work deploys the decision-making agents trained in the SSAEO environment with



116

MCTS-Train and deploys them on-board each spacecraft in a Walker-delta constellation. While this

problem formulation is suboptimal in terms of global reward because the decision-making agents

are competing for reward, the size of the constellation may be readily changed without requiring

retraining. To address this issue, this chapter also investigates higher level coordination for the

target distribution so the agents are not competing for reward, but instead working through their

individual local target lists while managing satellite resources such as power, on-board data storage,

and reaction wheel speeds.

This chapter formulates a multi-satellite agile Earth-observing scheduling problem where a

constellation of spacecraft in a Walker-delta formulation attempt to maximize the weighted sum of

targets imaged and downlinked while avoiding resource constraint violations concerning power, on-

board data storage, and reaction wheel speeds. An MDP formulation of the problem is created, and

the various communication methods implemented in the multi-satellite scenario are described. The

two methods of target distribution (i.e. first come, first served and the mixed integer programming

techniques) are both described. Finally, the performance of the trained agents is benchmarked for

each communication method, each target distribution method, and various Walker-delta constel-

lation designs. This performance is compared to that of a genetic algorithm as well, which can

provide a benchmark of performance for a centralized algorithm. Part of this work is published in

References [86] and [87].

6.2 Problem Formulation

6.2.1 MDP Formulation

The multi-satellite agile Earth-observing scheduling problem extends the SSAEO scheduling

problem to multiple satellites in a Walker-delta constellation. N satellites are distributed evenly

among P orbit planes. The orbital planes are distributed at 360/P deg intervals of the longitude of

ascending node. A phasing factor between the planes may also be specified, which determines the

offset in true anomaly between satellites in adjacent planes. In this work, a phasing factor of 0 is
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Figure 6.1: Multi-satellite agile Earth-observing scheduling problem. A constellation of satellites
attempts to maximize the local weighted sum of imaging targets imaged and downlinked.

utilized. The satellites in the constellation have access to a global set of targets, M . Furthermore,

each satellite k has its own set of targets, Tk, but satellites may share targets within M . In this

chapter, the decision-making agents attempt to maximize local reward. That is, each satellite

attempts to maximize the weighted sum of targets collected and downlinked within its local target

set Tk. The satellites update their local target lists through communication with the other satellites.

This concept is demonstrated in Figure 6.1.

Each satellite in the Walker-delta constellation maintains an observation over its local state,

ski ∈ Sk. The full state is now si = {s1
i , · · · , ski }, and the state space is S = S1×· · ·×Sk. The state

evolves based on the underlying system dynamics and actions taken by each satellite. The action

space is now a joint action space represented as A = A1 × · · · × Ak. Each decision-making agent

takes actions following its local copy of the policy, aki = πk(ski ). The generative transition function

and the reward function are both now a function of the complete state and joint actions. The

generative transition function is given by si+1, r
1
i , · · · , rki ∼ G(si,ai), and the joint reward function

is given by R(s,a) = (R1(s,a), · · · , Rk(s,a)). The local reward function of each agent is the same

as it is for the SSAEO scheduling problem, but the environment now enumerates through M instead

of Tk to check if a target was imaged or downlinked for the first time or not. If another satellite
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has already imaged or downlinked a target, no new reward is returned. The MDP formulation

of the MSAEO is technically a Markov Game [56]. However, the agents on-board each satellite

do not evolve their strategies based on the actions of the other agents, so the other agents are

considered part of the environment. From a single agent’s perspective, the two changes from the

SSAEO scheduling problem to the MSAEO scheduling problem are A.) the potential that a target

in the action space (or more precisely the set U) is imaged at the same decision interval, and B.)

changing distributions of the local target set Tk, which agent k cannot observe past U anyway. The

frequency of occurrence of the former change is the only change that may necessitate modifying

the single agent training paradigm used in this chapter. This is discussed in the results.

6.2.2 Simulation Architecture

The generative transition function, si+1, r
1
i , · · · , rki ∼ G(si,ai), of the MSAEO scheduling

problem is also implemented using a Gymnasium environment wrapping a Basilisk simulation.

The components of the simulation architecture are identical for both the MSAEO and SSAEO

scheduling problems, and a summary of the simulation is provided in Figure 6.2. The Basilisk

simulation includes three separate classes for 1.) environment modules, 2.) dynamics modules,

and 3.) FSW modules. A single environment class is instantiated for the entire simulation, but

dynamics and FSW classes are instantiated for each satellite. The architecture allows for the

number of spacecraft to easily scale up and down using only a few lines of code.

The environment class contains modules for gravity (the Earth and sun), eclipse, each of the

seven ground stations available for downlink, imaging targets, an atmospheric density model, and

a random disturbance torque that helps build up momentum in the reaction wheels. The dynamics

class of each satellite contains modules for the power system (i.e. batteries, solar panels, instru-

ment and transmitter power sinks, etc.), data management system (i.e. data buffer, instrument, and

transmitter), and attitude control system (reaction wheels and thrusters). Furthermore, spacecraft

location modules are instantiated for each satellite and connected to the other satellites to deter-

mine when line-of-sight access occurs. Finally, the flight software class of each satellite contains
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Figure 6.2: Multi-satellite Basilisk simulation architecture.

numerous tasks. The sunPoint, nadirPoint, locationPoint, and trackingError task provide

an attitude reference to the mrpControl task, which uses a MRP-based feedback control law to

compute reaction wheel torques. Finally, the rwDesat task contains the modules that map reaction

wheel momentum to thruster commands. The source code for the MSAEO scheduling problem may
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Figure 6.3: Policy deployment pipeline.

be found on the develop branch of the bsk rl library1 under the name and multiSAtAgileEOS.

The satellite and simulation parameters are provided in Chapter 3. However, like in Chapter 5,

the longitude of ascending node is sampled from U [0, 360) deg.

6.3 Methods

This section provides an overview of how the decision-making agents are trained and deployed

in the constellation. In the first step, the decision-making agents are trained in the single satellite

environment. The trained policy is wrapped within a safety shield that prevents the decision-making

agents from taking unsafe actions. Then, the policy is deployed on each satellite in a constellation

defined using a set of Walker-delta parameters, imaging targets, and communication assumptions.

After the policy is deployed in the environment, the performance subject to the Walker-delta

parameters, distributed target set, and selected communication assumption is evaluated. This

performance is then compared to the performance of a genetic algorithm for a subset of the Walker-

delta parameters explored. The deployment pipeline is summarized in Figure 6.3. This section

details the policy training, policy deployment, and ground target generation blocks of the pipeline.

The communication methods, which are contained within the constellation parameterization block,

and the genetic algorithm used for comparison purposes are also described.

1 https://github.com/AVSLab/bsk_rl

https://github.com/AVSLab/bsk_rl
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6.3.1 Single Agent Training

The single agent training process is described in detail in Chapters 4 and 5, but will be

summarized here. MCTS-Train is used to generate a neural network approximation of the state-

action value function, Qθ(s, a). MCTS-Train uses Monte Carlo tree search (MCTS), an online tree

search algorithm, to find optimal solutions to the planning problem. At every step through the

environment, MCTS runs a number of simulations to compute an estimate of the state-action value

function. After all the simulations have been completed, the action that maximizes the state-action

value function is selected. The environment transitions to the next state, and the process repeats

until the end of the planning horizon. After the end of the planning horizon is reached, the state-

action value estimates along the main trajectory of the search tree are collected and added to a

data set. This data set is then regressed over with a feedforward neural network to compute a

neural network approximation of the state-action value function, Qθ(s, a). The parameterized state

action value function is used to create a parameterized policy, πθ(s), using Equation 4.9.

6.3.2 Multi-Agent Deployment

The decision-making agents, or policies, are trained using the MCTS-Train pipeline. After

training, the policies are deployed on-board each satellite in the Walker-delta constellation. The

policy on-board each satellite is wrapped with a safety shield that ensures the decision-making

agent only takes safe actions. For instance, if decision-making agent attempts to take an image

when the data buffer is one image away from overfilling, the safety shield will override the decision

with a safe action (i.e. downlink). A visual representation of the shield in action is provided in

Figure 2.4. Both the decision-making agent and the safety shield receive an observation from the

environment. The decision-making agent passes an action to the safety shield, which evaluates the

observation and action to ensure a safe action is passed to the environment. The details regarding

the safety shield are provided in Chapters 2.3.6 and 4.2.2.2.
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6.3.3 Communication Methods

Communication between the satellites is used to locally update which targets have been im-

aged and downlinked to help ensure that the duplication of efforts is minimal. At the end of each

decision-making interval, the satellites use the selected communication method to update their

local lists of targets, Tk. Four separate communication methods are implemented: no communica-

tion, single degree line-of-sight communication, multi-degree line-of-sight communication, and free

communication. These are displayed in Figure 6.4.

6.3.3.1 No Communication

The no communication model assumes that the satellites do not update their local target

lists. The local target sets Tk are never updated to include which targets have been imaged or

downlinked by other satellites in the constellation.

6.3.3.2 Single Degree Line-of-Sight Communication

The single degree line-of-sight communication assumption is meant to represent a constel-

lation with limited crosslink communication capabilities. Line-of-sight connectivity between the

satellites is defined as a straight-line connecting two satellites that does not intersect the Earth

plus 100 km of atmosphere above the surface of the Earth. Each satellite updates its local list of

imaging targets with the neighbors it is directly connected to using only one iteration of communi-

cation. Imagine a scenario in which spacecraft A has line-of-sight communication with spacecraft B,

but spacecraft B has line-of-sight communication with both spacecraft A and spacecraft C. Space-

craft A will not receive information about which targets spacecraft C has imaged and downlinked;

it will only receive information about which targets spacecraft B has imaged and downlinked. This

is demonstrated in Figure 6.4b.
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(a) No communication. (b) Single degree line-of-sight communication.

(c) Multi-degree line-of-sight communication.

Global Data

(d) Free communication.

Figure 6.4: Communication methods.

6.3.3.3 Multi-Degree Line-of-Sight Communication

The multi-degree line-of-sight communication assumption is meant to represent a constel-

lation with near unlimited crosslink communication bandwidth. If the previous example is used

again, spacecraft A will now receive information about which targets both spacecraft B and C have

imaged and downlinked.
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6.3.3.4 Free Communication

The free communication case is meant to represent a constellation with near constant access

to communication resources, either ground- or space-based. This could include a large network of

ground stations or a dedicated constellation for communication routing. In the free communication

assumption, every satellite has access to which targets have been imaged and downlinked in the

global target set M , and their local target lists are updated accordingly.

6.3.4 Ground Target Distribution

The set of M imaging targets is generated using uniformly distributed unit vectors projected

onto the surface of the Earth. This chapter investigates two different methods for distributing the

imaging targets between the satellites in the constellation, one centralized and one decentralized.

The first method distributes the imaging targets solely based on access time in a first come, first

serve manner where imaging targets may be shared between satellites. The second method optimally

distributes the targets using a mixed integer program, and no imaging targets are shared between

satellites.

6.3.4.1 Ordered Access Target Distribution

The first method of target distribution creates a set of local targets for each satellite ordered

by the access time to that target. Targets may be shared between satellites using this method.

The algorithm for this target distribution method is provided in Algorithm 9. Initial conditions are

first generated for each satellite. Then, each satellite is looped through to create the list of local

targets. The local target set is initialized, the spacecraft trajectory is propagated for the duration

of the planning horizon, and the access times for each target are computed. Then, for each interval

and each target, if the satellite has access to the target, the target is added to the local list.
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Algorithm 9 Ordered access target distribution.

1: initialize set of initial conditions for K spacecraft

2: for spacecraft k = 1:K

3: initialize local target set Tk
4: propagate spacecraft trajectory

5: pull access times oi,j,k
6: for i ∈ I
7: for m ∈M
8: if oi,m,k
9: Tk ∪ {m}

10: assign local target sets to spacecraft initial conditions

6.3.4.2 Mixed Integer Programming Target Distribution

The second method of target distribution utilizes a mixed integer program to generate an

optimal distribution of targets. The purpose of using this method is to determine the impact that

centralized coordination has on performance. The objective of the integer program is to maximize

the weighted sum of targets distributed between the satellites. This objective function is provided

in Equation 6.1, where I is the set of decision intervals, M is the set of global targets, and K

is the set of satellites. xi,m,k ∈ {0, 1} is the binary decision variable for whether or not a target

m ∈ M is assigned to spacecraft k ∈ K at interval i ∈ I, and pm ∈ R+ is the priority of target m.

oi,m,k ∈ {0, 1} is a binary variable representing the access of spacecraft k to target m at interval i.

The integer program includes several constraints. The first constraint, provided in Equation 6.2,

ensures that a ground target is collected no more than one time over the planning horizon. The

second constraint, provided in Equation 6.3, ensures that each satellite collects at most one target

at every decision interval. Finally, the last constraint, Equation 6.4, ensures that imaging targets

are only collected when access is available.

max
∑
i∈I

∑
m∈M

∑
k∈K

xi,m,k
pm

(6.1)
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Algorithm 10 Mixed integer programming target distribution.

1: initialize set of initial conditions for K spacecraft

2: for spacecraft k = 1:K

3: propagate spacecraft trajectory

4: pull access times oi,j,k

5: construct MIP formulation

6: solve optimization problem

7: construct local target sets Tk
8: assign local target sets to spacecraft initial conditions

s.t.

∑
i∈I

∑
k∈K

xi,m,k ≤ 1 ∀ m ∈M (6.2)

∑
m∈M

xi,m,k ≤ 1 ∀ i ∈ I, k ∈ K (6.3)

xi,m,k ≤ oi,m,k ∀ i ∈ I, m ∈M, k ∈ K (6.4)

Note that the target distribution program does not account for data buffer, reaction wheel speed,

and power constraints. While data buffer and power constraints are straightforward to model with

an integer program if linearity assumptions are made regarding their dynamics, reaction wheel

speeds are not because of the highly non-linear dynamics involved. With this target distribution

method, the trained decision-making agents are in charge of resource management, and the mixed

integer program is in charge of supplying the decision-making agent with the next best target to

image.

The algorithm for the MIP target distribution method is provided in Algorithm 10. Similar to

the ordered access distribution, the set of initial conditions is first generated. Then, the spacecraft

trajectory is propagated and the access times are computed. The mixed integer program is then

implemented using the Python-MIP2 optimization package and solved using the default branch &

cut algorithm. After an optimal solution is generated, the target sets are assigned to each satellite.

2 https://www.python-mip.com/

https://www.python-mip.com/
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6.3.5 Genetic Algorithm

A genetic algorithm is implemented to compare the solution method presented in this chapter

to a method that optimizes over the entire action space, A = A1 × · · · × Ak, of the MSAEO

scheduling problem. For the MSAEO scheduling problem, each sequence of actions is simply input

into the MSAEO simulator, and the reward function in Equation 3.7 is evaluated for each agent

and summed. The pseudocode for the genetic algorithm is provided in Algorithm 8.

6.4 Results

6.4.1 Communication Methods

To determine how assumptions regarding communication between satellites impact perfor-

mance, several benchmark experiments are performed for each communication method deployed in

different Walker-delta constellation designs. In the first experiment, each communication method

is tested in a constellation of K satellites that reside in a single orbital plane. In the second ex-

periment, each communication method is tested in a constellation of satellites distributed among

P orbital planes.

6.4.1.1 Single Plane Results

In the single plane experiments, a constellation of K = {4, 7, 10, 15, 20, 30, 40} satellites are

deployed in a single plane at 45 degrees inclination. The purpose of this experiment is to determine

how performance of the trained agent depends on intra-plane communication. Analytical predic-

tions about this performance can be readily made based solely on whether or not the satellites

in the orbital plane can communicate with one another or not. First and foremost, it is always

expected that the free communication assumption will outperform the no communication assump-

tion. The reason for this is that the decision-making agents will never be aware if another satellite

has already imaged or downlinked a potential target. However, the performance of the line-of-sight

communication assumption is not as easily predicted. There will be some critical number of satel-
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lites, K∗, that determines whether or not the Earth occludes communication. For K < K∗, there

will never be line-of-sight communication between the satellites, and the performance of the line-

of-sight communication assumptions should match that of no communication. For K > K∗, the

satellites will always maintain line-of-sight communication with one another, and the performance

of the line-of-sight communication assumption should match that of free communication.

Assuming a semi-major axis of 6871 km and occlusion occurring for altitudes less than 100

km (due to atmospheric interference), the critical number of satellites, K∗, may be computed as

follows, where θ∗ is the angle between the right triangle formed by the satellite’s radius and the

occluding radius:

K∗ =
π

θ∗
=

π

cos−1
(
RE+100km
RE+500km

) = 9.2 satellites (6.5)

A diagram for this is provided in Figure 6.5. Therefore, for 9 or fewer satellites, line-of-sight com-

munication is identical to no communication. For 10 or more satellites, line-of-sight communication

will approximate free communication.

An experiment is performed for the described Walker-delta constellations; 16 samples are

generated for each combination of constellation design and communication model. The results of

this experiment are provided in Figures 6.6, 6.7, and 6.8. In Figure 6.6, 2D and 3D views of the

global and local reward are plotted. Global reward is the sum of reward across all satellites, and

local reward is the average reward of each satellite following Equation 3.7. The first observation

to note is that the analytical prediction regarding when line-of-sight communication approximates

none or free communication matches the experimental results. For the blue and orange curves (4 and

7 satellites), line-of-sight communication approximately matches no communication. For the green,

red, purple, brown, and pink curves (≥ 10 satellites), line-of-sight communication approximately

matches free communication. The second observation to note is that the performance difference

between the single- and multi-degree line-of-sight communication assumptions is not discernible.

The two communication methods perform approximately the same. This is due to the fact that

one-way information sharing between neighbors (i.e. single degree line-of-sight communication) is
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Figure 6.5: The critical angle, θ∗, which determines when LOS communication is not possible.

sufficient to ensure neighboring satellites do not duplicate one another satellite’s efforts.

In addition to observations regarding the performance of each communication method, obser-

vations can be made about the dependency of global and local reward on the size of the constellation

and the number of global targets. In general, more global targets correlates with higher reward.

For smaller constellations, the satellites become saturated with imaging tasks, and the reward

plateaus. Furthermore, more satellites generally results in higher global reward. This intuitively

makes sense. As satellites are added to the constellation, there are more resources available to

image and downlink targets. However, local reward decreases as more satellites are added to the

constellation. Because there is more competition for the available imaging targets, and because

many of the satellites share the same imaging targets, local reward decreases with an increase in

satellites.

In Figure 6.7, the performance of the deployed agents is displayed in terms of the unique

number of imaged and downlinked targets. Note that the shape of the unique number of imaged
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Figure 6.6: Global and local reward for the single plane experiment.

and downlinked targets match one another as well as the shape of the reward function.

In Figure 6.8, the percent of the imaged imaging targets that are unique is plotted. As

expected, the no communication assumption results in a low percentage of images that are unique.

For a large constellation of 40 satellites with only 200 imaging targets, less than 10% of the imaged

targets are unique. For a small constellation of 4 satellites with 3200 imaging targets, about 90% of

the imaged imaging targets are unique. The percentage of unique targets for the free communication
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(c) 2D view of downlinked targets.
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Figure 6.7: Global numbers of unique imaged and downlinked targets for the single plane experi-
ment.

case is heavily dependent on the size of the constellation as well. Only about 50% - 80% of the

targets imaged assuming free communication in a constellation of 40 satellites are unique. The

reason for this is that the satellites are not coordinating during a given decision-making interval.

It is possible, and depending on the priority of the target likely, that more than one satellite

will attempt to image the same ground target at the same decision-making interval. This rate of

target duplication indicates that modifications to the SSAEO training environment where targets
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Figure 6.8: Percent of imaged targets that are unique for the single plane experiment.

in the set U randomly disappear, to simulate the target being imaged by another satellite, may be

beneficial.

6.4.1.2 Multi-Plane Results

Duplicate benchmarks are performed for a Walker-delta constellation with multiple planes.

A set of P = {1, 3, 5, 7, 9} planes with four satellites in each plane at a 45 degree inclination is

benchmarked for M = {200, 800, 1200, 1600, 2400} global imaging targets. A phasing factor of 0 is

utilized. Similar to the single plane experiments, there exists some number of planes P ∗ where two

satellites in adjacent planes at the equator can communicate with one another. Using the same

assumption as the single plane case, this number is computed as follows:

P ∗ =
π

2 cos−1
(
RE+100km
RE+500km

) =
1

2
K∗ = 4.6 planes (6.6)

Therefore, four or less planes will result in no communication at the equator. Five or more planes

will result in communication at the equator. To determine how the number of planes impacts

performance, four satellites per plane is selected such that there is no intra-plane communication.
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(c) 2D view of local reward.
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Figure 6.9: Global and local reward for the multi-plane experiment.

The global and local reward of the experiment is provided in Figure 6.9. The local reward plots in

Figures 6.9c and 6.9d demonstrate the impact of the inter-plane communication on performance.

For P = {1, 3} planes, line-of-sight communication more closely matches that of no communication.

However, because there is intermittent communication where orbit lines intersect, the line-of-sight

communication assumption does not match the no communication assumption like it did for the

single plane experiments.
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(c) 2D view of downlinked targets.
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Figure 6.10: Global numbers of unique imaged and downlinked targets for the multi-plane experi-
ment.

The number of unique imaged and downlinked targets are provided in Figure 6.10. As

expected, the no communication assumption results in the fewest amount of uniquely imaged and

downlinked targets. The free communication assumption results in the most amount of uniquely

imaged and downlinked targets.

Finally, the percent of imaged targets that are unique are provided in Figure 6.11. These

experimental results match that of the single plane experiment. No communication results in the
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Figure 6.11: Percent of imaged targets that are unique for the multi-plane experiment.

lowest percentage of targets that are unique. Furthermore, more planes and more satellites results

in fewer uniquely imaged and downlinked targets because the probability that two satellites will

image the same target at the same decision-making interval increases. This probability decreases

as the number of global targets increases, but the trend is still present. Finally, it’s worth noting

that for the multi-plane Walker-delta formations, the percent of unique targets is higher than that

of the single plane Walker-delta formations. This is because the satellites are more spread out in

the multi-plane formations, which results in a lower probability of two satellites imaging the same

target at the same decision-making interval. Modifications to the SSAEO training paradigm may

still improve performance for multi-plane formations, but to a lesser degree.

6.4.1.3 Communication Method Discussion

Several insights may be drawn from the results of the communication experiments. First,

it is evident that the communication assumption has a significant impact on the performance

of the constellation. However, there is little to no difference between the free and line-of-sight

communication assumptions if there are enough satellites in a single plane to communicate with
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one another. The more satellites available in a plane, the more targets that can be imaged and

downlinked. However, the probability that two satellites will image the same target increases as

well, and the overall efficiency of the constellation is decreased, as evidenced by Figure 6.8. If

there are enough satellites in the constellation such that LOS communication approximates free

communication, then there will be an overlap in the targets available to neighboring satellites

(and even non-neighboring satellites if the plane is dense enough). The proposed decentralized

decision-making architecture cannot ensure that the satellites do not image the same targets as the

individual decision-making agents do not communicate intent to one another, but only communicate

the targets they have already imaged and downlinked. Therefore, the satellites will not know what

targets their neighbors are planning to image. This is a significant limitation of the proposed

decentralized decision-making architecture. However, the results of the communication experiments

show that this limitation is not a significant issue if the constellation is small enough. In that case,

performance is limited by whether or not the satellites can communicate at all.

Another insight deals with the number of planes. When an equal number of satellites are

distributed among planes such that no intra-plane communication is available, but inter-plane

communication is available, the performance of the constellation improves significantly. This is

because the satellites within the plane do not have to worry about imaging the same targets as their

neighbors and benefit from information being propagated between the planes. When comparing

the efficiency metrics from the single- and multi-plane results (Figures 6.8 and 6.11), it is evident

that the multi-plane results are significantly better. In this case, a coordinated approach would

likely have less of a potential to improve the results, unless the use of coordination and intent

communication can help improve resource management for a single satellite, which can better

prepare it for future science opportunities.

Lastly, while the MSAEO scheduling solution provided in this chapter is posed for deployment

on board real satellites, the utility of the proposed method for evaluating constellation designs is

quite evident. The amount of science collected and the overall efficiency of a particular constellation

design can be evaluated relatively quickly. A grid search over the constellation parameters can be
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performed to maximize or minimize whatever metric the constellation designer is interested in.

6.4.2 Ground Target Distribution Comparison

The last set of experiments addresses the question of how best to distribute targets. Two

approaches are taken - one centralized and one decentralized. The centralized approach formulates

a MIP optimization problem to distribute the targets between satellites such that no targets are

shared. The decentralized approach assigns imaging targets to satellites as they are available,

and the first satellite to capture and downlink the ground target receives the reward. For each

comparison, the centralized approach utilizes a neural network trained with a |Uk| = 1. The

decision-making agent only looks one target ahead. The decentralized approach utilizes a neural

network trained with a |Uk| = 3. The decision-making agent looks three targets ahead. The

reason for this is that the centralized distribution approach effectively prunes the list of targets

to provide the next best one to the decision-making agent. Therefore, the look-ahead capabilities

provided by |Uk| = 3 is not necessary for the centralized approach. Furthermore, the decision-

making agents from Chapter 5 are trained assuming a much larger target density than what the

centralized approach will output, which may negatively impact policies trained for |Uk| = 3.

6.4.2.1 Single Plane Results

The first set of ground target distribution experiments compares each method for varying

numbers of satellites in a single plane. The parameters of the experiment are the exact same as the

parameters of the communication experiments. For the decentralized distribution approach, free

communication between satellites is assumed. For the centralized distribution, no communication

between satellites is necessary. For each initial condition, provided that the access intervals are

already computed, it takes on average 0.73 seconds to solve the MIP for the smallest case of

satellites (K=4) and imaging targets (200). However, it takes an average of 170 seconds to solve

for the largest case of satellites (K=40) and imaging targets (3200). The global reward for each

method is provided in Figure 6.12. A general trend can be observed with these plots. For large
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Figure 6.12: A comparison of global reward for nominal vs. MIP target distribution methods.

constellations (≥ 30 satellites), the decentralized target distribution approach performs best for all

numbers of global targets. For small constellations (≤ 10) satellites, the centralized distribution

method performs better for almost all numbers of imaging targets. For constellations of 15-20

satellites, the centralized approach performs best for large numbers of targets, but worse for small

numbers of targets.

In Figure 6.13, more specific metrics are plotted to better understand where and why each

method performs best. In Figure 6.13a, the percent difference in reward between the decentralized

and centralized methods is plotted. Blue indicates that the centralized approach is better, and

red indicates that the decentralized approach is better. In Figure 6.13b, the average number of

targets in Tk divided by the total number of steps is plotted for the centralized method. A value

of 1 indicates that each satellite has on average one target available for imaging at each time step.

Finally, Figures 6.13c and 6.13d plot the percent difference in the number of unique imaged and

downlinked targets.

Several observations may be made regarding these plots. First, in Figure 6.13b, the central-

ized approach has almost one target on average per decision interval in the bottom right region,
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(b) MIP target distribution statistics.
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(d) Difference in unique downlinks per satellite.

Figure 6.13: Nominal and MIP target distribution comparison metrics. Blue indicates that the
centralized approach is better, and red indicates that the decentralized approach is better.

which occurs when small numbers of satellites and large numbers of targets are present. Fur-

thermore, this region of high target assignment shows up in Figure 6.13a. When the centralized

approach has almost one target available each decision-making interval, it performs better than the

decentralized approach. An interesting observation can be made when low numbers of targets are

available (< 1000). In this region, the centralized MIP approach results in < 0.5 targets distributed

to each satellite at each step on average. However, the centralized MIP approach performs better

than the decentralized approach, which seems counter to the previous argument. An explanation
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for this can be found in Figure 6.8. For low numbers of targets, the decentralized approach, even

with free communication, results in a relatively high amount of duplication because there is more

competition for a given ground target. The centralized approach ensures duplication is not an

issue, so for very low numbers of targets the centralized approach outperforms the decentralized

approach.

In Figure 6.13c, it is shown that the decentralized approach always results in more unique

targets imaged. Two exceptions to this is in the aforementioned bottom right region, where the

centralized distribution method has about the same number of uniquely imaged targets, and the

left-hand region, where the centralized region has few targets distributed, but performs better.

Finally, Figure 6.13d provides the rest of the story. In the areas where the percent difference

in reward favors the centralized approach, the centralized approach is shown to have downlinked

more targets on average. Intuitively, this makes sense because the largest component of reward is

downlink.

6.4.2.2 Multi-Plane Results

The second set of ground target distribution experiments repeats the comparison between

the centralized and decentralized distribution methods for Walker-delta constellations with multiple

planes. The Walker-delta and ground target parameters are the same as those used in the commu-

nication experiment. The global reward comparing the two methods is provided in Figures 6.14.

The same trends observed for the single plane experiments are shown here as well. For large con-

stellations (≥ 9 planes, 36 satellites), the decentralized target distribution approach performs best

for all numbers of global targets. For small constellations (≤ 1 plane, 4 satellites), the centralized

distribution method performs better for almost all numbers of imaging targets. For constellations

with 3-7 planes, the centralized approach performs best for large numbers of targets, but worse for

small numbers of targets.

Metrics regarding the percent difference in reward, the average number of distributed targets

per step, the difference in number of unique images, and difference in number of unique downlinks
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Figure 6.14: A comparison of global reward for nominal vs. MIP target distribution methods.

are plotted in Figure 6.15. The trends present in the single plane experiment are also present

here. When the centralized distribution approach results in roughly one target distributed to

each satellite at each decision-making interval, the centralized distribution method either performs

the same or better than the decentralized distribution method. The centralized approach also

outperforms the decentralized approach for low numbers of targets because it eliminates the issue

of target duplication. In all other regions, the decentralized approach outperforms the centralized

approach because of its ability to capture missed targets. Finally, the decentralized distribution

method results in more unique targets imaged, but the centralized distribution method results in

more unique targets downlinked in regions where there centralized target assignment averages are

close to one or where duplication following the decentralized approach is relatively high.

6.4.2.3 Target Distribution Discussion

The difference in the performance between the two target distributions highlights the power

of the approach taken in this work. The centralized method of target distribution typically only

improves performance for constellations with small numbers of targets or constellations with small
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(b) MIP target distribution statistics.

500 1000 1500 2000
Num. Targets

1

2

3

4

5

6

7

8

9

Nu
m

. P
la

ne
s

1.00

1.75

2.50

3.25

4.00

4.75

5.50
Di

ff.
 U

ni
qu

e 
Im

ag
es

 P
er

 S
at

el
lit

e

(c) Difference in unique images per satellite.

500 1000 1500 2000
Num. Targets

1

2

3

4

5

6

7

8

9

Nu
m

. P
la

ne
s

4
3
2
1

0
1
2
3
4
5

Di
ff.

 U
ni

qu
e 

Do
wn

lin
ks

 P
er

 S
at

el
lit

e
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Figure 6.15: Nominal and MIP target distribution comparison metrics. Blue indicates that the
centralized approach is better, and red indicates that the decentralized approach is better.

numbers of satellites. In larger constellations with many targets, the ordered access distribution al-

gorithm performs better because it provides more flexibility in regard to which satellite collects the

target. If one satellite must perform resource management activities and miss a collection oppor-

tunity, another satellite can collect the target later. This method is also more robust to additions

to target lists from other satellites within the constellation. If the satellites in the constellation

fly science detection algorithms that can detect new targets, the satellites can communicate the

existence of the new targets to the other satellites in the constellation. In this case, the other
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satellites simply need to determine when they can access the new targets and add them to their

target lists accordingly. This is a much simpler process than the centralized approach, which would

need to re-optimize the target distribution problem.

6.4.3 Genetic Algorithm Comparison

To compare the selected solution method to other state-of-the-art methods, a genetic algo-

rithm is used to solve the MSAEO scheduling problem. For this experiment, two Walker-delta

configurations are investigated. To keep the required computation to a minimum, each Walker-

delta configuration contains only four spacecraft. With four spacecraft and |U | = 3, the size of the

action space is (3 + |U |)4 = 1296. In the first experiment, each of the four satellites are located in a

single plane and have 3200 imaging targets available. In the second experiment, the four satellites

are distributed among four planes and have 2400 targets available. The inclination of each satellite

is 45 deg. Again, a phasing factor of 0 is utilized.

The results of the experiment are presented in Figure 6.16. The genetic algorithm is bench-

marked for different numbers of population size and generations. Each bar in the figure is the

average of the GA performance for 20 different trials, where each trial is a different initial con-

dition. The maximum of the z-axis is set to the maximum average reward of the RL algorithm

for four satellites in a single plane. This is done to provide a direct comparison between the two

methods. The results here show that the GA, using the selected hyperparameters, performs worse

than the RL methodology even though the GA is searching for a globally optimal solution. The

GA likely needs more generations and a larger population size to converge to the globally optimal

solution. However, this would come at a huge cost in terms of computation. For reference, the

GA takes an average of 1.23 hours to complete 100 generations with a population size of 200 using

64 cores of an AMD Milan CPU with 240 GB of RAM. At 400 generations and a population size

of 800, this increases to an average of 16.97 hours. The GA would need days of computation to

converge to the solution found by the RL method for a single initial condition. For reference, the

RL method takes 1-2 days to generate a neural network that can generalize to any initial condition.
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Figure 6.16: Average reward of the genetic algorithm under various hyperparameters. 20 trials
each.

6.5 Conclusion

This chapter explores the application of single agent reinforcement learning to multi-satellite

constellation operations. To explore the performance and scalability of this method, performance

benchmarks are collected for different communication assumptions and different methods of tar-

get distribution in different Walker-delta constellation designs. Four communication models are

tested: no communication, single degree line-of-sight communication, multi-degree line-of-sight

communication, and free communication. The free communication model always outperforms the

no communication model because satellites following the no communication model are constantly

imaging and downlinking the same targets, receiving no reward for the duplication of efforts. The

performance of the single- and multi-degree line-of-sight communication assumptions converge to

either free communication or no communication, depending on how frequently the satellites may

communicate. To test the impact on performance when coordination is utilized, two separate target
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distribution methods are also tested. The default target distribution method takes a decentralized

approach where satellites are assigned targets based on their access to the imaging targets. The

second target distribution method takes a centralized approach where a mixed integer program

is formulated, and the targets are optimally distributed among the satellites based on their ac-

cess. The centralized target distribution method performs better than the decentralized approach

when A.) the centralized approach results in 0.9 - 1.0 targets distributed to each satellite at each

decision-making interval on average and B.) there are few targets, which results in high amounts

of duplication for the decentralized approach. In the majority of other cases, the decentralized

approach is best because it allows satellites to share imaging targets. If one satellite misses a

ground target because it must perform resource management activities, another satellite may im-

age that target. Finally, the RL-based solution method is compared to the performance of a genetic

algorithm. The RL-based solution method is shown to outperform the GA for a fraction of the

computation cost.



Chapter 7

Small Body Science Scheduling Problem

7.1 Introduction

Missions to small bodies such as asteroids and comets present several challenges for planning

and scheduling. First and foremost, epistemic uncertainty regarding the environment about small

bodies necessitates the development of tools that can quickly adjust to the discovered environmental

parameters upon arrival to the body. Second, large navigation uncertainties can lead to challenges

in resource modeling and science operations. Either the uncertainty in task execution times and

resource consumption must be handled explicitly in the scheduling algorithm or a buffer must be

added to the end of every task to account for variations in execution time and resource consumption.

Finally, the round-trip light-time delay can present challenges, especially during critical maneuvers

such as Touch-and-Go (TAG). While these challenges are often addressed by work in autonomous

guidance, navigation, and controls (GNC), planning and scheduling must be able to support rapid

changes in the trajectory due to autonomous GNC.

On-board planning and scheduling has been implemented on several missions in recent

decades. The ASPEN and CASPER systems developed by the Jet Propulsion Laboratory have

been used in various forms for the Earth-Observing 1 mission [11, 88], IPEX mission [13], and even

the Perseverance Rover [89, 90]. Up until this point, the focus of this dissertation is the applica-

tion of reinforcement learning to Earth-observing satellite scheduling for on-board planning and

scheduling. The EOS scheduling problems utilize a mode-based planning approach where devices

on the spacecraft are turned on or off and the attitude guidance is set. The small body science
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operations problem follows a similar approach, but now adds translational guidance to the prob-

lem. The rest of this dissertation focuses on planning and scheduling for small body missions,

which brings a new set of challenges. In the small body domain, deep RL has been applied to

global mapping for shape modeling and target imaging. Chan and Agha-Mohammadi formulate a

small body mapping problem as a partially-observable Markov decision process (POMDP) where

the objective is to improve the quality of a map assembled using stereophotoclinometry (SPC) [91].

The authors apply the REINFORCE algorithm to generate policies over the belief-space, showing

that the trained policies perform better than heuristic policies. Piccinin et al. formulate a global

mapping problem for SPC as an MDP [92]. In this problem, the spacecraft enters an orbit about

the body, and the decision-making agent determines whether or not to take an image. The authors

compare Deep Q-Learning (DQN) and Neural Fitted Q (NFQ) learning, showing that these two
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algorithms outperform random and heuristic policies. Takahashi and Scheeres formulate a surface

imaging problem about a small body as an MDP where the output of the policy is a change in

elevation and a transfer time, which is fed into a two-point boundary value solver that generates

a fuel-optimal control solution [93]. An extended Kalman filter is implemented to provide a state

estimate to the two-point boundary value problem solver and decision-making agent. The authors

apply Proximal Policy Optimization to train decision-making agents, showing how autonomous

GNC technologies may be combined with reinforcement learning for surface imaging.

Past work has demonstrated how various proximity operations problems about small bod-

ies may be formulated as (PO)MDPs and solved with reinforcement learning algorithms. However,

these problem formulations typically fail to account for resource constraints such as on-board storage

and power. Because on-board storage is not modeled, communication with the ground is typically

left out of the problem formulations as well. Attitude guidance and control and its relation to the

aforementioned resource constraints, particularly power, is also not considered. The addition of

these aspects of the problem are important because they have serious implications for the learned

policies. Furthermore, while many of these problem formulations add partial observability, the

impact of partial observability on performance, particularly the quality of science observations, is

not explored. It should also not be assumed that the navigation architecture supports continuous

measurement updates. Instead, one should assume that the measurement update either requires

communication with the ground or dedicated imaging for optical navigation, which means that

the estimation error covariance should grow between navigation updates. To address these gaps

in the literature, this work formulates a small body science proximity operations problem with

on-board storage, power consumption and generation, data downlink, attitude guidance and con-

trol, and translational guidance and control. Various navigation assumptions are also explored,

including directly observing the state (i.e. no partial observability), observing noisy measurements

of the state directly, filtering with continuous measurement updates, and filtering with mode-based

measurement updates. Part of this work is published in Reference [94].
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Table 7.1: Small body mission phases.

Approach Characterization Science Operations Landing

Data
Products

Body Ephemeris,
Spin State,
Preliminary
Shape Model

Preliminary Science,
Gravity Estimate,
Improved Shape Model

Science Maps, Landing
Site Images, Detailed
Shape Model

Surface Science

Optical
Navigation

Centroid-Based Centroid-Based Feature-Tracking Feature-Tracking

Dynamics Approach
Trajectory

Hyperbolic Fly-bys Orbital Motion,
Inertial Waypoints,
Low-Altitude Fly-bys

Descent & As-
cent Trajectory

Rosetta
Phases

Far Approach
Trajectory

Close Approach
Trajectory and
Characterization

Global Mapping, Close
Observation

Philae

OSIRIS-
REx
Phases

Approach Preliminary Survey Detailed Survey,
Orbital B,
Reconnaissance

Touch-And-Go

7.2 Small Body Proximity Operations Phases

Small body proximity operations may be described with several phases, each with its own

objectives and data products. Each of these phases may be thought of as separate operations

problems where the science and data products from one phase are utilized in the next. Past work

in spacecraft autonomy for small body exploration has defined these mission phases in various ways

[95, 96]. This chapter will provide its own summary for clarity. Because these phases are defined

using concepts of operations from several different missions, the boundaries between them are fluid.

Ashman et al. provide a detailed summary of the Rosetta operations phases [97], and Lauretta et

al. provide a summary of the OSIRIS-REx operations phases [98]. The phases this work defines

are A.) Approach, B.) Characterization, C.) Science Operations, D.) Landing. The characteristics

of each phase are summarized in Table 7.1, and an example depiction of these mission phases are

presented in Figure 7.1.

The first phase is the approach phase. During the approach phase, the spacecraft performs

trajectory correction maneuvers to rendezvous with the asteroid. During this phase, a low fidelity

shape model is constructed, a refined estimate of the spin state is gathered, and the ephemeris of the

body is improved [96]. This phase is analogous to Rosetta’s Far Approach Trajectory (FAT) Phase

and OSIRIS-REx’s Approach Phase. The second phase is typically a characterization phase. During
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this phase, the spacecraft enters the body’s sphere of influence, performing hyperbolic flybys about

the body. The shape model is improved, preliminary science data is gathered, and an estimate

of the body’s gravitational parameter is generated. This phase is analogous to Rosetta’s Close

Approach Trajectory (CAT) and Characterization Phase and OSIRIS-REx’s Preliminary Survey

Phase. Finally, the spacecraft enters the science operations phase, which may be decomposed

further into more specific operations phases depending on the mission. This is when the detailed

science campaign about the body begins, which is highly dependent on the mission. During this

phase, the spacecraft either enters into a stable orbit about the body, transfers between or holds

a position at an inertial waypoint(s), or performs low-altitude fly-bys about the body. This also

marks the transition from centroid-based optical navigation to feature-tracking optical navigation

due to the spacecraft’s proximity to the body. This phase typically includes some sort of mapping

to build temperature maps, reflectance maps, and identify candidate landing sites. In the case of

Rosetta, the Global Mapping and Close Observation Phases fall into this category. In the case of

OSIRIS-REx, the Detailed Survey, Orbital B, and Reconnaissance Phases fall into this category.

The final phase of proximity operations is often some sort of landing phase. In the case of Rosetta

this includes the landing of the Philae lander, and in the case of OSIRIS-REx this includes the

Touch-and-Go phase.

7.3 Problem Statement

This chapter formulates a small body science operations problem where a spacecraft ma-

neuvers between waypoints defined in the sun-asteroid Hill frame, performing science activities

while managing on-board resources such as power and data storage. The objective is to maxi-

mize the number of targets imaged and downlinked and the amount of mapping performed and

downlinked. Therefore, there are two simultaneous science objectives - spectroscopy mapping and

high-resolution target imaging. For the spectroscopy mapping, there are j = 3 separate maps that

must be collected, one at each of the following local solar times: {6 PM, 2 PM, 10 AM}. Each

map is represented by a set of k = 500 points, Mj , evenly distributed on the surface of the body,
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Figure 7.2: Deep space network access with temporal constraints over three days of operations.

where j is the map number. These points are generated using a Fibonacci lattice to ensure equal

coverage of the body. The high resolution imagery is represented by a set of surface targets that

are referred to as T . The spacecraft has pre-planned access with the deep space network (DSN)

once every 24 hours. An example of the DSN access over three days of operations is provided in

Figure 7.2.

In addition to the science objectives, the spacecraft must avoid collision with the body as it

maneuvers between waypoints. The waypoints are defined in the sun-asteroid Hill frame at three

radii away from the center of the body (approximately 750 m) using spherical coordinates. Each

waypoint w is represented with the nominal radius rw = 750 m, a polar angle ψ, and an azimuth

angle θ. A diagram of the sun-asteroid Hill frame and definition of the waypoints is provided in

Figure 7.3.

This small body science operations problem is most closely related to the OSIRIS-REx De-

tailed Survey Phase. However, this work adds additional waypoints such that maneuvers are not

only performed in northern and southern regions, moves the spacecraft closer to the body, and
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ô1

<latexit sha1_base64="1g8eQ3i8n3OQUtAiMAkwooeuDho="></latexit>

ô2
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Figure 7.3: Sun-asteroid Hill frame.

increases the half field-of-view of the mapping instrument. This is primarily done to reduce the

amount of time the spacecraft is coasting in regions where there is no science value, decreasing

the simulation time required to complete the mapping campaign. To complete the mission, the

spacecraft enters different modes of operation. These spacecraft modes abstract the continuous,

low-level behaviors of the spacecraft (i.e. attitude guidance and control, instrument status, etc.)

into discrete modes of operations. These modes are shown in Figure 7.4. In the figure on the

left, the states observed by the decision-making agent are either the true states of the spacecraft

observed directly, noisy measurements of the spacecraft state, or a belief state from an extended

Kalman filter (EKF) receiving continuous measurements. In the figure on the right, a navigation

mode is added to the action space. During the navigation mode, the spacecraft receives measure-

ments and the measurement update state of the EKF is utilized to reduce the state-error covariance

and improve the navigation solution. In all other modes, the navigation solution decays in quality

and the state-error covariance grows because only the prediction step of the EKF is utilized.

7.3.1 Dynamics

The position and velocity of the spacecraft, Or and Oṙ, are expressed in the sun-asteroid

Hill frame, {O : ô1, ô2, ô3}, which is a convenient coordinate frame for this problem due to the

illumination requirements for mapping. The derivation of the relative dynamics may be found
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Figure 7.4: Small body science operations problem operational modes.

in work from Scheeres [99] and Takahashi [100]. A brief description is also provided here. The

dynamics described in this section are utilized within the extended Kalman filter and continuous

feedback control law used for translational control about the body. Basilisk models the dynamics of

the spacecraft as fully coupled multibody dynamics, making no simplifying assumptions regarding

the relative motion of the spacecraft, the asteroid, and the sun. However, both Basilisk and the

dynamics described in this section utilize a cannonball solar radiation pressure (SRP) model.

The equations of motion for the spacecraft in proximity to the small body are given as follows:

r̈ = −F̈ ˜̂o3r− 2Ḟ ˜̂o3ṙ− Ḟ 2 ˜̂o3
˜̂o3r +

∂Ug
∂r

+
∂Us
∂r

+ asrp. (7.1)

Ḟ is the first time derivative of the true anomaly:

Ḟ =
√
µsun/[A(1− E)2]3(1 + E cosF )2, (7.2)

F̈ is the second time derivative of the true anomaly:

F̈ = −2E
√
µsun/[A(1− E)2]3 sinF (1 + E cosF )Ḟ , (7.3)
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The gravitational parameter of the Sun is given by µsun, the semi-major axis of the asteroid is given

by A, and the eccentricity of the asteroid’s orbit is E.

A point-mass gravity model is utilized for the asteroid, with the derivative of the gravitational

potential given as

∂Ug
∂r

= −µast

r3
r, (7.4)

where µast is the gravitational parameter of the asteroid.

The gravity of the sun is modeled as a third-body perturbation, with the derivative of the

gravitational potential given as

∂Us
∂r

=
µsun(3d̂d̂T − [I3×3])

d3
r, (7.5)

where d̂ is the direction of the sun.

Finally, a cannonball SRP model is utilized. The acceleration due to SRP is given as

asrp =
P0(1 + ρ)Asc(1AU)2

Mscd2
d̂, (7.6)

where ρ is the surface reflectivity, Asc is the surface area of the spacecraft, Msc is the mass of the

spacecraft, and P0 is the solar flux at 1 AU. The values for ρ (0.4) and P0 (4.56× 10−6Nm−2) are

taken from Takahashi and Scheeres [100].

7.3.2 Waypoint Maneuvering

The waypoints the spacecraft maneuvers between are defined in the sun-asteroid Hill frame,

O. The spacecraft maneuvers between or holds its position at specific waypoints, performing the

tasks in Figure 7.4 as the asteroid rotates beneath it. The waypoints are evenly distributed across

six polar and azimuth angles, as shown in Figure 7.5, numbering 36 in total. In Figure 7.5a, the

dotted lines represent the local solar times where spectroscopy mapping may take place. The d̂

vector denotes the direction of the sun. There are three maps in total that must be collected. In

Figure 7.5b, the various polar angles are displayed. Mapping may occur at any of these polar angles

if the spacecraft is at an azimuth angle associated with the local solar time for a map. During the
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Figure 7.5: Spherical coordinates of waypoints. Dotted lines represent the local solar time of the
three maps.

Detailed Survey Phase, OSIRIS-REx had seven total maps to collect, each at a specific local solar

time. Furthermore, the mapping had to take place at a relatively narrow band of polar angles. This

work selects three maps at specific local solar times and removes the narrow polar angle requirement

to maintain minimal simulation time.

A continuous feedback control law is implemented to maneuver the spacecraft between the

various waypoints using the methodology described in Chapter 14 of Schaub and Junkins [73]. The

control acceleration is computed with the following equation,

u = −(f(x)− f(xref ))− [K1]∆x1 − [K2]∆x2 (7.7)

where f(x) is given in Equation 7.1. The commanded thrust is computed by dividing this accelera-

tion by the mass of the spacecraft. In the case where noisy measurements of the spacecraft position

and velocity are utilized, a deadband is placed around the state vectors such that the control law

does to expend all of it’s ∆V budget correcting for small errors due to noise. The deadband is not
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required in the event that the state is known perfectly or the EKF is utilized to estimate the state.

This feedback control law provides no guarantees on fuel optimality. Future work should

consider the use of a Lambert solver to compute a fuel-optimal two-burn solution. However, the

feedback control law fulfills the function of a control solution from one waypoint to another while

simultaneously performing station keeping activities. Furthermore, the total ∆V can be computed

and compared to the ∆V budget. For the purposes of planning and scheduling, this solution is

sufficient.

7.3.3 State Estimation

Next, the mission simulation fidelity is enhanced with the inclusion of an EKF to estimate

the state of the spacecraft x = [Or; Oṙ]. An extended Kalman filter produces a state estimate

for a dynamical system by predicting the state of the system through integrating equations of

motion and updating this prediction with measurements from the environment [101]. Navigation

solutions for small body missions typically use some combination of radiometric ground tracking

measurements from Earth-based sensors like the DSN and optical measurements in proximity about

the small body that are matched with landmark maps of the surface of the body, which are used

to provide the relative navigation solution. Batch filtering is the state-of-the-art for small body

missions [102, 103, 104, 105]. An iterative process between the orbit determination (OD) and

optical navigation (OPNAV) teams occurs where the OD team updates the spacecraft trajectory

and the OPNAV team updates the landmark maps. This is an intensive ground-based process,

and the navigation solution for the next epoch is sent back up to the spacecraft for the next epoch

of operations. Sequential state estimation solutions like extended or unscented Kalman filters are

popular in the literature for autonomous spacecraft operations as they can continually produce a

state estimate on-board the spacecraft [41, 106, 107]. A benefit of such filters is that they do not

require multiple iterations to converge to a solution, which a batch filter does.

The algorithm for the EKF is provided in Algorithm 11. The initial state of the EKF is

initialized with a small amount of error added to the truth state sampled from uniform distributions
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Algorithm 11 Extended Kalman filter for small body navigation.

1: Initialize i = 1, ti−1 = t0, x̂+
i−1 = x̂0, P−i−1 = P0

2: for iteration 1 : N

3: Propagate dynamics:

4: ẋ(t) = f(x̂+
i−1,ui−1, t)

5: A(t) =
df

dx

∣∣∣∣ x̂
6: Φ̇(t, ti−1) = A(t)Φ(t, ti−1)

7: Compute x̂ii and Φ(ti, ti−1) using RK4 integration

8: Update covariance:

9: P−i = Φ(ti, ti−1)P+
i−1ΦT (ti, ti−1) +Q(ti, t−1)

10: if new measurements

11: Read measurements, yi
12: Compute measurement residuals and Kalman gain

13: ri = yi − h(x̂−i , ti)

14: Ki = P−i H
T
i (HiP

−
i H

T
i +R)−1, where Hi =

dh

dx

∣∣∣∣ x̂−i
15: Perform measurement update

16: x̂+
i = x̂−i +Kiri

17: P+
i = (I −KiHi)P

−
i (I −KiHi)

T +KiRK
T
i

18: else

19: x̂+
i = x̂−i

20: P+
i = P−i

21: i = i+ 1

of U [−5, 5] m and U [−0.01, 0.01] m/s for the position and velocity of the spacecraft in the sun-

asteroid Hill frame. The first step of the algorithm is to propagate the dynamics of the system

forward in time. The dynamics are propagated using a fourth-order Runge-Kutta (RK4) integrator.

The state transition matrix, Φ(t, ti−1), is computed by integrating the linearized dynamics of the

system, which are computed using the Jacobian of the dynamics, A(t) =
df

dx

∣∣∣∣ x̂. The state transition

matrix is then used to propagate the covariance forward in time. The covariance is propagated

using the following equation,

P−i = Φ(ti, ti−1)P+
i−1ΦT (ti, ti−1) +Q(ti, ti−1), (7.8)

where Q(ti, ti−1) is the process noise covariance. The process noise covariance is computed using

the state noise compensation (SNC) algorithm [108]. The process noise covariance at any time ti
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Table 7.2: SimpleNav parameters.

Parameter Position Velocity

σ 5 m 0.001 m/s

Walk Bounds 1 m 0.001 m/s

is given as:

Q(ti, ti−1) = σ2
u


∆t3

3
[I3×3]

∆t2

2
[I3×3]

∆t2

2
[I3×3] ∆t[I3×3]

 (7.9)

The diffusion coefficient σ2
u was experimentally tuned and is set to 10−11 m/s2.

After the propagation step, the algorithm checks to see if there are any new measurements.

If there are new measurements, the measurement update step is performed. The measurement

residuals are computed as:

ri = yi − h(x̂−i , ti), (7.10)

where yi is the measurement vector and h(x̂−i , ti) is the measurement model. Basilisk’s simpleNav

module is used to provide measurements to the extended Kalman filter at 0.5 Hz. This module

utilizes a second-order Gauss-Markov error model to provide realistic measurement error. While

simpleNav does not capture several of the intricacies of small body navigation measurements (i.e.

scale invariance or a dependency on lighting conditions) it provides a reasonable approximation of

measurement error beyond additive white Gaussian noise. The standard deviations for the white

noise component of the measurement error model and the walk bounds of the Gauss-Markov process

are provided in Table 7.2. Because the measurement model is simply the states of the spacecraft

with noise and random walk added, the Jacobian of the measurement model is simply the identity

matrix. After the measurement residuals are computed, the Kalman gain is computed as:

Ki = P−i H
T
i (HiP

−
i H

T
i +R)−1, (7.11)

The measurement update step is then completed with the following two equations, where the
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updated state is computed as:

x̂+
i = x̂−i +Kiri, (7.12)

and the covariance is updated as:

P+
i = (I −KiHi)P

−
i (I −KiHi)

T +KiRK
T
i , (7.13)

where R is the measurement noise covariance matrix.

The entire process repeats until the end of the simulation. If no measurements are provided

after the propagation step, the algorithm simply propagates the state and covariance forward in

time and writes these out as messages, which are read by the decision-making agent. An example

of the position and velocity error and covariance bounds with periodic navigation updates are

provided in Figure 7.9.

7.4 Markov Decision Process Formulation

The small body science operations problem is formulated as a Markov decision process. This

section describes each of the components of the MDP formulation.

7.4.1 State Space

The state space of the small body science scheduling problem is given as:

S = Ssc × Sasteroid × Smaps × Stargets × SDSN (7.14)

The state returned to the decision-making agent at decision interval i is defined as si ∈ S :

si = (Orsc,
Ovsc,

Ortnearest ,
Orwref

, Orwprev , · · ·

num. imaged targets, num. downlinked targets,map regions, battery, · · ·

eclipse, buffer, ∆V consumed, ground station indicator). (7.15)

Geometric information is included in the state space to capture the spatial relationship be-

tween the science objectives and the spacecraft. It can also provide information on resource man-

agement states and the risk of collision. These states include the spacecraft position and velocity
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â1

<latexit sha1_base64="4eDubAfNog/xC1dozfFsoktPBW4=">AAADwHicfVJdb9MwFPUaPkb56sYjLxHVJASoaqYhJk1Io1ABEoih0W1SHVWOc9NEc+zMdqDF8t/gkVf4S/wbnDbT2g52JUtH597je699ooJlSne7f9Ya3rXrN26u32revnP33v3WxuaREqWkMKCCCXkSEQUs4zDQmWZwUkggecTgODp9XeWPv4JUmeBf9LSAMCdjniUZJdpRo9YmTok2OCc6jRJDrB0Fo1a72+nOwr8Mghq0UR0Ho43GDxwLWubANWVEqWHQLXRoiNQZZWCbuFRQEHpKxjB0kJMcVGhmw1t/yzGxnwjpDtf+jF1UGJIrNc0jV1lNqVZzFfmv3LDUyW5oMl6UGjidN0pK5mvhVy/hx5kEqtnUAUJl5mb1aUokodq9V3OpjQKtHF5exRA2Fk6X5v+hMzpZ3p0L4HFYFRQKSvdkIq6ulMDhGxV5TniMF9Q6BW6uyMfiqqxrVaUdE0NiDvt2eDjovfrwNjTveex+ypo+j8+hNStS7NutmVjDRD85lywwF+ImvhjA4IK5hc/s3FISmHlqX7qSN+CcIeGjIz8VIIkW0uB+XRZFpm9X7iFynJOJHQahwaVrJN0fmHbgFKLWVzZyHhtb/GyZq3QW79mmc3Kw6tvL4Gi7E+x0nn/eae/3ak+vo4foEXqMAvQC7aN36AANEEUT9BP9Qr+9npd6wjublzbWas0DtBTe979pokbC</latexit>

â2
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Figure 7.6: Map regions.

(Orsc and Ovsc), position of the nearest imaging target (Ortnearest), position of the current waypoint

(Orwref
), and position of the previous waypoint (Orwprev). These states are all expressed in the

sun-asteroid Hill frame, O, a convenient expression for this problem given that one of the primary

science objectives is mapping at specific local solar times.

Several observations are also included to provide a measure of science objective completion.

The number of imaged and downlinked targets in T are included in the state space. For each map

Mj , the mapping points are partitioned into three equally sized groups based on the value of the

z-component of the body-fixed position of the mapping points. The body frame of the asteroid is

defined as A : {â1, â2, â3}. The three regions are displayed in Figure 7.6. This state provides the

agent information on which regions still need to be mapped. Because this work assumes the rotation

pole of the body is aligned with the orbit normal, this state representation is sufficient. However,

varying the rotation pole of the body may require a more sophisticated state representation.

Finally, several states are included to retain information on resource constraints and safety.

The data stored in the buffer and ground station indicator provide state information for the on-

board data system. The battery charge and eclipse indicator provide information for the purposes
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of power management. The available ∆V state indicates how much fuel the spacecraft has available

to use.

Each state is normalized to a range of approximately [-1, 1]. The spacecraft position, position

of the nearest imaging target, and position of the current and previous waypoint are all normalized

by the radius of the body. The velocity of the spacecraft in the sun-asteroid Hill frame, however, is

not normalized because the velocity at the times observations are returned typically falls within a

range of [-1, 1]. The number of imaged and downlinked targets, the mapped regions, and resource

states are all normalized by their respective max values such that they are within a range of [0, 1].

In the event that the navigation mode is added to the action space and the agent acts using

the belief state produced by the EKF, the estimate of the position and velocity of the spacecraft

in the sun-asteroid Hill frame are used instead of direct observations of the state. Additionally,

the log of the diagonal of the covariance matrix divided by five is added provided as an observa-

tion: log10(diag(P ))/5. This provides information on the quality of the navigation solution that is

normalized to a range of [-1, 1] for 10−5 ≤ P ≤ 105.

7.4.2 Action Space

A mode-based planning approach is taken in the action space. A spacecraft mode turns

certain models on or off and sets the attitude reference for a prescribed amount of time, abstracting

continuous low-level behavior into higher-level abstractions of spacecraft behavior. While this

does place limitations on the ability of the decision-making agent to specify precise timing for the

duration of modes, it reduces the complexity of the planning problem, trading performance for

tractability. An action space A is constructed for the small body science scheduling problem that

allows the decision-making agent to collect and downlink science data, manage its resources, and

transition between waypoints:

A = {Charge, Waypoint 1, · · · ,Waypoint 8, Map, Image, Downlink, Nav Update}. (7.16)
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Each mode lasts for 2,000 seconds, with the exception of the mapping mode and optional navigation

mode. The mapping mode lasts for 4,000 seconds, which is approximately one quarter of a full

revolution of the body about its rotation pole. The navigation mode only lasts for 1,000 seconds.

A detailed description of the action space is provided by the bulleted list below:

• Charge: The spacecraft points its solar panels at the sun, turning off all instruments and

transmitters to recharge the batteries.

• Waypoint Actions: The spacecraft targets one of the eight neighboring waypoints, turn-

ing off all instruments and transmitters during the duration of the maneuver mode. The

eight neighboring waypoints are defined as follows:

∗ ψref = ψref + 30o, θref = θref

∗ ψref = ψref + 30o, θref = θref + 60o

∗ ψref = ψref , θref = θref + 60o

∗ ψref = ψref − 30o, θref = θref + 60o

∗ ψref = ψref − 30o, θref = θref

∗ ψref = ψref − 30o, θref = θref − 60o

∗ ψref = ψref , θref = θref − 60o

∗ ψref = ψref + 30o, θref = θref − 60o

• Map: The spacecraft turns on its mapping instrument, collecting the map of whichever

map region it is currently in.

• Image: The spacecraft turns on its imaging instrument, collecting an image of the nearest

target.

• Downlink: The spacecraft turns on its transmitter, downlinking the data in the buffer to

the DSN.
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Figure 7.7: Waypoint reference transitions.

• Navigation Update: Only used in some experiments, the spacecraft begins collecting

measurements to improve the state estimate.

In the charging mode, the spacecraft turns off all instruments and the transmitter and points the

solar panels at the sun to charge the battery. The action space also includes eight separate waypoint

reference change actions. When a waypoint reference change action is taken, the current waypoint

reference wref = {ψref, θref} changes to the selected adjacent waypoint reference. If one of these

modes is selected, the last time the waypoint was changed is checked to see if a new waypoint can

be selected. The current waypoint does not change unless 8,000 seconds have passed since the last

switch to ensure convergence to the current waypoint. After each change, the new waypoint polar

and azimuth angles are checked to ensure they are wrapped to the appropriate ranges, θ ∈ [0, 360]

deg and ψ ∈ [0, 180] deg. An example of this is provided in Figure 7.7. The nominal transitions

are shown in the dotted green line. Wrapped transitions are shown in the solid red line.

In the mapping mode, the spacecraft points the mapping instrument at the asteroid. Data is

collected in the on-board storage unit, and only the portion of the map collected within requirements



164

Table 7.3: Science requirements

Imaging
Elevation 60o

Attitude Error Norm 0.1 rad
Mapping
Elevation 45o

Instrument Half-FOV 22.5o

Azimuth Angle Tolerance 1o

is considered mapped. Mapping requirements are provided in Table 7.3. Note that the requirement

regarding the azimuth angle associated with the local solar time is 1 deg. At the nominal waypoint

radius of 750 meters, this translates to roughly 6.5 meters of positional tolerance on either side of

the azimuth angle. This is a very tight requirement. If the navigation mode is utilized in the action

space, the spacecraft must periodically improve its state estimate with measurements to reduce the

state error below this threshold.

In the imaging mode, the spacecraft points the imager at the nearest target and attempts to

take an image of the target. The image is collected if the spacecraft is within the elevation and range

requirements of the target image. In the downlink mode, the spacecraft points the transmitter in

the direction of the Earth. Data is downlinked once the spacecraft is within elevation and range

requirements of the DSN and the prescribed downlink time occurs.

Finally, the navigation mode is utilized in some experiments to provide a more realistic

navigation update. In this mode, the spacecraft points an imager at the asteroid to simulate the

use of feature-tracking optical navigation. The state estimate is improved, and the state-error

covariance decreases.

7.4.3 Reward Function

The reward functionR(si, ai, si+1) is a piecewise function of the current state, action, and next

state. The reward function builds off the reward functions designed for the agile EOS scheduling

problem, but adds mapping and additional failure conditions. The constant F scales the failure

penalty, the constant A scales the imaging bonus, the constant B scales the mapping bonus, the
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constant C scales the image target downlink component, and the constant D scales the mapping

downlink component. The reward at state i is given by:

ri =



−F if failure

A

|T |
H(cj) if ¬failure ∧ ai is image

B

3|M |
∑3

j

∑|Mj |
k H(mj,k) if ¬failure ∧ ai is map

C

|T |
∑|T|

j H(dj) +
D

3|M |
∑3

j

∑|Mj |
k H(fj,k) if ¬failure ∧ ai is downlink

0 otherwise

(7.17)

If the agent fails, a failure penalty of -F is returned and the episode terminates. The failure condition

is true if the spacecraft expends all charge in the battery, overfills the data buffer, exceeds the ∆V

budget, or collides with the body. Mathematically, this is represented as with Equation 7.18, where

z is the normalized charge of the battery and b is the normalized data buffer level.

failure = (z == 0 ∨ b ≥ 1 ∨ any(||Hrs/c|| ≤ rast) ∨∆V ≥ ∆Vbudget) (7.18)

The same function H(xj) utilized in the SSAEO scheduling problem is again used here to check if

the state variable x is false at step i and true at step i+ 1, returning 1 if these conditions are met.

H(xj) = 1 if ¬xji ∧ xji+1 (7.19)

The variable cj represents whether or not target j has been imaged. If the imaging mode is initiated

and a failure does not occur, target j is checked to determine if it was imaged for the first time.

This reward component is normalized by the total number of targets and scaled by the constant A.

The variable mj,k represents whether or not mapping point k for map number j has been

mapped. If the mapping mode is initiated and a failure does not occur, all map points are checked

to determine if they were collected for the first time or not. The summation of this reward is

normalized by 3|M | such the total possible reward for this component totals to the constant B.
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The variable dj represents whether or not target j has been downlinked, and the variable fj,k

represents whether or not mapping point k for map number j has been downlinked. Both the set

of targets and all map points are looped through to determine if they have been downlinked for

the first time or not. Both the imaging and mapping components are multiplied by the constants

C and D and divided by the total number of targets or mapping points.

7.4.4 Transition Function

Due to the continuous dynamics of the small body proximity operations science problem, it

is difficult to construct a transition function with conditional probabilities that accurately captures

state transitions. The transition function is instead represented by a generative model G(si, ai)

given in Equation 7.20. The decision-making agent passes the action to the generative model,

which turns on or off different flight software modes, sets the attitude reference, sets the reference for

translational guidance, and determines behavior of the navigation system. The Basilisk simulation

then integrates the simulation forwards in time, and the generative model returns a new state si+1

and reward ri by integrating equations of motion forwards in time.

si+1, ri = G(si, ai) (7.20)

The Basilisk astrodynamics software architecture [109] is used to construct the simulation, which

models the complex behavior of the spacecraft and environment. The Basilisk simulation is wrapped

within a Gymnasium environment. The Gymnasium environment provides a standard interface for

the agent to interact with the Basilisk simulation. The details of this simulation are provided in

the next section.

7.5 Simulation Architecture

7.5.1 Basilisk Simulation Overview

A Basilisk simulation is implemented to serve as the generative transition function for the

MDP. In Figure 7.8, the task groupings and modules in the Basilisk simulation are provided.
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Table 7.4: Basilisk model and task status in different modes.

Modes

Basilisk Tasks & Models Charge Waypoint Change Map Image Downlink

Sun-Pointing Task Enabled Enabled Disabled Disabled Disabled

Earth-Pointing Task Disabled Disabled Disable Disabled Enabled

Location-Pointing Task Disabled Disabled Disabled Enabled Disabled

Map-Pointing Task Disabled Disabled Enabled Disabled Disabled

MRP Control Task Enabled Enabled Enabled Enabled Enabled

Waypoint Control Task Enabled Enabled Enabled Enabled Enabled

Mapping Task Disabled Disabled Enabled Disabled Disabled

Imager Power Model Off Off Off On Off

Imager Data Model Off Off On On Off

Mapping Power Model Off On Off Off Off

Mapping Data Model Off On Off Off Off

Transmitter Power Model Off Off Off Off On

Transmitter Data Model Off Off Off Off On

Several flight software tasks are implemented. These include a Sun-pointing task, Earth-pointing

task, target-pointing task, map-pointing task, MRP control task, and a waypoint feedback control

task. Depending on the flight mode, these tasks are turned on or off, primarily to determine

which attitude reference should be used. A summary of each task’s status in each flight mode

is provided in Table 7.4. The sun-pointing, earth-pointing, target-pointing, and map-pointing

tasks all use Basilisk’s locationPointing() module and output an attitude guidance message

which includes the MRP attitude error σB/R. The attitude guidance message is ingested by the

mrpFeedback() module, which outputs a commanded torque. This commanded torque is utilized

by the rwMotorTorque() module to compute reaction wheel motor torques and send a motor

command message to the three reaction wheel state effectors in the dynamics task.

The waypoint feedback control task utilizes a feedback control law to regulate the state of the

spacecraft to the desired Hill frame waypoint. The feedback control law outputs a force command,

which the externalForceTorque() dynamics module utilizes to pass the commanded force to the

spacecraft.

In addition to several flight software tasks, a dynamics tasks is also implemented which

holds the majority of the modules in the simulation. Gravity effectors for the asteroid, sun,
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Figure 7.8: Basilisk simulation diagram.

and the Earth are implemented. A planetNav() module is also implemented for the asteroid,

which creates an ephemeris message utilized by the relevant flight software modules. Likewise, a

simpleNav() module performs the same function, but for the spacecraft state. The planetNav()

and the simpleNav() modules can optionally add noise to the states to imitate a navigation system.

Several dynamics modules are connected to the spacecraft. As previously stated, the com-

manded force is passed to the spacecraft with the extForceTorque() module. Additionally, a

solarRadiationPressure() module is implemented. A cannonball SRP module is utilized. Fi-
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nally, each reaction wheel state effector is connected to the spacecraft for the purposes of attitude

control. Lastly, the eclipse() module utilizes the state of the asteroid and the spacecraft to

indicate whether or not the spacecraft is in eclipse.

A representative power system is modeled on-board the spacecraft. At the center of the power

system is a simpleBattery() module. The battery receives power generation and consumption

messages from each other power module to compute the storage level at each time step. Solar panels

are modeled using the simpleSolarPanel() module, which computes power generation based on

the area of the panels, the efficiency of the panels, and the solar incidence angle. Instrument and

transmitter power models are also implemented with the simplePowerSink() module.

An on-board data system is also modeled. This system is modeled using two tasks - the

dynamics task and the mapping task. The dynamics tasks is always on, but the mapping pass is

disabled for all modes except for the mapping mode. This is done to minimize required computa-

tion. In the mapping task, three groundMap() modules are connected to a mappingInstrument().

The groundMap() module loops through each mapping point and checks for three things: a.)

the spacecraft is within the elevation requirements of the point, b.) the point is within the in-

strument’s field-of-view, and c.) the spacecraft is within the required azimuth angle band. A

vector of access messages are then passed to the mappingInstrument(), which passes the data

on to a partitionedStorageUnit(). This partitionedStorageUnit() in the mapping task

keeps track of the points that have been imaged and those that have not. This serves a dif-

ferent function than the partitionedStorageUnit() in the dynamics task. In the dynamics

task, two simpleInstrument() modules are implemented. One simpleInstrument() module

is used in conjunction with the simpleInstrumentController() to image the ground targets

if the imaging mode is entered. The other simpleInstrument() module is used keep track of the

amount of data generated by mapping. This module provides a scalar value for data generated

and does not keep track of the specific points. Both of these instruments pass the data to the

partitionedStorageUnit() in the dynamics task.

Not shown in Figure 7.8 is the addition of a smallBodyNavEKF and an additional simpleNav
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Table 7.5: Spacecraft parameters.

General Spacecraft Parameters

Mass 330 kg

Dimensions 1.38 x 1.04 x 1.58 m

∆V Limit 40 m/s

Power System

Solar Panel Area 1.0 m2

Solar Panel Efficiency 0.20

Instrument Power Draw 30 W

Transmitter Power Draw 15 W

Battery Capacity 100 Whr

Data & Communications System

Data Buffer Storage Capacity 125 GB

Transmitter Baud Rate 120 Mbps

Instrument Baud Rate 8 Mbps

Map Instrument Baud Rate 8 Mbps

Initial Spacecraft State

Radius 750 m

Azimuth Angle U [30, 90, 150, 210, 270, 330] deg

Polar Angle U [15, 45, 75, 105, 135, 165] deg

module. The smallBodyNavEKF is a Basilisk module that implements an extended Kalman filter for

small body navigation. The simpleNav module is the Basilisk module that implements a second-

order Gauss-Markov error model for translational navigation measurements. The smallBodyNavEKF

is only utilized in some experiments.

7.5.2 Initial Conditions

The parameters of the spacecraft may be found in Table 7.5. The modeled spacecraft is

the same small satellite used throughout this dissertation. These parameters are balanced to

create a scenario in which the spacecraft must make tradeoffs between resource constraints, science

collection, and downlink. The initial conditions for the asteroid orbit, size, and rotation may be

found in Table 7.6. These parameters are based on those of Bennu [110, 111].



171

Table 7.6: Asteroid parameters.

Orbital Parameters

Semi-Major Axis, a 1.1259 AU

Eccentricity, e 0.016975

Inclination, i 0.0027666 deg

Long. of Ascend. Node, Ω 177.42 deg

Arg. of Periapsis, ω 284.26 deg

True Anomaly, f 357.30 deg

Size and Rotation

Shape Spherical

Rotation Period 4.297461 hr

Rotation Pole Orbit Normal

Mean Radius 250 m

Gravitational Constant 4.892 m3/s2

7.6 Simulator Validation

To validate the functionality of the simulator, this section uses a hand-crafted trajectory of

actions designed for a single initial condition to ensure the mission is feasible and the simulator

is functioning as expected. The initial condition is sampled from the aforementioned tables. In

this example, the optional navigation mode is utilized. The hand-crafted trajectory of actions

guides the spacecraft through the mapping waypoints, periodically performing science and resource

management modes.

In Figure 7.9, the position and velocity errors of the EKF are presented. The covariance grows

in between navigation modes when measurements are not being collected, but quickly snaps to a

lower bound during the navigation modes. Navigation updates are typically performed immediately

before mapping modes, which are shown in green. This is done to ensure that mapping will occur

inside the designated region and that the spacecraft has not drifted outside of them due to navigation

errors. Generally speaking, mapping is performed in the earlier phases of the mission, and ground

target imaging is performed later. The ground target imaging mode is represented in red.

In addition to management of the estimation error, management of the buffer level, stored

power, and ∆V is important. Plots of these resources are provided in Figure 7.10. The level of
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Figure 7.9: EKF position and velocity error over 6 days of operations. Mapping modes are shown
in green. Imaging modes are shown in red.
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the data buffer is provided in Figure 7.10a. Due to the 24-hour cadence of the DSN access, the

Goldstone station is the only station available during the allotted communication window each

day. The first three downlink opportunities are utilized, and the second two are skipped. The

last downlink opportunity is utilized to downlink the rest of the mapping and imaging data. In

Figure 7.10b, the stored power is provided. The power is managed such that the battery is not

depleted fully. The charging modes are shown in yellow, demonstrating that the charging mode

is working and the battery quickly reaches capacity during the charging mode. Finally, the total

∆V consumed is provided in Figure 7.10c. The maneuvers to new waypoints are shown in purple.

Maneuvers to new waypoints consume fuel at the highest rate, but station keeping at the waypoints

also contributes to the consumption. The ∆V is kept within the budget and the maneuvers are

performed as necessary to reach the waypoints and facilitate science collection. This demonstrates

that a nominal mission profile will not result in a complete depletion of fuel. However, unnecessary

maneuvers and poor management of the state estimate can result in a violation of this resource

limit.

The trajectory of the spacecraft expressed in the sun-asteroid Hill frame is provided in Fig-

ure 7.11. The spacecraft traverses the entire range of polar angles, moving from azimuth angle to

azimuth angle to perform mapping and imaging activities.

The trajectory of the spacecraft expressed in the body frame of the asteroid is displayed in

Figure 7.12, along with the three maps. The green points represent mapping points collected. As

evidenced by these plots, the prescribed actions manage to collect the vast majority of each map.

Furthermore, every ground target is collected.

Finally, in Figure 7.13, the reward sum on a per-step basis is shown. Reward accumulation

during the mapping modes occurs at a very steady rate, with the downlinks resulting in large

increases in cumulative reward. During the imaging phase, the increase in overall reward occurs

in larger increments because there are far less ground targets than mapping points. Finally, the

large increase in reward at the very end of the simulation is due to the last downlink, which covers

the entirety of a map and over half of the ground targets. This plot suggests that following a
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Figure 7.11: Trajectory of the spacecraft expressed in the sun-asteroid Hill frame following the
prescribed actions.
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Figure 7.12: Trajectory of the spacecraft expressed in the asteroid body frame following the pre-
scribed actions.
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good trajectory of actions, the reward is not temporally sparse, which should help learning. The

prescribed trajectory of actions results in 0.97 reward in total for this initial condition. Every

ground target is collected, so the 0.03 in missing reward is due to a few map points not being

collected and downlinked. It can be concluded from these results that a human expert can craft

a trajectory of actions that results in almost all the possible reward being collected. However, if

the initial conditions were to change, the entire trajectory of actions would need to be redesigned,

which takes several hours by hand. This is the motivation for using RL to solve this problem.

7.7 Conclusion

This chapter provides a detailed description of the small body science operations problem

that adequately addresses resource constraints, GNC activities, and their relationship to science

data. The problem is formulated as a Markov decision process, which includes the definition of the

state space, action space, reward function, and transition function. The parameters of the high-

fidelity astrodynamics simulations were also presented. A hand-crafted solution to the problem was

developed to validate the simulator and show the delicate balance between managing resources and

collecting and downlinking science data. This problem formulation and simulator will be solved in

the next chapter using some of the RL techniques discussed in this dissertation.



Chapter 8

Small Body Science Scheduling Results

8.1 Introduction

This chapter presents several experiments for the small body science scheduling problem pre-

sented in Chapter 7. Due to its good convergence properties and performance, PPO is selected

as the algorithm of choice to solve and parameterize the small body science scheduling problem.

The first experiment performed is a hyperparameter search over the batch size, number of epochs,

network widths, and network depths. This experiment is identical to the PPO experiments per-

formed in Chapter 5. After the hyperparameters are optimized, a search over the reward function

in Equation 7.17 is performed to determine how image and mapping collection and downlink, as

well as the failure penalty, should be weighted. Some of these trained policies are also deployed on

the various observation types to determine the impact of the observation type on the performance

of the policy. The policies trained with the truth state are deployed using noisy measurements of

the state and the EKF belief state to determine the impact of noise and state estimation error on

the performance of the policy. Finally, a set of policies are trained with the dedicated navigation

mode and associated state return (i.e. covariances are added to the state return).

8.2 Hyperparameter Searches

To determine which hyperparameters should be selected for future experiments, two hyper-

parameter searches are performed for the small body science scheduling problem. For both experi-

ments, reward is split evenly between collection and downlink for imaging and mapping, which are
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Figure 8.1: PPO hyperparameter searches for the small body science environment. Each bar
represents the average of 5 trials.

also split evenly. The constants of the reward function in Equation 7.17 are A = B = C = D = 0.25,

and the failure penalty is set to F = 1. In the first hyperparameter search, the batch size and num-

ber of epochs are varied. The network width and depth are fixed at 20 and 4, respectively. The

learning rate is fixed at 3e-5. The results of this hyperparameter search are shown in Figure 8.1a.

The best performing policy is trained with a batch size of 2000 and 100 epochs. This matches the

results in Chapter 5, which found that smaller batch sizes and more epochs are beneficial. The

second hyperparameter search varies the network width and depth. The batch size and number of

epochs are fixed at 2000 and 100, respectively. The learning rate is fixed at 3e-5. The results of

this hyperparameter search are shown in Figure 8.1b. The best performing policy is trained with

a network width of 160 and a network depth of 1.
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Figure 8.2: Average reward across the reward function parameters. Hyperparameters: batch
size = 2000, epochs = 100, LR = 3e-5, width = 320, depth = 1.

8.3 Reward Function Engineering

After the hyperparameters are tuned, a search over the reward function parameters in Equa-

tion 7.17 is performed using the optimized hyperparameters (the network width is increased to 320,

however). The reward is equally split between collection and downlink, but the weighting towards

imaging and mapping is varied from 25% to 75%. The failure penalty is also varied from 0 up to

a penalty of F = 1. The average reward across these hyperparameters after training is provided in

Figure 8.2. An imaging component of 0.125 means that A = C = 0.125, so the mapping compo-

nents are B = D = 0.375. In terms of average reward, changing the relative weighting of imaging

and mapping does not appear to have a large impact on the final average reward. However, because

the failure penalty changes the range of reward, more metrics need to be collected to determine

whether or not this is true.

In Figure 8.3, the average number of imaged and downlinked surface targets and collected

and downlinked maps are presented. A clear dependency on the relative weight of surface target

imaging vs. downlink is present in the results. When surface target imaging is weighted more, the
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average number of surface imaging targets collected and downlinked increases. When mapping is

weighted more, the average number of mapping points collected and downlinked increases. Equal

weighting of surface target imaging and mapping results in decision-making agents that collect and

downlink a high amount of both surface targets and mapping points. This result makes intuitive

sense as both types of science data are prioritized equally. In general, the failure penalty does not

appear to have a large impact on these numbers. If the decision-making agent fails, it is penalized

by not being able to collect and downlink further science data. This matches the results on the

reward tuning experiments performed in Chapter 5 for the SSAEO scheduling problem.

In Figure 8.4, the average length of the simulation and ∆V are provided for the reward

function parameters. The average length of simulation is relatively constant over the reward pa-

rameters. However, a failure constant of 1 does result in the most stable average simulation length,

which means the decision-making agent eliminates failures altogether. The ∆V is more variable,

with no obvious dependency on the reward parameters, but all decision-making agents keep the

∆V well within the requirement of 40 m/s.

8.4 Policy Evaluation

This section evaluates the trained policies using the following reward components: A = B =

C = D = 0.25, F = 1. The science components of the reward function are equally weighted, and the

failure penalty is set to the highest value. The first experiment performed in this section evaluates

the policy trained with these reward parameters under various observation types. The nominal

observation type observes the relative spacecraft state directly. The Basilisk simpleNav module

observation type observes noisy measurements of the relative spacecraft state. If this observation

type is utilized, a dead band equal to the 1σ values in Table 7.2 is added to the control law to

ensure extra fuel is not spent trying to correct for measurement noise. The EKF observation type

observes the EKF belief state, where the EKF continually ingests measurements to improve the

state estimate. No controller dead band is required here. The results of these experiments for

N = 20 trials is presented in Table 8.1. The nominal state observations result in the highest
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(c) Average number of collected mapping points.
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(d) Average number of downlinked mapping points.

Figure 8.3: Average number of landing sites and map points collected and downlinked over the
reward components.

average reward, but the confidence intervals for each metric and each observation type overlap.

There is no appreciable difference in performance between each observation type. This is a major

feature of the problem formulation and training methodology, as a small amount of noise added to
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Figure 8.4: Average simulation length and ∆V across the reward function parameters.

Table 8.1: Trained policy deployed with different observation types. 7 day long planning horizon.

Metric Nominal SimpleNav EKF

Average Reward 0.91± 0.02 0.88± 0.04 0.86± 0.05

Average ∆V 9.4± 0.3 9.5± 0.4 9.4± 0.3

Collected Images 9.5± 0.39 9.1± 0.5 8.5± 0.7

Downlinked Images 9.4± 0.39 9.0± 0.5 8.5± 0.7

Collected Map (6 PM LST) 451± 14 467± 9 468± 12

Collected Map (2 PM LST) 426± 30 390± 46 392± 47

Collected Map (10 AM LST) 443± 18 430± 30 455± 20

Downlinked Map (6 PM LST) 451± 14 467± 9 468± 12

Downlinked Map (2 PM LST) 408± 32 387± 45 381± 47

Downlinked Map (10 AM LST) 439± 18 424± 29 454± 20

the state does not significantly impact the performance of the decision-making agent.

Data is collected on the policy utilizing the nominal observation type to compare it to the

hand-crafted trajectory of actions in Chapter 7. The data buffer level, stored power, and ∆V

are presented in Figure 8.5. The policy takes advantage of almost every downlink opportunity,

keeping the data buffer well within the limits. The stored power also stays above 20 Whr at all
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Figure 8.5: Spacecraft resources over time.

times. Finally, the trained policy only performs 13 maneuvers in comparison to the 23 maneuvers

performed by the hand-crafted trajectory.

As evidenced by Figure 8.6, the reason that the decision-making agent performs fewer ma-

neuvers is because it typically does not visit the northern and southern-most polar angles. The

decision-making agent has learned that it can complete the majority of the mission without visit-

ing these waypoints. However, the question of whether or not this impacts the number of maps

collected remains. In Figure 8.7, the collected map points are displayed, as well as the trajectory of

the spacecraft in the asteroid body frame. The number of total mapping points collected is almost
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identical to the number collected with the hand-crafted trajectory of actions. The decision-making

agent has learned that visiting the extreme northern and southern polar angles is not necessary to

complete the mission.

Finally, in Figure 8.8, the reward on a per-step basis is displayed. The reward plateaus at

0.96 at about 150 steps through the environment. While this may seem impressive in comparison

to the hand-crafted trajectory of actions, the fact that the hand-crafted trajectory also considers

the optional navigation mode must be considered. The performance of the decision-making agent

with the navigation mode included will be investigated in the next section.

8.4.1 DSN Outage Experiment

A large benefit of using reinforcement learning for planning and scheduling is that it yields

closed-loop planning solutions as opposed to open-loop solutions, which allows the decision-making

agent to respond to opportunistic science events or ground station outages. While uncommon, DSN

outages can occur and place mission timelines in jeopardy. On October 11th, 2019, a DSN outage

occurred at the Madrid station before a “late update” (an update to the spacecraft’s trajectory)

for the OSIRIS-REx mission [112]. Engineers had to scramble and compress this update within

a four-hour window. In addition to trajectory and navigation updates, missed downlink windows

can also have implications on future collection and downlink of science data. In this experiment, a

DSN outage is simulated by simply removing the third downlink opportunity. The nominal buffer

level and access times, without this removal, are shown in Figure 8.9a. The average policy outputs

during the third downlink window are shown in Figure 8.9b. The highest probability action is

action 10, which is downlink.

In Figure 8.10, the buffer level and policy outputs during the removed downlink window are

shown. During the removed downlink window, the downlink state is replaced with 0. The decision-

making agent responds by continuing the mapping and imaging campaign, requiring no input from

the ground other than notification that the window has been removed. The downlink action goes

from the highest probability action to the one of the lowest probability actions. This is a major
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Figure 8.6: Hill frame trajectory of the spacecraft.
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Figure 8.7: Trajectory of the spacecraft in the asteroid body frame. Green points represent mapping
points collected by the spacecraft.
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Figure 8.9: Buffer level and policy outputs during nominal DSN schedule. Action 0: Charge.
Actions 1-8: Waypoint Maneuver. Action 9: Map. Action 10: Downlink. Action 11: Image
Surface Target.

benefit of using reinforcement learning for planning and scheduling, as the decision-making agent

can respond to changes in the environment with little or no human intervention. No expensive

re-planning efforts on board the spacecraft are required either. The entire trajectory of actions

does not need to be re-optimized using an integer program. Furthermore, this also highlights the

utility of using this representation of the downlink state. In the MDP formulation of the agile EOS

scheduling problem, the ECEF position is relied on to help the agent understand when downlink

opportunities occur. The benefit of doing this is that it doesn’t require a pre-computation of ground
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Figure 8.10: Buffer level and policy outputs during disrupted DSN schedule. Action 0: Charge.
Actions 1-8: Waypoint Maneuver. Action 9: Map. Action 10: Downlink. Action 11: Image Surface
Target.

station access. However, relying on ECEF positions for ground station access doesn’t easily allow

for the removal of a downlink window. Therefore, a temporal representation for upcoming downlink

windows should be utilized in future work.

8.5 Navigation Mode

8.5.1 Policy Evaluation

In Table 8.2, the policy trained with the dedicated navigation mode is benchmarked over

N = 20 7-day planning horizons. When compared to Table 8.1, it’s evident that PPO trained with

the navigation mode is capable of producing policies equivalent (in terms of average reward) to

those trained without the navigation mode and associated state uncertainty. This is an impressive

result, demonstrating that PPO can not only manage spacecraft resources, but state uncertainty as

well, simply by monitoring the diagonals of the error covariance matrix. If autonomous guidance

and relative navigation capabilities mature enough for adoption, reinforcement learning is a viable

method for on-board planning and scheduling of small body science missions. Future work should

investigate how state-of-the-art autonomous guidance and relative navigation methods impact the
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Table 8.2: Benchmarking the policy trained for the MDP with the dedicated navigation mode. 7
day long planning horizon.

Metric Value

Average Reward 0.91± 0.02

Average ∆V 11.9± 0.5

Collected Images 9.7± 0.3

Downlinked Images 9.4± 0.4

Collected Map (6 PM LST) 455± 12

Collected Map (2 PM LST) 452± 20

Collected Map (10 AM LST) 400± 17

Downlinked Map (6 PM LST) 441± 20

Downlinked Map (2 PM LST) 448± 20

Downlinked Map (10 AM LST) 388± 23

performance of the decision-making agent and how the problem formulation may need to be adjusted

to account for these impacts.

To compare to the hand-crafted trajectory of actions in Chapter 7, the same data is collected

for a single run of the policy and evaluated. The position and velocity state error, along with the 2σ

covariance bounds, are displayed in Figure 8.11. The decision-making agent periodically updates

its state estimate with new measurements, reducing the state error covariance such that mapping

can be conducted. The data buffer level, stored power, and ∆V are presented in Figure 8.12. The

policy takes advantage of almost every downlink opportunity, keeping the data buffer well within the

limits. The stored power also always stays above 20 Whr. Finally, the trained policy only performs

19 maneuvers in comparison to the 23 maneuvers performed by the hand-crafted trajectory. The

decision-making agent attempts to make more maneuvers, but these maneuvers are not actually

performed by the spacecraft because the required amount of time before the next maneuver can be

taken has not passed. The trajectory of the spacecraft in the sun-asteroid Hill frame is displayed

in Figure 8.13. The decision-making agent learns to make multiple passes through the mapping

waypoints. This is an unintuitive result, but the decision-making agent has learned to map and then

move to the next waypoint instead of waiting for the other side of the body to become visible. The
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trajectory of the spacecraft in the asteroid body frame is displayed in Figure 8.14. As evidenced

by these plots, the decision-making agent collects the majority of mapping points.

8.5.2 Management of the State Estimate

Based on Figure 8.11a, it appears that the decision-making agent has learned to manage its

state estimate. However, it’s unclear if the agent has learned to assign fixed probability to the nav-

igation update mode or if selection of the navigation update mode is dependent on the value of the

state-error covariance. To determine this, the policy is run in the environment and, the covariance

matrix is collected, and the policy distribution is evaluated for different values of the diagonal of

the covariance matrix. These results are presented in Figure 8.15. For 101 ≤ ‖diag(P )‖ < 102,

when the covariance and state error are the lowest, the lowest probability action (outside of the

maneuvers) is the navigation update. As the state error covariance grows, the navigation update

becomes the most likely action, as evidenced by Figure 8.15d where π(nav update|s) ≈ 0.55. These

results suggest that the decision-making agent has learned to manage its state estimate based on

the observations provided.

8.6 Conclusion

This chapter explores the application of PPO to the small body science operations problem.

A hyperparameter search over the PPO hyperparameters and reward function components is per-

formed. Small batch sizes and larger networks are shown to produce the best performing policies.

In terms of the reward function experiments, equal weighting between surface target imaging and

mapping produces the best policies. Finally, the performance of the trained policies is evaluated

using direct observations of the state, noisy observations of the state, and filtered observations

produced by an EKF. The decision-making agent is shown to be robust to noise in the state obser-

vations, even when only trained using direct observations of the state. The decision-making agent

is also shown to be capable of responding to changes in the environment, such as a DSN outage,

with no human intervention outside of notification that the window is no longer available. Finally,
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Figure 8.11: EKF position and velocity error over 7 days of operations utilizing the optional
navigation mode. Mapping modes are shown in green. Imaging modes are shown in red.
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Figure 8.12: Spacecraft resources over time using optional navigation mode.
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Figure 8.13: Hill frame trajectory with the navigation mode included in the action space.
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Figure 8.14: Trajectory of the spacecraft in the asteroid body frame. Green points represent
mapping points collected by the spacecraft.
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Figure 8.15: Dependency of stochastic policy outputs on the magnitude of the diagonal of the state
covariance matrix. Action 0: Charge. Actions 1-8: Waypoint Maneuver. Action 9: Map. Action
10: Downlink. Action 11: Image Surface Target. Action 12: Navigation Update.

the decision-making agent is shown to be capable of managing its state estimate when an additional

navigation mode is added to the action space. The decision-making agent is capable of producing

policies that are equivalent to those trained without the navigation mode.

The aforementioned experiments demonstrate that reinforcement learning is a viable method

for planning and scheduling of small body science operations, capable of managing spacecraft re-

sources, maneuvers, and navigation updates while achieving the science objectives of the formulated

mission. These results are promising, and future work should investigate using state-of-the-art au-
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tonomous guidance and relative navigation methods within this planning and scheduling paradigm

for a real mission study. Furthermore, problem formulations that include multiple phases of oper-

ations should also be investigated.



Chapter 9

Conclusions

The majority of problem formulations for spacecraft planning and scheduling rely on simple

models of the problem formulated as linear programs, which are insufficient to capture the complex-

ity of a spacecraft operating in orbit about the Earth or within the proximity of an asteroid. The

equations of motion governing the rotational and translational dynamics of a spacecraft are nonlin-

ear. The insistence that planning and scheduling problems be formulated using linear programs for

the sake of optimality guarantees ignores the fact that said optimality guarantees dissolve during

actual operations due to nonlinearity, unmodeled or mismodeled dynamics, and uncertainties in

the environment. This requires the use of replanning capabilities, which are relegated to repairing

something that has already broken or responding to something that was not expected. As such, this

thesis focuses on the application of reinforcement learning (RL) to planning and scheduling, which

places no constraints on the problem formulation outside of the Markov assumption and opens the

door to learning-based agents that can evolve their strategies over time. This chapter serves to

highlight these contributions, and discuss what future work is required to make the use of rein-

forcement learning for spacecraft planning and scheduling ubiquitous. If humanity is to become a

space faring civilization, we must untether ourselves from convenient mathematical representations

and embrace the ability to learn from experience (simulated or real).
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9.1 Major Contributions

This thesis addresses several large gaps in the literature, specifically regarding the use of

reinforcement learning for Earth-observing satellite (EOS) scheduling. On-board data storage,

downlink, and agile targeting of surface targets are all explored within the context of reinforcement

learning and high-fidelity scheduling simulations, which has not yet been done in the literature.

This work is presented in Chapters 3 and 4. Furthermore, a comprehensive comparison between

various state-of-the-art reinforcement learning algorithms for EOS scheduling was performed, laying

important groundwork for future work. These comparisons are presented in Chapter 5. The

simulators and reinforcement learning algorithms developed (or interfaced with) in this thesis are

open-source and available to the public in the bsk rl repository.1 I hope that future researchers

will make use of this repository and add to these benchmark solutions. This work has also resulted

in a minimum of 12 new Basilisk modules that are available to the public through the Basilisk

repository,2 many of which focus on on-board data handling, imaging, and mapping. These

modules have helped Basilisk differentiate itself from other astrodynamics simulation packages,

adding mission planning capabilities to its arsenal.

In addition to single satellite Earth-observing scheduling, this thesis presents a novel, robust,

and scalable solution to the multi-satellite Earth-observing scheduling problem by applying poli-

cies trained with single agent reinforcement learning to the problem under various communication

assumptions and target distribution methods. This work is presented in Chapter 6. A fully decen-

tralized architecture is shown to be more performant than one that relies on an integer program

for target distribution for the majority of cases. This supports the assertion that a reinforcement

learning-based approach can outperform an integer program, especially if the problem is not fully

modeled with the integer program. Furthermore, even though this method does not optimize a

global reward function, it produces better solutions than a genetic algorithm that does optimize

over a global reward function. While the genetic algorithm could be parameterized to produce

1 https://github.com/AVSLab/bsk_rl
2 https://github.com/AVSLab/basilisk

https://github.com/AVSLab/bsk_rl
https://github.com/AVSLab/basilisk
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equivalent or better solutions, this would require days of computation for a single three-orbit plan-

ning horizon.

Finally, this thesis presents a novel application of reinforcement learning to the problem of

small body science operations, demonstrating that a reinforcement learning policy is capable of

autonomously managing maneuvers, navigation updates, resource management, and science opera-

tions to accomplish a mission. This work is presented in Chapters 7 and 8. The policies are shown

to be robust to unanticipated events such as ground station outages. While various formulations of

small body science operations problems have been investigated in the literature, none of these for-

mulations handle all important facets of the problem from a planning and scheduling perspective,

often focusing on guidance and control problems.

9.2 Future Work

While this thesis makes several important contributions to the field of spacecraft planning

and scheduling, there are still many open questions that must be addressed before reinforcement

learning can be ubiquitously adopted for spacecraft planning and scheduling. This section will

highlight some of these open questions and discuss how they might be addressed in future work.

9.2.1 EOS Scheduling

Several open questions remain regarding the application of reinforcement learning to EOS

scheduling. Long-term deployment of policies should be addressed further, especially in regard

to safety and long-term degradation of spacecraft performance. A thorough comparison between

integer programming and reinforcement learning is also worth pursuing. However, this study would

likely take 6-12 months to complete, and deployment of both methods on a real physical system

would be required to fully demonstrate the benefits of RL and ensure a straw man example is

not constructed. This would only increase the length of the study, potentially requiring an entire

PhD worth of work. I’m not sure that this is the best use of the entirety of someone’s PhD.

Lastly, and possibly most importantly, future work should apply multi-agent RL algorithms to a
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decentralized POMDP formulation of the multi-satellite agile Earth-observing scheduling problem.

This would likely produce better performance than the method proposed in this work, but at the

cost of scalability.

9.2.2 Small Body Science Operations

This thesis really only scratches the surface of the application of RL to small body science

operations, largely because each component of the guidance, navigation, and control (GNC) sub-

system is a PhD in and of itself. Significant collaboration between different students, labs, and/or

government institutions is required to put forth a study that examines each phase of a represen-

tative small body mission from a planning and scheduling perspective with more representative

GNC subsystems and science objectives. Furthermore, the question of exactly what RL enables

from a mission architecting perspective remains open. Finally, while this thesis explores proximity

operations about a small body, the application of this planning framework to rendezvous, proxim-

ity operations, and docking (RPOD) about Earth is evident. Like most of the literature exploring

RL for small body proximity operations, the RPOD literature focuses on guidance and control

problems. Equal emphasis should be placed on planning and scheduling problems.

9.2.3 Sim-To-Real Gap

I have suggested a comparison between RL and integer programming, deploying both methods

on a real flight system to measure performance. The RL agents would be trained on high-fidelity

simulations before deployment, and it is likely that some gap would exist between the RL simulator

and the real spacecraft/environment. The impact of this gap, as well as techniques to mitigate its

impact, should be explored further if this comparison work is pursued. Some work has demonstrated

the successful closure of this gap for unmanned aerial systems, and I don’t doubt that it is possible

to close this gap for spacecraft either. However, it will be valuable to determine what may need to

be included in the RL simulator to not require any transfer learning techniques during deployment.
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