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Novel electromagnetic space applications: electron-based touchless potential sensing and low-gravity mag-

netohydrodynamics

Thesis directed by Prof. Hanspeter Schaub

The commercialization of the sub-orbital environment, the ambition to make humans a multi-planetary
species, and the urgent need for sustainable space operations are driving the development of a new generation
of space systems. The use of electromagnetic forces (and electromagnetism, in general) is proposed in this
dissertation to enable mid-distance, contactless actuation and sensing for space technology development.
Following this paradigm, two applications are explored: electron-based touchless spacecraft potential sensing,
and low-gravity magnetohydrodynamics.

The electron-based touchless potential sensing method was recently introduced to characterize the
electrostatic state of non-cooperative objects in GEO and deep space. Applications span from arcing pre-
vention to space debris removal. Although the fundamentals of this approach were studied in previous
works, several open questions remained regarding the effect of complex geometries and differential charging
on the sensing process. Such questions are here addressed with efficient numerical tools and vacuum chamber
experiments, providing key insights into the behavior of realistic spacecraft formations. In addition, new
active photoelectron-based sensing strategies are proposed that overcome some of the challenges of previous
implementations.

The concept of low-gravity magnetohydrodynamics is also introduced as a way to actuate low-gravity
fluid mechanics systems using magnetic forces. The theoretical foundations of the field are established
from the analytical, numerical, and experimental perspectives with particular attention to the equilibrium,
stability, and modal response of gas-liquid interfaces. Specific features of bubbles and droplets are also
explored. Finally, the use of magnetic polarization and Lorentz forces in low-gravity fluid systems is discussed
together with some of their applications, which include phase separation, magnetic positive positioning, and
low-gravity electrolysis. The development of such technologies is initiated with support from microgravity

research campaigns at ZARM’s drop tower and Blue Origin’s New Shepard suborbital rocket.
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Chapter 1

Introduction

1.1 Motivation

In 1985 Ronald E. Rosensweig wrote this in the preface of his reference textbook, Ferrohydrodynamics,
“my initial studies with my colleagues were motivated by engineering endeavors and the hope that adding a
magnetic term to the equations of fluid motion would lead to interesting and useful consequences” [20]. In
light of the vast impact of his work, Rosensweig’s hopes were certainly justified. Unlike surface tension or
mechanical interactions, electromagnetic forces enable mid-distance, contactless actuation and sensing. This
is the distinctive characteristic that sparked my curiosity when I started studying the dynamics of ferrofluids,
and also the underlying motivation that pushed me to explore more applications of electromagnetism in space.
There are countless problems where the “addition of a magnetic term” can result in new architectures or
performance enhancements and, in most cases, I found a surprisingly early stage of development.

Many different systems fall into the definition of “space electromagnetics”. AstroScale’s docking
plates employ magnetic actuators to enable docking during servicing operations, and a similar approach
is being explored by ALTIUS Space Machines using electropermanent magnets. TESSERAE’s project at
MIT’s Space Exploration Initiative implements electromagnetic actuators to self-assemble space structures.
ETA Space aims at demonstrating cryogenic management technologies in orbit, and magnetic slosh control
was considered during the design of LOXSAT-1. In the academic realm, Prof. Mason A. Peck’s works on
magnetic de-spinning [21], eddy-current actuation for on-orbit inspection [22], or electrodynamic tethers

for chipsats [27}] have introduced some interesting ideas for electromagnetic actuation in space. The use of



Figure 1.1: Artistic illustration of Gateway in lunar orbit with the SpaceX Dragon XL logistics module on
approach to docking. Credit: NASA.

electron beams and electrostatic repulsion for lunar dust mitigation is also gathering significant attention in
the life support community [2].

In this context, the first part of this Ph.D. dissertation deals with the touchless sensing of target
spacecraft potentials in Geosynchronous Equatorial Orbits (GEO) and deep space. Knowledge of a target’s
electrostatic potential is critical when spacecraft charging is significant and multiple spacecraft are involved
(i.e. for close proximity operations at high altitude). Rendezvous events have historically taken place in
the Low Earth Orbit (LEO), but the increasing need for active space debris removal makes GEO operations
necessary. Moreover, the ambition to make humans a multi-planetary species is shifting our interest from
LEO to the cislunar environment, the best example being the (hopefully) upcoming Lunar Gateway station
depicted in Fig. . It is in these new environments with low-density high-temperature plasma where
spacecraft charging becomes a major concern or, from a more optimistic perspective, a great opportunity for
concepts like the electrostatic tractor [25]. The electron-based touchless potential sensing technology covered
in Part | is ultimately aimed at supporting these new ideas.

Ferrofluids were invented in 1963 by NASA’s engineer Solomon S. Papell [(] and they have found
application in fields as diverse as printing, medicine, tribology, heat transfer, or even art. It is usually

forgotten is that Papell’s US Patent 3,215,572 introduced ferrofluids as a mechanism to control rocket
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Figure 1.2: Solomon S. Papell’s conceptualization of the magnetic positive positioning concept in his 1963
US Patent 3,215,572 [0].

propellant sloshing in an approach that is nowadays known as Magnetic Positive Positioning (MP2, see
Chapters 12 and 3). Papell illustrated the concept with the drawing in Fig. , that is found in the first
page of his patent. In spite of the originality of his invention, magnetic positive positioning systems have not
yet flown to space and the maturity of this technology remains below a technology readiness level (TRL) of
5. Propulsion engineers probably thought that the risk and cost of developing magnetic propellants was not
worth the effort given the existence of solutions with flight heritage, like surface-tension-based propellant
management devices (PMDs). However, space exploration faces an age where classical technologies are being
pushed to their limits and more efficient approaches are required for new missions. For instance, traditional
PMDs will generally fail to store and transfer cryogenics extracted from In-Situ Resource Utilization (ISRU)
due to the weak surface tension forces. Analogous problems are observed in the design of conformal tank
geometries for SmallSats, where volume is even more limited than mass and where MP? can potentially lead
to significant reductions in both.

The list of electromagnetic technologies enabled by new missions (and the list of mission concepts
enabled by such technologies) goes on and on and includes the ideas explored in this dissertation. The
challenges that we face in the new age of space exploration will push our sector to expand its traditional limits.
It is in this context where an opportunity is presented to leverage previously unexplored electromagnetic
concepts and create a new generation of space systems. What follows is a brief introduction to the ones
explored in this dissertation: electron-based touchless spacecraft potential sensing and low-gravity

magnetohydrodynamics.



1.2 Touchless potential sensing

1.2.1 Concept

The use of secondary electrons [20] and x-rays [27—29] has been recently proposed to touchlessly sense
the electrostatic potential of non-cooperative objects in GEO and deep space. These approaches, illustrated
in Fig. , make use of a positively charged servicing craft that directs a high-energy electron beam at
the object of interest so that low-energy secondary electrons and x-rays are emitted from the surface. The
secondary electron flux is accelerated toward the servicing craft and arrives with an energy equal to the
potential difference between the two bodies. The servicing craft measures the electron and photon energy
spectrum and, knowing its own potential, infers that of the target [10]. Potential levels of the order of 10s
of keV and beam currents of up to 1 mA are considered in these scenarios [71].

Several novel GEO and deep space applications are enabled by this approach, including those dealing
with the electrostatic detumbling [3?] and reorbiting [25, 33-35] of debris, Coulomb formations [(], virtual
structures [37], electrostatic inflation [3%], and the mitigation of arcing during rendezvous, docking, and

proximity operations [19]. Coulomb formations can also be established in LEO by exploiting the plasma

Servicer

Figure 1.3: Conceptual representation of the secondary electrons and x-ray-based electrostatic potential
measurement, processes.



wake of the leading spacecraft [10]. In addition, X-ray sensing methods have been proposed for arcing
detection in GEO [!1].
This dissertation focuses on the electron-based touchless potential sensing method and its associated

challenges. For further details on the x-ray method, the reader is referred to Ref.

1.2.2 Complex shapes and heterogeneous charging

The validation of electron-based touchless electrostatic potential sensing methods has been addressed
in previous works with flat plates, which simplify experimental procedures and ease data interpretation
[26, 13, 11]. However, a flat surface is not representative of a standard spacecraft, whose complex geometry
leads to a highly inhomogeneous electric field that determines the trajectories of low-energy particles [15—15].
Recent work exemplifies the importance of this effect by making use of two-dimensional shape primitives in
vacuum chamber and numerical experiments, showing how concave geometries and internal corners focus the
flux of secondary electrons, while convex surfaces and external corners have the opposite effect [¢]. This is
illustrated in Fig. . The detectability of secondary electrons at a servicing spacecraft is thus determined
by the target’s geometry and relative position [3] and the interaction with the impinging electron beam

[19]. The problem is further complicated when differential charging (i.e. multiple potentials) is considered.
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Figure 1.4: Charge distribution and secondary electron trajectories for isolated spacecraft geometry [7, =].



Although modern design best practices recommend all exterior surfaces to be connected to a common ground
[00], this is often hard to achieve in the daily practice, ultimately leading to arcing events [51—=51]. On one
hand, a differentially-charged body steers the electrons in different directions with respect to the uniform
potential scenario. On the other, their observability may be severely compromised due to the generation of
potential traps [77].

Chapter  addresses the detectability of spacecraft potentials using the secondary electron method in
realistic targets. Its primary goal is to identify the geometrical configurations for which the flux of secondaries
is observable and its magnitude. A second goal is to develop and validate an efficient particle tracing
simulation framework that enables high-fidelity simulations of the sensing process. Previously unexplored
mechanisms, like the coupling between electron beam propagation and secondary electron generation, are
addressed. Moreover, the effects of differential charging on the secondary electron flux generated on a
complex space-like geometry are studied for the first time. Vacuum chamber experiments are carried out at
the Electrostatic Charging Laboratory for Interactions between Plasma and Spacecraft (ECLIPS) simulation
facility [70] to support the study. A relatively straightforward three-dimensional numerical implementation
is achieved by making use of SIMION, a popular particle tracing simulator used in the design of ion optics

[9] which is particularly appropriate for space applications where space charge effects remain negligible.

1.2.3 Electron beam modeling

Chapter  shows that the detection of secondary electrons from a target spacecraft is conditioned
by its geometry, position with respect to the servicer, charging state, and electron source region [%]. From
a technical perspective, the intersection between the electron beam and the target object defines the area
where secondaries are generated. The ability to focus the electron beam on a specific spot of the target
not only finds application in potential sensing, but also in the identification of surface materials and the
characterization of differentially-charged objects. Therefore, the efficient and physically accurate modeling
of the electron beam is key for pre-flight studies and in-situ operation. Past missions have operated electron
beams in space, with some examples being SCATHA [57] or the Electron Drift Instruments at GEOS [5¢],

Freja [79], Cluster [00], and MMS [1]. Since beam repulsion effects were negligible or irrelevant in most cases,



very basic electron beam models could be employed. This would not be appropriate for the technologies
discussed in Part

The application of the particle tracing framework introduced in Chapter  to model the electron beam
dynamics is appropriate in most cases, but (i) fails to implement the electromagnetic expansion effects in
high-intensity beams, and (ii) doubles the computational cost of the simulation by propagating electron
trajectories from the servicer to the target. The computational aspect is critical for in-situ operations. In
addition, the detection process is subject to significant uncertainties that must be accounted for in the design,
making efficient models necessary for uncertainty quantification.

Chapter | takes advantage of the the active potential sensing environment to introduce a simplified,
computationally efficient electron beam model suitable for onboard flight algorithms. The model is employed
to study the uncertainty in the propagation of electron beams in an active potential sensing scenario by means

of highly efficient Monte Carlo simulations.

1.2.4 Photoelectron-based sensing strategies

Chapters  and /| will show that uncertainty mitigation is one of the major challenges in the electron-
based touchless potential sensing method. Unmodeled geometries, a particularly complex differential charg-
ing scenario, or servicer-target positioning errors can bring the electron sensor away from the flux of sec-
ondaries predicted by onboard models, hence losing their signal. Analytical and experimental studies have
already highlighted this issue and suggested the combined measurement of secondary electrons and x-rays
to enhance the robustness of the sensing process [/, 19]. However, the physics of each problem are not
favorable to the simultaneous generation of these signals: while secondary electrons are mainly released at
moderate electron beam energies [75], the generation of x-rays is favored by energetic particle impacts [27].
In addition, and as shown in Chapter |, low-energy electron beams are steered in the presence of the inho-
mogeneous electrostatic field generated by the servicer-target system, increasing the sources of uncertainty
of the problem. From a technical perspective, it would be convenient to develop a sensing strategy that un-
couples both mechanisms and optimizes the generation and control of secondary electrons and x-rays while

minimizing the current fluxes imparted on the target.
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Figure 1.5: Conceptual representation of the combined photoelectron and x-ray generation processes.

The use of ultraviolet (UV) sources is explored in Chapter 5 to generate an environment-independent
electron release method. In particular, the simultaneous application of ultraviolet (UV) lasers and high-
energy electron beams is proposed to excite the emission of photoelectrons and x-rays in non-cooperative
GEO objects. Figure shows a conceptual representation of this strategy where both systems operate in-
dependently and impact (if needed) different areas of the target. Major sources of uncertainty are eliminated
with this approach due to the high directivity of quasi-relativistic electron beams and the rectilinear trajec-
tories of photons which, unlike electron beams, remain unaffected by the complex electrostatic environment.
In addition, independently controlled positive (photoelectrons) and negative (electron beam) currents are
added to the target spacecraft charge balance, enabling a promising new method to touchlessly sense the
electrostatic potential of an object without changing its equilibrium state.

The photoelectric effect has been considered for decades in the spacecraft charging community and is
usually treated from a current-balance perspective [75]. Recent works have also explored the use of solar light
as a way to excite photoelectric emission and passively sense the target potential [7]. In contrast, Chapter
focuses on active photoemission sensing and adopts a particle-centered strategy to extend the framework

introduced in Chapter * to the modeling of UV laser beams. The outcomes of the simulation are compared



with experimental results to inform the design of future systems.

1.3 Low-gravity magnetohydrodynamics

1.3.1 Definition and scope

In contrast with the term “magnetohydrodynamics”, which refers to the interaction between magnetic
fields and fluid conductors of electricity, the word “ferrohydrodynamics” is closely related to the volume force
density that arises when a ferrofluid is polarized. The polarization force is not only observed in ferrofluids, but
also in natural liquids such as water or liquid oxygen [(”]. However, it is so weak that terrestrial applications
are almost nonexistent! . In microgravity, however, even the slightest disturbance can determine the behavior
of a fluid system [(3]. This has led to the formulation of several potential space applications, including mass
transfer [0/—05], thermomagnetic convection [09; 70], micropropulsion [71, 72], phase separation [73], or
sample holding [7/], among others. Earth systems employing ferrofluids are also numerous and cover bubble
and droplet studies [77—77], T-junctions [7=—30], or energy harvesters [21—23]. In other words, the application
of magnetic forces leads to alternative fluid management approaches in microgravity and on Earth.

None of the aforementioned terms (magneto/ferrohydrodynamics) fully identifies the domain of physics
dealing with the magnetic polarization force in both ferrofluids and natural liquids. While the first is
commonly associated with Lorentz forces arising in fluid conductors of electricity, the second is bounded
to ferrofluids. Due to the lack of a better candidate, and with permission from Prof. Alfvén [21], T will
subsequently refer to the intersection between low-gravity fluid mechanics, magnetic polarization forces, and
Lorentz forces as low-gravity magnetohydrodynamics (LG-MHD).

Although Lorentz forces will be considered in Chapter |/, Parts || and will focus mainly on
magnetic polarization and its applications in low-gravity fluid mechanics. There are important reasons
behind this decision: (i) magnetic polarization forces have historically been ignored in the study of low-
gravity fluid mechanics, creating a gap of knowledge that needs to be filled, (ii) magnetic polarization forces

can be treated with quasi-analytical tools, enabling fast technology development, and (iii) Lorentz forces are

1 Still, it has been employed to levitate frogs or grasshoppers (who, let’s be honest, don’t seem very happy about it)
. Consulted on: 14/04/2022.
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Figure 1.6: Spring-mass-damper mechanical sloshing analogies for different propellant tanks.

far less common and, when applicable, lead to complex magnetohydrodynamic flows that require dedicated

numerical simulations.

1.3.2 Analytical perspective

The study of liquid interfaces in low-gravity has traditionally focused on three basic concepts: equi-
librium, stability, and modal response [5]. All three became essential for the development of PMDs in
the early 1960s, with the latter resulting in mechanical analogies under different gravity levels [20] like
those depicted in Fig. . The very few publications studying surface tension-dominated liquid interfaces
subject to magnetic polarization, on the contrary, have only made use of numerical methods, somehow skip-
ping that essential body of knowledge. The reasons behind this are unclear, but may be related to the
inherent complexity of the problem and the widespread availability of computational resources by the time
magnetic actuation became a realistic possibility (i.e. after the popularization of neodymium magnets and
low-temperature superconductors). However, a more classical approach to LG-MHD pays off in terms of
computational efficiency and fundamental understanding.

Three-dimensional low-gravity fluid mechanics problems usually fall beyond the capabilities of an-

alytical methods. Software suites like K. A. Brakke’s Surface Evolver have become extremely popular in
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the low-gravity fluid physics community to compute interfacial static equilibria [2], while dynamic systems
are usually treated by means of interface-capturing and interface-tracking numerical frameworks (more on
this in Chapter 0). In order to exploit the advantages of analytical methods while keeping them practical
enough for a technical application, the formulations derived in Chapter 7 are restricted to axisymmetric
liquid-gas problems (including lateral oscillations). Axisymmetric interfaces are ubiquitous in low-gravity
fluid systems, from pipes to propellant tanks, and enable a simpler two-dimensional analysis. Once the
physics of axisymmetric interfaces are understood, the three-dimensional extension becomes almost trivial
using modern numerical methods. In addition, and due to their importance as elemental multiphase flow
units, specific features regarding bubble and droplet dynamics are addressed in Chapter . An experimental

validation of these formulations is given in Chapter 9 using a series of drop tower experiments.

1.3.3 Numerical perspective

The quasi-analytical tools developed in Chapters 7 and © are particularly hard to extend to viscous
flows or complex three-dimensional geometries. In addition, they also involve some important simplifications.
It is in this context where numerical magnetohydrodynamic multiphase simulation frameworks can make a
difference by enhancing our understanding and modeling capabilities.

A classification of previous numerical magnetohydrodynamic frameworks may consider two key char-
acteristics: solution procedure and multiphase flow modeling approach. In the first category, and excluding
implementations where the fluid-magnetic coupling is ignored or heavily simplified, partitioned schemes that
iteratively solve the fluid-magnetic equations seems predominant [10, 90-95]. In contrast, monolithic ap-
proaches solve all equations simultaneously within a global system of nonlinear equations and have also
been implemented using the finite elements method [96-9%]. Although monolithic approaches deal with the
inversion of a large Jacobian, require more memory, and renounce to the modularity of partitioned schemes,
they are also more robust and generally more computationally efficient than iterative implementations, par-
ticularly for complex multiphysics problems [99—102]. From the multiphase flow modeling perspective, the
Lattice Boltzmann [93, 075, , 104], level set [0], phase field [105], and volume of fluid methods [0, 9],

or a combination of the previous [)”] have been employed. The last three can be categorized as interface-
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capturing, meaning that an auxiliary function is introduced in a fixed spatial domain to determine the
location of the interface. Although their versatility has made them extremely popular in the multiphase flow
community, interface-capturing methods face significant challenges when dealing with the formulation and
implementation of surface tension [100]. This includes the mitigation of numerical diffusion at the interface,
the computation of surface normals and curvatures, or the imposition of a discrete balance of surface tension
and pressure gradient terms [I07]. In contrast, interface-tracking methods employ meshes that follow the
fluid surface by advecting with the flow a discrete set of points distributed along the interface. This approach
avoids numerical diffusion, provides a seamless implementation of surface tension forces, and leads to simpler
boundary conditions, which makes it particularly appropriate for capillary and low-gravity fluid problems.
However, the geometrical transformation employed to transition from the uniform computational domain to
the deformed mesh complicates the final expression of the governing equations and limits their applicability
to relatively simple geometries [103].

Interface-tracking methods for coupled, capillary magnetohydrodynamic systems remain, to the best
knowledge of the author, completely unexplored. Their development is highly desirable for the study of a
wide variety of fundamental and applied problems, ranging from bubble and droplet studies to microfluidic
and low-gravity systems. To cover this knowledge gap, Chapter |0 introduces the very first of such models

and validates it with the experimental measurements introduced in Chapter

1.4 Applications of low-gravity magnetohydrodynamics

1.4.1 Phase separation

The third and last part of this dissertation introduces several cases of application of low-gravity
magnetohydrodynamics. The first of them is phase separation, which is a crucial process for a wide variety
of space technologies. Those include propellant management devices, heat transfer and life support systems
comprising the production of oxygen, fuels and other chemicals as well as the removal of carbon dioxide from
cabin air and the recycling of waste water, among many others.

Numerous phase separation methods have been developed for microgravity conditions. Centrifuges
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[109, 110], forced vortical flows [ | [=115], rocket firing [ [6—115], membranes [| 19, 120], and surface-tension-
based technologies [171, ], which include wedge geometries [123—120], springs [!27], eccentric annuli
[125], microfluidic channels [129] or porous substrates [130, 131], among others, are the most traditional

solutions. As an alternative, the use of electrohydrodynamic forces has been studied since the early 1960s
[132] and successfully tested for boiling , two-phase flow management [133—125], and conduction pumping
[130] applications. Hydroacoustic forces arising from the application of ultrasonic standing waves [137]
have been applied to enhanced a wide variety of terrestrial processes [!3%] and also proposed to control
bubbly flows in propellant tanks [!39, | and life support systems [//!]. Small amplitude vibrations
can also be employed to manage multiphase flows and induce phase separation in microgravity [I12] by
selecting viscoequilibrium configurations [ 13] or exploiting frozen wave instabilities [ /]. These approaches
present unique characteristics that affect aspects like their operational lifespan, reliability, performance and
intrusiveness [ 11].

Complementary to the aforementioned methods, the inherent magnetic properties of liquids can be
employed for passive phase separation. A conceptual representation of this approach is shown in Fig.
As shown in Chapter 0, inhomogeneous magnetic fields induce a weak polarization force in continuous media
that, due to the differential magnetic properties between phases, results in a net buoyancy force. This

phenomenon is known as magnetic buoyancy and has been applied to terrestrial boiling experiments with

ferrofluids [1 17, ]. Previous works on low-gravity magnetohydrodynamics have explored, for instance,
the diamagnetic manipulation of air bubbles in water [0, (7], the positioning of diamagnetic materials
[71], air-water separation [73], protein crystal growth [I17], or combustion enhancement [(7]. The use of

N

Mixed flow
o ©

o O

Figure 1.7: Conceptual representation of a diamagnetic standalone phase separator. Blue arrows represent
the liquid/gas flow, while red arrows denote the magnetization vector of the magnet.
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magnetic buoyancy in phase separation under microgravity conditions remains, however, largely unexplored

and motivates the work presented in Chapter

1.4.2 Magnetic positive positioning

Magnetic positive positioning is the second application explored in this work. Propellant sloshing
represents a major concern for aerospace engineers due to its capacity to disturb the dynamics of space
vehicles. During launch, the uncontrolled movement of liquids may lead to a total or partial mission failure
[11%]. In microgravity, sloshing is characterized by its highly stochastic nature, which complicates the design
of propellant management systems and induces additional spacecraft attitude disturbances [#(]. PMDs are
commonly employed to ensure a gas-free expulsion of propellant, fix the center of mass of the fluid and tune
its free surface frequencies and damping ratios [0, ]. However, they also increase the inert mass of the
vehicle and complicate numerical simulations [150].

An interesting alternative to classical PMDs and active settling methods relies on the application
of electromagnetic fields to generate a gravity-equivalent acceleration. The use of dielectrophoresis, a phe-
nomenon on which an electric force is exerted on dielectric materials, was explored by the US Air Force
with suitable propellants in 1963. The study highlighted the risk of electrical arcing and the need for large,
heavy and noisy power sources [!32]. Most of these concerns are no longer valid sixty years afterwards
and, indeed, several groups are currently exploring the application of electric polarization forces to space
technology [134, , —152]. The magnetic equivalent, Magnetic Positive Positioning (MP?), has also
been suggested to exploit the magnetic polarization force on paramagnetic, diamagnetic, and ferromagnetic
liquids [0].

As shown in Chapter |1, MP? devices must deal with the rapid decay of magnetic fields with distance,
that limits their applicability to relatively small regions. This difficulty may be compensated by employing
ferrofluids. Terrestrial works have explored the natural frequency shifts due to the magnetic interaction
[157], axisymmetric sloshing [150, |, two-layer sloshing [!7%], liquid swirling [159] or the development
of tuned magnetic liquid dampers [100), |. Low-gravity contributions include the gravity compensation

experiments performed by Dodge in 1972, who indirectly addressed the low-gravity sloshing of ferrofluids
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subjected to quasi-uniform magnetic forces [102]. Motivated by the advent of stronger permanent magnets
and high-temperature superconductors, the NASA Magnetically Actuated Propellant Oritentation (MAPO)
experiment validated in 2001 the magnetic positioning of ferrofluid solutions in a series of parabolic flights
[163]. Such ferrofluids were selected to approximate the linear magnetization curve of liquid oxygen for dif-
ferent magnetic field intensities. Subsequent publications presented refined numerical models and numerical
results of technical relevance [151, 16/-171]. The axisymmetric and lateral sloshing of water-based ferroflu-
ids was characterized in microgravity when subjected to an inhomogeneous magnetic field as part of the
ESA Drop Your Thesis! 2017 [77, , 173] and UNOOSA DropTES 2019 [ 7/—177] campaigns reported in
Chapter
In spite of the existence of recent works on MP?2, the TRL of this approach is still below 5. Chapter

outlines the basic MP? architectures and discusses their technical feasibility employing the tools introduced

in Chapters 7 and

1.4.3 Launch vehicle restart

The exploration and commercialization of space has led to the increasing contamination of the LEO
environment by non-functional man-made objects. Space debris represents a serious safety hazard for current

and future satellites due to the risk of in-orbit collisions, and a concern for the general population during

Quartz Container

(a) LOX positioning [15] (b) Ferrofluid sloshing during the UNOOSA DropTES 2019
StELIUM campaign

Figure 1.8: Examples of magnetic positive positioning and magnetic liquid sloshing.
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uncontrolled re-entry events. The minimization of debris release during normal operations has consequently
become a major goal for the international space community [ 75].

Launch vehicles (LVs) represent more than 42% of the abandoned intact objects in orbit and account
for 57% of the abandoned mass [I79]. Recent studies have identified the most dangerous elements in an
attempt to guide future active debris removal efforts [I79—121], resulting in a list that includes 290 second
stages of the Soviet/Russian “Cosmos-3M” LV, 7 of which have been considered among the 50 most con-
cerning space debris objects [1©1], 110 third stages of the Soviet/Russian “Cyclone-3” LV, 54 units of the
American first and second stages of the “Delta” LV, as well as 38 third stages of the Chinese “CZ-4” and
“CZ-2D” LVs. Further concerns arise due the presence of propellant residuals in the tanks, which account
for up to ~3% of the initial fuel mass [122]. During the long stay of a stage in orbit, the remaining fuel
evaporates under the influence of solar radiation, which leads to an increased risk of explosion and, therefore,
to the generation of space debris [| 75]. The uncontrolled descent of first LV stages in sensitive drop areas can
also lead to environmental pollution caused by the depressurization of toxic fuels, fires in the drop sites, and
the contamination of water bodies. This problem is more relevant for Russian LVs like “Soyuz”, “Proton”,
and “Angara”, where most of the drop zones are located on land [1 53, ].

Modern launch vehicle operations are subject to strict space debris mitigation policies [I75]. When
graveyard orbits are not attainable, the orbital lifetime is limited and systems are passivated by removing
all energy sources. Active deorbiting represents a highly attractive alternative to those strategies, but it is
not exempt from risks and technical challenges [1%7]. Among them, proper engine restart conditions must
be provided once the stage is separated from the rest of the vehicle in order to ensure a safe reorbiting
or reentry. This decoupling induces strong disturbances on the propellant residuals and leads to highly
non-linear sloshing dynamics, compromising the operation of the engine feed system [I20].

Propellant management devices (PMDs) like porous traps [137, ], troughs [189-191], or start
baskets [192, | have been employed to safely restart rocket engines against moderate accelerations (par-
ticularly, in upper launcher stages with storable propellants), but these approaches do not easily apply to
cryogenics due to their complex heat transfer mechanisms and low surface tension. In fact, screen channel lig-

uid acquisition devices (Fig. ) are the only type of PMD with cryogenic flight heritage [191]. Although



(a) Total communication screen channel liquid (b) Ullage engine from Saturn IV-B at NASA Johnson Space Center
acquisition device [197]

Figure 1.9: Examples of magnetic positive positioning and magnetic liquid sloshing.

significant efforts are being devoted to the design of cryogenic liquid acquisition systems [195], the inertial
(or active) settling approach is far more extended. Ullage engines have been traditionally employed during
insertion, orbital coast, or on-orbit operations. These independent rockets induce accelerations that can be
as weak as 1074 to 1072 m/s? and involve solid, mono-propellant, bi-propellant, or cold gas technologies,
sometimes fed by vaporized propellant vented from the main tanks [196]. Some examples include the Saturn
IV-B’s hypergolic liquid bi-propellant Auxiliary Propulsion System (APS) [110, | pictured in Fig. ,
the APS at the Centaur upper stage [1 7], SpaceX’s Falcon 9 nitrogen cold gas thrusters for coast attitude
control [19%], or the two Sistema Obespecheniya Zapuska (SOZ) ullage engines of the Blok DM-2 Proton
upper stage. This last unit has raised concerns in the space debris community after being responsible for up
to 50 on-orbit explosions between 1984 and 2019 [199].

The technical specifications of ullage engines are not usually accessible to the scientific community,
which hampers any effort to perform an “external” evaluation of these systems. However, numerous reports
from the Apollo era can still be consulted. The two Saturn IV-B APSs were usually fired in three consecutive
ullaging burns for a total of ~ 245 s, consuming ~13.5 kg of propellant (~ 23.5% of the total propellant mass
of each APS) [200]. The dry mass of the APS is unknown to the author but seems of the order of several

hundred kilograms judging by the volume of the system. The dry mass of Saturn IV-B was about 13.5 t.
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On the other hand, each one of the two SOZ units of the Block DM-2 upper stage had a dry mass of ~ 106
kg and a total propellant mass of up to 114 kg, while the stage itself weighted 2.1 t. Although determined
by the characteristics of the vehicle and its mission profile, the total mass of ullage rocket systems is usually
of the order of hundreds of kilograms [201]. With a Falcon 9’s launch cost to LEO of ~ 2700 $/kg [207], an
economic penalty per launch and stage of up to ~500.000 USD may be estimated. This value is doubled for
GEO orbits, and multiplied by an even larger factor in a Mars mission.

Even though ullage engines are a robust and well-established solution to deal with the restart of
rocket engines in microgravity conditions? , lower mass penalties and/or enhanced reliability may be found in
different technical alternatives. In Chapter |, the passive Magnetic Positive Positioning approach introduced
in Chapter |2 is expanded and particularized for this problem alone and in combination with an on-board
Propellant Gasification System (PGS) [203]. The historical background of each system is presented together

with a preliminary technical analysis.

1.4.4 Magnetically enhanced electrolysis

The last application of low-gravity magnetohydrodynamics covered in this dissertation deals with one
key technology for space exploration: water electrolysis, which refers to the electrochemical decomposition

of water into hydrogen and oxygen. The reaction was first performed by Troostwijk and Deiman in 1789

[204, ] and was already considered for space applications in the early 1960s [200]. A wide range of
environmental control and life support systems [207], space propulsion technologies [205-210], or energy
conversion and storage mechanisms [211, | rely on this process. Furthermore, future interplanetary

missions are likely to employ water as a commodity acquired and processed by In Situ Resource Utilization
(ISRU) methodologies to produce propellants, thereby reducing vehicle launch mass [213, ].

Water electrolysis technologies can be classified according to the nature of the electrolyte. Three
chemistries are considered for space applications: alkaline/acidic, proton exchange membrane (PEM), and
solid oxide ceramics. Of these, the low temperature alkaline/acidic and PEM electrolytes require phase

separation at the electrode. The liquid alkaline technology employs two metallic electrodes separated by a

2 With exceptions! See this report on the Centaur AC-3 launched on June 30, 1964:
. Consulted on 09/05/2022.


www.nasaspaceflight.com/2022/05/centaur-turns-60/
www.nasaspaceflight.com/2022/05/centaur-turns-60/
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porous material and immersed in a conductive aqueous solution, usually prepared with KOH or NaOH.
The cell separator allows the exchange of the OH ~ groups and prevents the recombination of Hy and Os into
water. PEM cells, on the contrary, are fed with pure water and make use of a proton-conducting polymer
electrolyte. PEM cells allow high current densities, prevent the recombination of oxygen and hydrogen (and
so, are safer), and produce high-purity gases. However, they lack the long-term heritage of alkaline cells and
are sensitive to water impurities [217].

The operation of alkaline and PEM cells in low-gravity is severely complicated by the absence of strong
buoyancy forces, resulting in increased complexity, mass, and power consumption. Dedicated microgravity
experiments have shown how the weak buoyancy force gives rise to a layer of gas bubbles over the electrodes,
shielding the active surface and limiting mass transport [216—215]. This effect is shown in Fig.

Gas bubbles tend to be larger than in normal-gravity conditions due to the longer residence time and the
absence of bubble departure. Besides, and unlike in normal-gravity, the bubble departure diameter increases
with increasing current intensity [219]. A forced water flow can be employed to flush this structure, but
this approach complicates the architecture of the system and has a limited efficiency [/ 19]. Most types

of electrolytic cells also require a liquid/gas phase separation stage. Among those reviewed in Sec ,

H,

Terrestrial

Front View

H,

Microgravity

Smm
Front View Side View

(a) Bubble structure over an electrode on Earth (b) Diamagnetically enhanced electrolysis concept
(top) and in microgravity (bottom) [210]

Figure 1.10: Water electrolysis in microgravity.
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centrifuges [109, 1 10] and gas-liquid separation membranes [ 19, 120] are nowadays preferred. However, they
present some important drawbacks: while centrifuges add to the mass and power budgets and induce g-jitter,
membranes have limited lifetime and tend to clog in the presence of water impurities [20%, ]

Both alkaline and PEM technologies have flown to space and dealt with the phase separation problem
in different ways. The Russian Elektron module, first operated at Mir and then at the ISS, makes use of a
circulating alkaline electrolyte (25 %wt KOH) and a fluid circuit with gas/liquid static separators and heat
exchangers [221]. The operation of the system has been compromised in the past by notorious malfunction
events [222—221]. NASA’s Oxygen Generation System (OGS), installed at the ISS in July 2006, makes use
of a cathode-fed PEM and a rotary phase separator and absorber modules to produce dry oxygen. Unlike
anode-fed PEMs, cathode feeding avoids the humidification of Oy due to proton-induced electro-osmosis
[20%]. Technical problems associated with the management of two-phase flows in the OGS in microgravity
have also been reported [109, ]. JAXA has recently developed a cathode-fed PEM cell for O generation.
The system relies on the removal of the electrode gas cover by means of forced convection. The separation of
gas hydrogen and liquid water is performed by means of a membrane-type phase separator [ 19, , ].
Subsequent versions of the cathode-fed cell rely on an internal water/gas separation function that makes
water circulation and phase separator unnecessary, creating a simple, energy-efficient, and lightweight system.
However, difficulties were found to reach a stable phase separation process [227-220]. As a way to remove
the water purification and phase separation stages, substantial efforts have been devoted to the development
of Static Water Feed (SWF) electrolytic cells, which avoid the phase separation stage by means of a second
PEM. Technological demonstrators by Life Systems were tested on the STS-69 Endeavor (1995) and the
STS-84 Atlantis (1997) for NASA [230-237], being followed by relatively modern systems [205, ]. In
spite of its inherent advantages, this approach requires larger cells to deliver a specific gas output due to
the presence of a second membrane, that increases the water gradient, and the adoption of a cathode-fed
configuration for the second membrane [205, 220].

This review unveils the numerous challenges associated with the low-gravity gas/liquid separation
process in electrolytic cells and shows important limitations in current and foreseen technologies. As a

complement or substitution of previous methods, the magnetic polarization forces discussed throughout this
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dissertation may be employed not only to induce phase separation in an independent module, as done in
Chapter | |, but also to promote the detachment of bubbles from the electrodes, as illustrated in Fig.
This would reduce the bubble departure diameter, induce convective bubbly flows, enlarge the effective
electrode surface, and minimize mass transport limitations and associated cell efficiency losses. Some of
these effects have already been observed in terrestrial boiling experiments with ferrofluids, where a significant
influence of the magnetic field on the surface bubble coverage and heat transfer coefficient is reported
[145, ]. In other words, this approach would lead to simple and lightweight cells with no moving parts.
The same benefits would be obtained for low-gravity boiling devices, with the boiling surfaces being equivalent
to the electrodes. However, the use of magnetic buoyancy in low-gravity electrolysis and boiling remains
essentially unexplored.

The applications of magnetic buoyancy in low-gravity electrolysis is introduced in Chapter |, where
both experimental and numerical studies are presented. In particular, the design of a long-term magnetically
enhanced electrolysis experiment onboard Blue Origin’s New Shepard is discussed together with short-term

acidic cell tests at ZARM’s drop tower.

1.5 Main contributions

The goals of this dissertation can be summarized as follows:

(1) Provide modeling capabilities and assess the feasibility of secondary-electron-based touchless poten-
tial sensing methods:
(a) Study the flux of secondaries in complex active spacecraft charging scenarios (Chapter 2).

(b) Develop and validate onboard algorithms to model the dynamics of electron beams in GEO+

orbits (Chapter ).

(¢) Model and exploit the photoelectric effect in active sensing scenarios (Chapter »).

(2) Address low-gravity magnetohydrodynamics (LG-MHD) as a separate field with distinctive charac-

teristics:
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(a) Develop the analytical (Chapters  to #) and numerical (Chapter |0) fundamentals of the field.
(b) Validate fundamental results by means of microgravity experiments (Chapter ).
(3) Apply the LG-MHD theory to develop novel space technologies:
(a) Demonstrate the use of magnetic polarization forces in phase separation (Chapter |1).
(b) Assess the feasibility of magnetic positive positioning systems (Chapters 12 & 13).

(c) Assess the feasibility of magnetically enhanced electrolysis technologies (Chapter |1).



Part 1

Electron-based touchless potential

sensing
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Chapter 2

Preliminary considerations

The study of the electron-based touchless potential sensing technology introduced in Sec. is based
on a series of fundamental physical processes and experimental procedures. The former can be modeled by
means of a simplified subset of Maxwell equations and a series of technical approximations to the surface
processes of interest. The complexity of the problem motivates its study in experimental facilities like the

ECLIPS vacuum chamber employed in this dissertation. This chapter provides a basic background on these

aspects.
2.1 Electrostatic framework
2.1.1 Maxwell equations

In the problems under study in Part |, quasi-static magnetic fields are considered in the absence of

electrically polarizable media. These conditions lead to the simplified Gauss and Faraday equations

v.-E="2, (2.1a)
€0
V x E =0, (2.1b)

where E is the electric field, p, is the free charge density, and ¢y is the permittivity of vacuum. As a

consequence of Eq. , the electric field derives from the electrostatic potential V' through
E=VV. (2.2)
In addition, it is interesting to note that the integral form of Eq. leads to E being normal to the interface

between a conductor (for which E = 0) and free space [7].
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The free charge density p,, is zero in a neutral plasma, but the presence of a charged spacecraft disrupts
this equilibrium state and generates a charge distribution around the body. Still, for the low-density (0.1-1
particles per cm~3) GEO environment, the effect of p, is usually negligible at distances of tens of meters and

pv =~ 0 can be safely assumed (see Sec. ). Under this condition, Eq. reduces to Laplace’s equation
V2V =0, (2.3)

which features significant computational advantages when solved in combination with Dirichlet or Neumann

boundary conditions for V.

2.1.2 Particle dynamics

The relativistic change in momentum of a charged particle is given by the balance

d(ymv)
—— = =F 2.4
), (2.4
with F' denoting the Lorentz force
F=q(vx B+E) (2.5)

and where v, ¢, and m are the particle velocity, charge, and mass, respectively, v = (1 — 52)*1/ 2 is the
Lorentz factor, 8 = v/e, c is the speed of light, E is the electric field, B is the magnetic flux density, ¢ is the
time, and an inertial time derivative is considered. It should be noted that, in accordance with the special
theory of relativity, the inertia of a particle with respect to a reference frame depends on its speed with
respect to such frame. Consequently, the term «ym defines the apparent mass of the particle. The position

x in the inertial reference frame can be computed by integrating

dx
_— = . 2~
il (2.6)

2.1.3 Space environment

In the presence of charged spacecraft, the surrounding plasma tends to relocate under the influence
of the perturbed electrostatic field following a process known as Debye screening [237]. For a sphere with

radius Rsc and low surface potential Veo (K kpTe/qc), the electrostatic potential field is damped under
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the Debye Hiickel approximation [23%]

where

eokpTe
ADp = 2.8
D=\ T2 (2.8)

is a characteristic distance known as Debyle length, r is the radial coordinate, kg is Boltzmann’s constant,
T, is the electron temperature, n. is the electron density, and ¢, is the elementary charge. The radial electric

field is computed with Eq. from Eq. 2.7, becoming

VscRsc _r=Esc r
The nominal value of Ap in GEO is ~ 200 m [23%], implying that the damping factors in Egs. and

have a second order effect on the electron detection process for distances of the order of tens of meters. In
other words, the unperturbed electrostatic potential obtained by solving Eq. offers a good approximation
of the actual electrostatic environment while minimizing computational costs.

Even though overall space charge effects can be neglected in a first-order approximation, localized
charge accumulation may also influence the sensing process. For instance, a number of works have reported
the existence of electrostatic barriers that prevent the detection of low-energy particles and the release of
photoelectrons from a spacecraft surfaces [239—212]. These barriers appear when “the photoelectron density
at the surface of the spacecraft greatly exceeds the ambient plasma density, the spacecraft is significantly larger
than the local Debye length of the photoelectrons, and the thermal electron energy is much larger than the
characteristic energy of the escaping photoelectrons” [2-11]. The effect is important near the Sun but becomes
far less concerning for distances beyond 0.3 AU [2/11, ]. In the problem addressed by this work, the target
spacecraft can charge negatively up to several kV under the influence of a well-localized electron beam. The
beam landing spot generates low-energy secondary electrons that can produce their own electrostatic barrier
[213]. Using a spot radius of 10 c¢m, unit yield, and average secondary energy of 2 eV, the number densities

3

of secondaries near the surface range between 200 and 2 - 10° ecm ™3, resulting in secondary Debye lengths

between 70 and 2 cm. These rough computations indicate that well-focused high-current beams may lead
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to localized electrostatic barriers. Poisson solvers and particle-in-cell simulations are needed to explore this
issue in further detail. From a practical perspective, a mild electrostatic barrier may reduce the number of
secondaries escaping the surface, but should not significantly influence their trajectory. The models employed
in Part | should then offer a good approximation to the problem in most cases of technical interest.

Regarding electron-plasma interactions, it should be noted that the GEO plasma is low density (0.1-1
ecm~3) and high-energy (up to many keV), excluding quiet days without significant solar activity where
higher densities (~100 cm™3) and lower energies (few tens of eV) are observed [/7]. As a consequence, the
mean free path is of the order of 100 AU, and the GEO environment can be considered collisionless. The
same occurs in high-vacuum (10~7 Torr), where the mean free path is about 1 km. On the other hand, the
detectability of incoming flux of secondaries is not compromised by the environment because it is several
orders of magnitude larger than the background plasma both in active and passive potential sensing scenarios
[]-

Changes in temperature can also influence the work function of the surface material [211] and its
secondary electron yield [217, ]. Given that the operational temperature of space antennas and solar
panels ranges between -100°C and 100°C [217], the thermal environment may significantly alter the secondary
electron flux magnitude during the potential sensing process. However, this does not affect the spatial
distribution of secondary electrons or the detectability of the target. The electron beam is, by itself, another
heat source. In the laboratory setups presented in Chapter 3 and /, a ~0.01 W electron beam directed toward
an aluminum target with an emissivity of ~0.1 and a surface area of ~ 500 cm? results in a temperature
variation of less of 1 K under the black body assumption. Thus, the electron-beam-induced temperature

increase can be neglected in this work and, most likely, in the vast majority of technical applications.

2.2 Surface processes

Several fundamental surface processes are at the core of the touchless potential sensing technologies
introduced in Sec. |.2. Those include secondary electron, photoelectric, and backscattered electron emissions.
X-ray generation is thoroughly covered in Ref. and is left out of this discussion, which focuses on the

basic technical aspects of electron generation phenomena.
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2.2.1 Secondary Electron Emission

When a sufficiently energetic primary electron impacts a surface, part of its energy is shared with
neighboring particles, leading to the release of secondary electrons (also named secondaries) [75]. This
process is dependent on the secondary electron yield, primary electron impact, angular distribution, and
energy distribution through complex physical mechanisms that are subsequently approaches with simplified,

technical models.

2.2.1.1 Secondary electron yield

The probability of emission of secondaries per incoming primary electron is given by the secondary
electron yield §. This value depends on the incidence energy F of the impinging particle in a relation that

can be approximated by the Sanders and Inouye yield model [2/]
5(E,0) =c|e Fla B/t (2.10)

where @ = 4.3Fax, b = 0.367FEyax, and ¢ = 1.370ax. The parameters dpnax and Eiax define the maximum
yield point, characterize the surface, and depend strongly on the surface structure and conditions [0

], which may be particularly unpredictable after a prolonged exposition to the GEO environment [257].
It should be noted that §(F,0) may be greater than 1 between the crossover points E; and FEy, with
Ey < Epax < E2. Consequently, an incoming particle may generate more than one secondary electron [77].

Alternative models have been proposed and an excellent review of them can be found in Sec. 2.2 of Ref.

2.2.1.2 Effect of incident primary electron angle

The emission of secondaries is also dependent on the incidence angle of the impinging electrons.

Darlington and Cosslett propose the relation [257]
O(E,§) = 6(B, 0)el(F)1cose), (2.11)

and

7

with ¢ being the primary incidence angle, 6(E,0) the secondary electron yield obtained from Eq.

Bs(E) = €, (2.12a)
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¢ = 0.2755(¢ — 1.658) — {[0.2755(5 ~1.658)] + 0.0228} , (2.12b)

g =In (E/Emax)a (212C)

empirical factors proposed by Laframboise and Kamitsuma [57, ].

2.2.1.3 Angular distribution

The angular release of secondary electrons follows approximately Lambert’s cosine law and is nearly
independent of the angle of incidence of the impinging particle [250]. At the particle level, the polar angle

can be computed from a uniform 0-1 random variable x through [257]
1
0= iacos(l — 2z), (2.13)

while the azimuth angle follows a uniform distribution between 0° and 360°.

2.2.14 Energy distribution

The energy E; of a secondary electron with respect to the vacuum level is of the order of a few eV
and follows a characteristic distribution with a peak at one third of the work function ¢ of the material. The

Chung-Everhart normalized probability density function (PDF)

6% E,

f(B:) = (Es + ¢)*

(2.14)

is commonly employed to approximate this distribution [254].

2.2.2 Photoelectron emission

Photoelectrons can be regarded as a particular case of secondary electrons for which the impinging
particle is a photon. The physics behind photoelectron emission are thus very similar, but some important

differences must be accounted for.
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2.2.2.1 Photoelectric yield

The probability of emission of a photoelectron per collision is determined by the photoelectric yield

Y(w,¢,R) =Y (w,d)(1 — R), (2.15)

where Y*(w, ¢) is the yield per absorbed photon, w is the photon energy, ¢ is in this case the photon incidence
angle, and R(w, ¢,0) is the surface reflectance, which depends on the photon energy, incidence angle, and
root mean square surface roughness o. Opaque surfaces are implicitly assumed. The incidence angle effect

on the yield is of the form [259]

Y*(w,0)
Y* ~ 7 2.16
(w.6) o, (216)
but since 1 — R(w, ¢, o) also has the approximate dependence [200), ]
1—R(w,¢,0) = [l — R(w,0,0)] cos ¢, (2.17)
both cos ¢ terms cancel in Eq. . Therefore, Y (w, R) is not, in first-order approximation, a function of

the photon incidence angle [77].

2.2.2.2 Total reflectance

The total reflectance is distinctively associated with the simulation of photoelectron emission. It can

be expressed as the sum of specular (Ry) and diffuse (R,) reflectances

R(w,0,0) = Rs(w,0,0) + Rq(w,0,0), (2.18)
which are defined as [207]
—(4 2
Ry(w,0,0) = Ro(w) exp [(Aﬂ;‘)] , (2.19a)
(4mo)?

R4(w,0,0) = Ry(w)

L (2.19D)

with Ro(w) being the normal reflectance of a perfectly smooth surface of the impacted material, A = he/w the
photon wavelength, h Planck’s constant, and ¢ the speed of light. The ratio of diffuse to specular reflectances

is given by

(2.20)



31

implying that for small wavelength and large surface roughness the diffuse term is the major contributor
to the total reflectance. Reflected photons experience negligible energy variations [201] and can generate

photoelectrons at different surfaces.

2.2.2.3 Angular distribution

Since photoelectrons are a particular case of secondary electrons, their angular emission distribution

follows approximately Lambert’s cosine law, which can be implemented following Eq.

2.2.2.4 Energy distribution

Photoelectrons are usually considered very low-energy particles in spacecraft charging studies. Their
maximum emission energy is given by

E,=w—o. (2.21)

It is important to note that the Ly-« line (121.6 nm, 10.2 €V) is dominant in the solar spectrum, and hence
photoelectrons will be generated with a maximum energy of about 5 to 6 eV after subtracting the work
function of the material. Therefore, a small positive spacecraft potential will act as a potential dwell and

prevent their release [203].

2.2.3 Backscattered electron emission

Backscattered electrons are primary electrons reflected off the target surface [77]. They have approxi-
mately the same energy as the impinging particle and are hence easy to distinguish from secondary electrons
in the overall energy spectrum. Although they do not play a central role in the touchless measurement
of target spacecraft potentials, they can influence the magnitude and source regions of secondary electron

fluxes.

2.2.3.1 Backscattered electron yield

Following the same approach as with secondary electrons, it is possible to define the backscattered

electron yield 7 as the probability of reflection of an incoming electron. For sufficiently high impact energies,
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7 depends on the atomic number Z and the impact angle ¢, and is virtually independent of the primary

electron energy E. In this regime, Everhart proposes the model [2(]

a—140.5%

Z,0) =
n(Z,0) p—

, (2.22)

with a(Z) = 0.045Z being an experimentally fitted parameter. The minimum electron energy (in eV) that

makes this approach valid is shown to be

Euin > 13.72%3 tan (/2) (2.23)

with 180° — 6 being the deflection angle of the electron in the material. To establish this value, Everhart
suggests using 6 = 45°.
2.2.3.2 Angular distribution

Darlington and Cosslett’s model can also be employed to compute the influence of the incidence angle

of the primary electrons on the generation of backscattered electrons, resulting in [25/]

n(Z,¢) = n(Z,0)eP-cose), (2.24)
with n(Z,0) being the backscattered electron yield obtained from Eq. , and where
By, = 7.37270-56875 (2.25)

is an empirical factor proposed by Laframboise and Kamitsuma [57].

2.3 The ECLIPS space environments simulation facility

The Electrostatic Charging Laboratory for Interactions between Plasma and Spacecraft (ECLIPS)
research vacuum chamber allows conducting experiments relevant to charged astrodynamics in a space-like
environment. The facility includes a range of sources to provide electron, ion, and photon fluxes, probes to
characterize electron fluxes, x-rays, and potentials, and a variety of ancillary components to ensure the safe
operation of the system, such as 3-axis motion stages, a magnetic environment control system, or a residual

gas analyzer, among others. ECLIPS can be considered part of the reduced group of facilities intended to
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study spacecraft charging, which include the JUMBO chamber at the Air Force Research Laboratory [207],
the Sirene facility [200], or the test chambers at Utah State University [207] or Pennsylvania State University
[265], among others.

The ECLIPS facility is extensively used in subsequent chapters and briefly described in this section,
which is limited to the components of relevance for Part | for simplicity. Further details can be found in

Ref.

2.3.1 Overview

The bell-jar style vacuum chamber pictured in Fig. , with 75 cm in diameter and 1 meter in

height, was donated to the AVS Laboratory by the Air Force Research Laboratory (AFRL) in 2016. It is

(a) Original chamber, as received from AFRL (b) Current chamber configuration

Figure 2.1: The ECLIPS Space Environments Simulation Facility.
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made of stainless steel and has an o-ring interface between the bell and the base, which includes a grid of
1/4—20 holes to fix internal components. The chamber operates in the 10~7-10~% Torr range, and is connected
to a two-stage pumping system composed of an Agilent IDP-15 scroll pump and an Agilent Turbo-V 1001
Navigator turbomolecular pump. Important improvements have been made since its donation, including the
addition of a range of KF and CF flanges of varying diameters, which are used to accommodate the required
viewports, sources, probes, and feedthroughs. The viewports facilitate visual observation of electrostatic
actuation, motion control, and related processes. A current view of the ECLIPS chamber is shown in
Fig.

Sudden power failures could prove catastrophic for the turbomolecular pump, as well as electron and
ion guns. To protect the equipment against this eventuality, the facility is connected to two CyberPower
1500PFCLCD uninterruptible power supplies, which provide up to 20 minutes of battery-based runtime
in the event of a power failure. This period is more than adequate to allow the building’s backup power
generators to come online and continue to provide support power to critical systems. All mechanical parts
and electronic components are connected to a common ground and checked before the execution of a chamber
experiment. The common ground is established by a copper grounding bar connected to the building ground.

The top of the bell jar is raised and lowered by two column lift mechanisms that provide access to the
chamber. These FLT-12 units from Progressive Automations can provide up to 30 cm of vertical actuation
with 11500 N of lifting capacity, and are driven by a remote controller that can be programmed to specific
heights. Slotted flanges welded to the exterior of the chamber enable interaction with the column lift, and
also ensure that the full weight of the chamber lid rests on the o-ring interface with the base for optimal
sealing. Furthermore, the two lifts are electronically controlled to ensure that the chamber lid is always lifted
level, and the fully-constrained nature of the system ensures that the chamber lid is repeatably positioned
between runs. For safety reasons, the system is automatically disabled while the pumps are operated.

Additional sources, probes, and ancillary components of relevance to this dissertation are subsequently

addressed.
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2.3.2 Sources

A series of sources for electrons, ions, photons, and magnetic fields have been integrated into the
chamber, enabling an accurate reproduction of the space environment. In most experiments, the electron
beam is used to generate secondary electrons, study charged beam dynamics and generate x-rays for material
characterization and potential sensing, while the vacuum ultra-violet (VUV) lamp is used to stimulate

photoelectric emission for charging and potential sensing applications.

2.3.2.1 Electron Gun

The primary electron gun of the facility is a Kimball Physics EMG-4212D, which is capable of accel-
erating electrons up to 30 keV with currents from 10 nA up to 1001A. The beam location and focus can
be adjusted through integrated optics, leading to spot sizes from 500 pm up to 25 mm at a typical working
distance of 150 mm. It implements pulsing capabilities of up to 5 kHz, which finds application in some active
spacecraft charging scenarios. In addition, the current level can be kept stable in time using a dedicated
operation mode. The quasi-collimated beam is characterized by a Gaussian distribution, and is mounted
onto the side of the ECLIPS chamber as shown in Fig.

A 38 mm diameter Kimball Physics Rugged Phosphor Screen (later shown in Fig. 2.5) is used to

Figure 2.2: Electron gun mounted onto the side of the ECLIPS chamber.
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center the electron beam and set its configuration. Once the desired set of parameters is fixed, the result is

stored in the internal memory of the electron gun, allowing for repeatable experiments.

2.3.2.2 Vacuum Ultraviolet Lamp

A Hamamatsu L10706-S2D2 VUV light source, composed of a deuterium bulb with a MgFs window,
is used to excite photoelectron emission from targets of interest. This source is flange mounted, and relies on
an external air supply to provide cooling. The deuterium bulb and MgF,; window result in a peak emission
wavelength of 160 nm, with a total emission range of 115 to 400 nm. The lamp requires a constant supply of

cooling air, provided by a building-wide compressed air supply. The air flow is also activated during bakeout.

2.3.2.3 Magnetic environment control system

The ECLIPS chamber has a dedicated set of coils designed to generate a specific magnetic environment.
Even though they were not used in this dissertation, the design was led by the author and is subsequently
described. Several experiments may benefit from magnetic control, like those requiring the cancellation
of Earth’s magnetic field, the imposition of LEO/GEO-like environments, or the study of specific plasma
regimes, particularly when low-energy secondary electrons are considered. Similar setups can be found at
larger scales worldwide, such as IABG’s Magnetic Field Simulation Facility in Germany [209] or NASA’s
Spacecraft Magnetic Test Facility in Maryland [270].

The system is designed to generate a uniform, 3-axis controllable magnetic field in a 5 cm radius
cylindrical region inside the vacuum chamber. Three pairs of coils arranged in a quasi-Helmholtz configura-
tion are considered, with the vertical ones being located inside the chamber and the horizontal ones in the
outside. The specifications of the final design are given in Table , with R being the coil radius, L the

distance between coils, I, the maximum current intensity, Bpax the maximum magnetic flux density, N

Table 2.1: Magnetic control system configuration.

Coils L Ima;c Bmax N Bstep Re* Teq
mm| [mm] [A]  [wT] [#] [©T] [em] |

Int. 298 298 ) 600 40 121 56 59

Ext. 298 760 5 60 12 10 562 48
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the number of wire turns, Bep the resolution achieved by the controller, R.- the electron gyro-radius, and
T.q the equilibrium temperature with maximum current intensity, computed with a lumped heat transfer
model. A 5 A constant current JUNTEK DPM-8605 power source is employed. The horizontal assem-
blies are designed to cancel Earth’s magnetic field (~51.6 T in 2022 in Boulder, Colorado, according to
the WMM-2020 model), while the vertical coils produce a stronger magnetic environment. This choice is
motivated by the highly demanding geometrical constraints of the chamber.

The internal coils, which follow the specifications in Table , are pictured in Fig. . Each coil
is attached to an aluminum platform that imposes a circular profile and acts as a heat sink. The vertical
distance between the coils is controlled by means of four 80/20 frames that serve as supports, and the
assembly is connected to the power source by means of a dedicated feedthrough.

Besides the Earth’s influence, the coils should also compensate the magnetic disturbances produced
by the instruments and hardware of the facility. A simplified 3D Finite-Elements Model (FEM) testbed is
available in Comsol Multiphysics to simulate the magnetic environment of specific experiments. The chamber
is made of stainless steel, and is assumed to have a relative permeability of 1.002. A case of application of

the magnetic testbed is shown in Fig. .. The purpose of this specific simulation is to quantify the magnetic

Figure 2.3: Installation of vertical coils inside the vacuum chamber.
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Figure 2.4: Analysis of the magnetic disturbances induced by an IMG-300 UHV IMG in the radial cross-
section passing through the center of the IMG.

disturbance induced by the Agilent IMG-300 UHV Inverted Magnetron Gauge (IMG) while the internal coils
operate at 5 A. The figure shows the magnetic flux density and the vertical deviation angle a of the magnetic
field in a radial cross-section passing through the center of the IMG. The inhomogeneous field distribution
reflects the strong influence of the IMG, that may disturb sensitive experiments in one side of the testing

volume.

2.3.3 Probes

Most scientific and technical results are obtained with just three probes: an RPA, a set of multimeters,

and an x-ray spectrometer. Only the first and second are used in this dissertation.

2.3.3.1 Retarding Potential Analyzer (RPA)

The custom-made RPA is essentially a gridded Faraday cup with a 1.2 cm diameter circular aperture.
The device, depicted in Fig. next to the small phosphor screen, consists of a front grounded grid and
a second discriminating grid to which high-voltages can be applied. The discriminating grid creates an

approximately equipotential plane and the front grid contains the electric fields within the instrument. When
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7\

Phosphor screen

Figure 2.5: Phosphor screen and RPA. The size and shape of the electron beam are observed in blue for a
particular gun configuration and electromagnetic environment.

no voltage is applied to the discriminating grid, an electron with any energy can pass through the instrument
and into the detector. As a negative voltage is applied, electrons with lower energies cannot overcome the
potential barrier and are hence repelled from the system. Thus, the electron energy distribution is obtained
by sweeping through voltages applied to the grid. The collector itself is a hollow cylinder (closed at the back)
which helps to prevent secondary or backscattered electrons generated on the collector from escaping back
out the front of the instrument. The current is recorded using a Keithley 2401 SourceMeter picoammeter
and one of the high-voltage power supplies is used to set the potential of the discriminating grid. Several
noise floor measurements have been taken in which the electron energy analyzer is installed in the chamber,
but none of the sources are turned on, so there is no source of electrons. The measured noise current of the
electron energy analyzer and picoammeter system has a mean of 12.4 pA and a standard deviation of 33.9

pPA.

2.3.3.2 Multimeters

The accurate monitoring of potentials is fundamental for the direct observation of the object under
study or as a secondary measurement from a primary instrument (e.g. the RPA). The ECLIPS facility
includes a Keithley DMM6500, that can measure potentials up to 1000 V, and a Keithley 2401 SourceMeter
picoammeter. Both are computer controlled, enabling rapid measurements and development of automation

routines that can feedback on detected currents or potentials.
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The 1000 V range limitation of the Keithley DMMG6500 is partially overcome by means of the internal
voltmeters included with the power sources, which are in fact designed to operate at high voltages. In
floating potential experiments, where a external element cannot be attached, the object of interest is grounded
through a large 100 G2 resistor which reduces the drain current to 0.3 pA at 30 kV. This value is significantly
smaller than the 10 pA-level electron beam current employed in most experiments, and has a reduced impact
in the operation of the system. The potential is then indirectly measured by means of the Keithley 2401

SourceMeter picoammeter, exhibiting errors of ~100 V for voltages below 20 kV.

2.3.4 Ancillary equipment

In addition to the pumps, batteries, and mechanisms described in Sec. , several other ancillary
components ensure the nominal operation of the chamber and related instruments. However, they are not

specific to any particular experimental configuration.

2.3.4.1 Pressure gauges

The pressure of the chamber is continuously monitored with an Agilent ConvecTorr gauge from at-
mosphere up to 10~* Torr, and with an Agilent IMG-100 IMG below 10~3 Torr. Both gauges are connected
to an Agilent XGS-600 gauge controller, and in tandem provide accurate measurements of chamber pressure
for the full range of operation. These measurements are employed in the Chamber Control Interface (see

Sec. ) to monitor the state of the facility and ensure a safe operation.

2.3.4.2 Residual Gas Analyzer

An SRS RGA-200 Stanford Research Systems residual gas analyzer with a 200 amu range is used to
monitor the molecular environment in the chamber. The device is represented in Fig. . It provides useful
diagnostic information in cases of high outgassing, such as during extended stepper motor operation, or for

evaluating the performance of the bakeout system.
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Figure 2.6: Residual Gas Analyzer mounted onto the side of the ECLIPS chamber.

2.3.4.3 Bakeout system

A VB-1 Vacuum Bakeout Package with one IRB-600 infrared emitter is employed to accelerate the
pump down process and clean the internal surfaces of the chamber. A type J thermocouple located at ~15 cm
from the source provides temperature feedback to the controller, which imposes a pre-defined temperature
during bakeout. The heat emitter, shown in Fig. 2.7, is located in one of the CF flanges of the lateral wall,

and irradiates the different components with a surface power density that decays with the square of the

Figure 2.7: Bakeout infrared emitter in operation during a touchless potential sensing experiment.
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distance to the source.

The bakeout temperature determines the outgassing speed of different species following an exponential
law. Higher temperatures are more effective in removing contaminants from the surface; however, the
maximum value is limited by the survivability of the different instruments inside the chamber. Although
most of them are not directly illuminated by the infrared emitter and only receive heat through the walls of
the chamber, others (e.g. the x-ray sensor) are positioned close to the source. As a safety measure, a 70°C

limit is imposed.

2.3.4.4 Magnetometer

Magnetic fields are measured in the range of £200 pT and DC to 1 kHz with a vacuum-rated Stefan-
Mayer 3-axis FLC3-70 fluxgate magnetometer. The instrument is formatted as a compact cylinder 3 cm
length and 1 cm diameter, so it can be operated within the chamber and located at any point of interest.
In addition, a manual Latnex MF-30K AC/DC magnetometer is employed to characterize magnetic fields

between 0 and 3 T.

2.3.4.5 Motion stages

Many experiments conducted in the ECLIPS facility have geometrical dependencies, whether a desire
to sample electron populations at different points relative to a target or examine the structure of a spacecraft
wake under different charging conditions. This led to the development of the 3-axis translation system
shown in Fig. , with axes moving according to cylindrical coordinates. The assembly is composed of a
Newmark Systems RM-3 rotational stage mounted on the base and two custom-built linear stages. The latter
employ the same vacuum-safe stepper motors as the Newmark Systems RM-3 stage and are mounted on the
rotational stage, allowing for any arbitrary movement to be conducted in the chamber. The cylindrical design
was chosen to maximize the use of space within the chamber, allowing translations right up to the chamber
walls in each direction. The position of each stage is measured by linear and rotary high-vacuum Renishaw

Tonic encoders! with 5 pm resolution. The encoders are connected to the Chamber Control Interface (see

! .Consulted on: 06/07/2022.


https://www.renishaw.com/en/tonic-encoder-series--37824
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Figure 2.8: Rotational stage with first translational stage mounted atop it.

Sec. ) and feed a closed-loop position controller. This assembly is dismounted when needed to test
different configurations.

The steppers quickly warm up during operation in vacuum, outgassing primarily water with some
contribution from carbon dioxide. For this reason, the vacuum gauge controller keeps track of the pressure
and disconnects the steppers when a predetermined threshold is reached. This is important to ensure a safe

operation of delicate components, such as electron or ion sources, rated for use only below 10~% Torr.

2.3.4.6 Power systems

A major focus of chamber research is the touchless characterization of spacecraft charging. This
requires the ability to simultaneously control the potential of a range of systems, from the RPA grids to a
series of target objects. Therefore, several power supplies are integrated into the chamber facility, as seen in
Fig. 2.9. Two Matsusada AU-30R1 High-Voltage Power Supplies (HVPS) provide high quality potentials up
to 30 kV. These units are controlled via fiber optic connections to the primary computer, reducing the risk of
electrical interference. In addition, several other HVPS are available for experiments, including two Spellman
CZE2000 units with a maximum voltage and current of 30 kV and 0.3 mA, respectively, and two Spellman
SL300 power supplies with a maximum voltage of 3 kV and a maximum current of 10 mA. Additionally, a

Keysight E3631A low-voltage power supply is used to power the stepper motors at 12 V.
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Figure 2.9: Power supplies and control infrastructure for the chamber. The server rack at top right contains
the HVPS and controllers for the electron and ion guns.

2.3.4.7 Chamber Control Interface

All chamber systems are controlled from a workstation computer with a series of LabView Virtual
Instruments (VIs). A Chamber Control Interface keeps track of the pressure and temperature levels and
monitors the pump down and venting processes, implementing partially automated checklists that are fol-
lowed by the operator. The interface can also issue email and phone alerts when dangerous events are
detected (e.g. unexpected overpressure, excessive temperature during bakeout, or abnormal instrument per-
formance). VNC and SCP servers are available to remotely access the workstation and fix critical issues. A
series of cameras that monitor the interior of the chamber and its surroundings can also be accessed from
the workstation. One of the goals of the system is to enable safe overnight experiments.

In addition to the Chamber Control Interface, several dedicated sub-VIs are available to perform
specific tasks. Those include a motion stage controller employed to manually position the experiment and
process encoder readings, an interface for the RGA, or a full control and metering suite for the electron
gun, among others. Although the user develops specific VIs for specific experiments, an extensive library of

sub-VlIs is available to configure and operate all the instruments in the chamber
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2.3.5 Other components

The ECLIPS chamber also incorporates a 1402 Ion Gun from Non Sequitur Technologies, a broad
spectrum electron gun designed by Dr. Miles Bengtson and Dr. Kieran Wilson, and an Amptek X123 x-ray
spectrometer that were not used in this dissertation or listed above. However, they are thoroughly described

in Ref.

2.4 Collaborators

The development of the ECLIPS facility is an ongoing multi-year process that counted with the partic-
ipation of several individuals. Those include graduated Ph.D. students (Dr. Kieran Wilson, Dr. Miles Bengt-
son, Dr. Jordan Maxwell, Dr. Joe Hughes), current Ph.D. students (Julian Hammerl, Kaylee Champion,
James Walker, Andrea Lépez), CU Boulder technicians (Matt Rhode, Nathan Coyle), and undergraduate

researchers (Dalton Turpen, Ryan Block, and Charlie Lipscomb).



Chapter 3

Complex shapes and differential charging

Previous works have validated the basic operation of the electron-based touchless potential sensing
method employing flat plates in a vacuum chamber environment [26, 13, 11]. However, the technological
maturation from such well-controlled laboratory experiments to the actual space implementation must be
addressed with dedicated technical studies. Those must necessarily deal with complex spacecraft geometries
and differential charging. The former determines the trajectories of secondary electrons generated at the
surface, and therefore, the detectability of the system [%]. Differential charging produces the same effect, but
it is much harder to characterize, model, and compensate for. This chapter explores the influence of both
factors and introduces a particle tracing framework that implements the physical mechanisms described in

Chapter.

3.1 Particle Tracing Model

The study of the effect of complex shapes and differential charging on the touchless electrostatic poten-
tial sensing problem requires advanced numerical simulation models that must be able to implement the basic
physical processes described in Sec. 2.2. In general, particle tracing simulators are particularly well suited
for this task. Although many different approaches could be adopted for this task, the model here introduced
is implemented in SIMION by means of user-defined functions programmed in Lua language. SIMION eases

geometrical calculations and implements a well-established toolset that speeds up the development process.
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3.1.1 Electrostatic framework

The trajectory of each charged particle is computed in SIMION from Newton’s second law in Eq.
SIMION, however, assumes v = 1 by default, applying relativistic corrections only when v > 1079, The
electric field is derived by solving Egs. and in the simulation domain. A regular Cartesian mesh
is employed with the boundary conditions being determined by the predefined potentials of each electrode
(Dirichlet) or by the zero-derivative of V' (Neumann). The potential of the electrodes, named potential
arrays in SIMION, can be adjusted individually by taking advantage of the additive property of the Laplace
equation. The overall potential is then computed as the superposition of each solution, enabling faster
simulations.

The geomagnetic field in GEO orbit is ~100 nT, resulting in gyroradii of 100-3000 m for electron
energies from 10 to 10* eV. Although weak, this effect can slightly deviate the secondary electrons and
should be considered in GEO simulations. In the case of application described in Sec. , however, the
geomagnetic field is almost perfectly aligned with the electron velocities (specifically, with the electron beam),
the gyroradius is several times larger than the characteristic length of the experiment, and the electric force
is one order of magnitude larger than the magnetic force. For these reasons, the magnetic contribution has
been neglected.

It is important to note that SIMION, by default, does not solve Poisson’s equation to account for
the space-charge effects represented by p, in Eq. . This implies that the electrostatic environment is
fully determined by the configuration of the potential arrays, that the electrostatic field is computed before
each simulation, and that the magneto-electrostatic interaction between particles is not considered. Electron
beams, however, can include approximate beam repulsion models. From a practical perspective, neglecting
space charge effects results in significant computational advantages that may be critical for the development
of future on-board algorithms. Further details on the implications of this assumption in spacecraft charging

scenarios can be found in Sec.
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3.1.2 Implementation of secondary electron emission

The secondary emission effect described in Sec. is not included by default in SIMION and should
be properly implemented to enable the study of active spacecraft charging. Since SIMION is a particle
tracing simulation framework, all surface processes are faced from the particle perspective rather than using
integral formulations. User-defined Lua functions are written to complement the standard toolset.

The computation of the number of secondaries released per impinging electron represents the first
process of interest. The secondary electron yield, calculated in this dissertation from the Sanders and
Inouye yield model in Sec. , 18 a macroscopic quantity. At the particle level, hwowever, it seems
natural to treat this event as a Poisson point process, and thus a Poisson distribution with parameter
A = §(E) is implemented using Knuth’s algorithm [271]. Unlike the existing SIMION examples! , where an
impacting primary electron is either terminated or steered to match a yield below 1, the model here presented
employs the new experimental SIMION 8.1/8.2 function simion.experimental.add particles() to create
an undefined number of particles from a collision event.

The energy of a secondary is computed in a dedicated Lua library by applying the inversion method
to the cumulative distribution function (CDF) of the PDF defined by the Chung-Everhart model in Eq. )

resulting in
¥ LI
(Bs+¢)®  2(E;+¢)?  6p°

9(Es) = 3 (3.1)

The desired E; is obtained by entering the CDF with a value of g sampled from a uniform distribution.
However, it is not possible to derive an analytical E(g) from Eq. , and thus Newton’s method is imple-
mented to compute E; for a given g. This process is implemented in Lua taking /3 as an initial estimate,
reaching the desired energy value within a few iterations with a tolerance of +0.01 eV.

The effect of the incidence angle (Sec. ) and the angular emission distribution (Sec. ) can

be directly implemented in SIMION, which facilitates a low-level control of each particle.

I The interested reader is referred to the readme.html file in the examples/secondary folder of SIMION 2020
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3.1.3 A note on backscattered electrons

Backscattered electrons may also be produced due to the impact of a primary electron, as described
in Sec. . However, the backscattered electron yield drops below 20% for the aluminum targets employed
in this chapter (see Fig. and Ref. 10), and has limited influence on the overall secondary electron flux
and follow-up interactions. In addition, they are easy to remove from the overall energy spectrum due to
their energetic nature. For the sake of simplicity, backscattered electrons are neglected in the analysis.
Applications dealing with high atomic number materials, for which much larger yields may be present
[261], should consider using the aforementioned SIMION function simion.experimental.add particles()
to model backscattered particles and follow-up interactions using normal incidence measurements at low
impact energies [10] or the Everhart model at high impact energies [2(1] together with the Darlington and

Cosslett angular distribution model and the empirical factors proposed by Laframboise and Kamitsuma

[55, 254, 255].

3.2 Materials and methods

3.2.1 Experimental setup

The experimental vacuum chamber setup pictured in Fig. is employed to study the observability of
secondary electrons in complex differentially-charged targets using the ECLIPS vacuum chamber described
in Sec. . Tt is composed of a 70x70x70 mm? spacecraft-like bus electrode and a 145x60 mm? panel
electrode assembly that is actuated by a stepper engine. Both electrodes together resemble the geometry
of a spacecraft and are charged independently up to -800 V by a Matsusada AU-30R1 and a Spellman
SL300 high voltage power supply. The assembly is irradiated by a Kimball Physics EMG-4212D electron
gun configured to produce an electron beam of 1307 eV and 10 pA. This beam energy value is chosen to
maximize the production of secondaries (see Sec. ). The resulting flux of secondary electrons is measured
by a Retarding Potential Analyzer (RPA) that forms an angle of ~16° with the electron beam and stays at
least 95 mm away from the tip of the panel electrode. The angular position of the electrode assembly is

monitored by means of an incremental rotary high-vacuum Renishaw Tonic encoder.
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The experiment is designed to measure the energy spectrum of electrons arriving at the RPA for a
given bus and panel electrode potentials and assembly rotation angle. A 3.8 cm diameter Kimball Physics
Rugged Phosphor Screen is employed to set the unperturbed electron beam configuration and provide a
reference point for the numerical simulation. The beam reaches both electrodes with a ~2.5 cm final beam
diameter. Secondary electrons are thus generated over both surfaces, enabling the study of differential
charging problems.

A key difference between the setup represented in Fig. and an actual spacecraft charging scenario
is the existence of a grounded vacuum chamber wall (essentially, a Faraday cage) around the experiment.
Its presence disturbs the electrostatic potential around the electrodes, and must be taken into account in
the definition of the numerical simulation framework. Furthermore, the small scale of the experiment makes

results particularly sensitive to geometrical and beam pointing errors.

Figure 3.1: Experimental setup.
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Figure 3.2: Estimated secondary emission properties of aluminum.

3.2.2 Material Properties

The electrodes are made of aluminum, which is characterized by the parameters En.x =~ 300 eV,
Omax ~ 0.97 [57], and ¢ ~ 4 eV [255]. As noted in Sec. , these estimations depend strongly on surface
conditions that are usually characterized in a laboratory environment [219-252] but are hard to estimate in
space, and should thus be taken as a rough estimate. This difficulty does not prevent the numerical framework
from being applied to active spacecraft charging scenarios, because it is in the angular dependence of the

result and not in their absolute value where most of the technical interest lies.

Figure represents the secondary electron yield as a function of the energy of a normal incident
primary electron (Sec. ), the angular yield ratio as a function of the angle and incidence of the
primary electron (Sec. ), and the PDF of secondary electron energies (Sec. ). These relations

are implemented in the Lua library of the SIMION model and motivate the selection of an electron beam of

~1300 eV to irradiate the target with landing energies close to the yield peak.

3.2.3 Measurement of secondary electron flux

The flux and spectrum of the secondaries generated over the electrodes is measured using the in-
house RPA described in Sec. . The RPA features an entrance grid at ground potential, and a second
discriminating grid controlled by a Matsusada AU-30R1 high-voltage power supply. A Keithley DMM6500

multimeter is connected to the grid to measure its voltage and correct the small bias induced by the source.
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After the grids, a Faraday cup connected to a Keithley 2401 SourceMeter picoammeter is employed to
measure the current flux at different energy levels. Electron currents of at least 10 pA with energies up to
1000 eV can be detected with this configuration. Based on previous measurements [19], the RPA efficiency is
roughly estimated to be 20%, although this value should be expected to vary with the direction and intensity
of the incoming flux of electrons. For simplicity, a 0.2 correction factor is considered in all simulations.
The RPA is operated in two different modes. In the first, the cumulative secondary electron energy
spectrum is obtained by sweeping energy levels from -150 V below the minimum applied potential up to
150 V above the maximum with steps of 1 V and taking the average of 45 samples. The resulting curve
is then differentiated to obtain the energy spectrum, as done in Sec. . In the second mode, the total
current is measured at + 50 eV of the expected energy peak. Both values are subtracted to determine the
flux of electrons associated with that energy band. Although this approach provides less information on the
population of electrons, it is much faster than the former and eases angular dependence studies like those

presented in Sec. . Both methods are applied in an identical way in SIMION.

3.2.4 Configuration of SIMION model

The SIMION simulation framework introduced in Sec. is tailored, without any loss of generality,
for the assembly presented in Fig. 3. 1. A single geometry file (.gem) is used to implement the setup described
in Sec. , resulting in the 301x301x301 mesh (2 mm/grid unit) depicted in Fig. 3.3. Each point of the
domain requires about 10 bytes of RAM, and up to 20 billion points can be simulated. The floor, walls,
main structural supports, and RPA casing are grounded, while the bus and panel electrodes are modeled
as fast arrays with adjustable potentials. From a numerical perspective, the walls of the chamber impose a
Dirichlet external boundary condition to the Laplace equation (see Sec. ).

Because SIMION employs a Cartesian mesh, curved geometries introduce jags that may distort the
local electric field and even prevent secondaries from escaping the surface. This problem is overcome by
rotating the system while leaving the electrodes aligned with the axes of the model? . Previous implemen-

tations by the main SIMION programmer, David Manura, integrate the trajectories of secondary electrons

2 As the old saying says, “If the mountain will not come to Mohammed, Mohammed will go to the mountain” (Francis
Bacon, Essays, 1625)
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Figure 3.3: SIMION model geometry.

to displace the source region a few units away from the surface. That approach is particularly effective for
generic geometries but is not employed in this chapter.

The determination of surface normal vectors is a critical step for several processes involved in the
generation of secondaries, from the imposition of a Lambertian angular distribution to the proper quantifi-
cation of the secondary electron yield. In this chapter, the different directions are determined analytically
after identifying the impact location of the primary electron. However, it is also possible to estimate the
surface normals by taking advantage of the fact that the electric field should be orthogonal to the surface.
The reasons why this may not always be the case are the inherent numerical errors associated with the
computation of VV, and the presence of jags in curved geometries. These issues may be partially corrected
if the gradient is computed a few units away from the surface, but the accuracy of the results is strongly
dependent on the geometry and electrostatic environment under study. Analytical solutions are consequently
implemented in this work.

Matlab is employed to configure and launch the SIMION simulation and also to analyze its outcomes.

The SIMION model exports a text file with the kinetic energy of the electrons that reach the interior of
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the RPA. The collision is detected using SIMION’s segment.terminate() function, from where the final
position of the electron is extracted. If the position is within the RPA detector volume, the energy of the
incoming electron is recorded for future analysis.

The new physical processes implemented in the model have been verified by comparing the numerical
outcomes with the analytical formulations in Sec. . In order to guarantee the stability of the solution,
the electrostatic field is set to converge with a relative error of 10™%, while the electron trajectories are
integrated using a fourth-order Runge-Kutta method with a maximum step size of one grid unit and a
trajectory quality factor of 3 (see Ref. O for further details on this parameter). The secondary electron
current flux resulting from this configuration varies less than 5% with respect to equivalent high-fidelity

simulations showing virtually no changes in the predicted energy spectrum.

3.3 Results and discussion

The experiment pictured in Fig. is tested at the ECLIPS Space Environments Simulation Facility
[0] to validate the numerical simulation framework introduced in Sec. . Numerical and experimental
results are presented in this section to understand the detection process and assess the validity of the SIMION

model, extracting relevant conclusions for future applications.

3.3.1 Overview of electron trajectories

Although charged particles and optical systems are usually considered analogous, the former, unlike
the latter, cannot be directly observed. Tracing particle simulation frameworks help overcome this issue with
trajectory visualization tools, offering key insights into the behavior of the system.

The trajectories of 100 randomly sampled electron beam particles are represented in Fig. for
electrode rotation angles between —40° and 80° with respect to the beam axis and a common electrode
potential of -800 V. As explained in Sec. , the rotation of the electrode assembly is applied to the rest
of the model, keeping the electrodes aligned with the geometrical axes to avoid jags in the surfaces where
secondaries are generated. Three clear regimes of operation can be observed: (i) the beam is deflected

before reaching the target (o = —40°, 0°), (ii) the beam reaches the target, but the resulting secondaries
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Figure 3.4: Electron beam trajectory for different electrode heading angles «.

do not reach the detector (o« = 40°), and (iii) the beam reaches the target and the resulting electrons do
reach the detector (o« = 80°). The same focusing effect that has been characterized in previous works []
is present in the corner between the panel and the bus, concentrating the trajectories of the secondaries
and restricting their detectability to narrow regions. It is interesting to note that some trajectories result
in more than one secondary electron, and some of them are also sources of second-generation particles. If
generated at grounded surfaces, those particles do not have a particular interest in the detection of the
electrode potentials because they arrive at the RPA with very small energies. However, in the differential
charging scenario, some of those second-generation particles may be created over the surface of the electrode
with the highest potential, therefore affecting the detection process. The generation of secondaries over

grounded surfaces is thus forbidden in the model in order to improve its computational efficiency.

3.3.2 Calibration

A small divergence in the geometrical or electrostatic parameters of the model with respect to the
experiment can result in qualitatively different results. This is due, among other factors, to the small
scale of the system under study. Even though the SIMION geometry carefully resembles the experimental
setup, the vacuum chamber environment does not facilitate taking measurements and some errors are almost
unavoidable. In particular, the steering and expansion of the electron beam determine the effective emission
area of secondary electrons. The beam configuration is thus centered by observing its footprint over the

phosphor screen with an electrode heading of —40°. The SIMION beam particles configuration file (.£1y?2)
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Figure 3.5: Centering and calibration of the electron beam.

is then tuned manually to achieve the matching exemplified in Fig.

3.3.3 Complex shapes

The first set of experiments focuses on the detectability of the spacecraft-like assembly when both
electrodes are charged to the same potential. This should be the standard case for modern spacecraft, whose
external surfaces are generally designed to remain grounded [!%, 50], even though this is hard to achieve
in practice. In order to reduce the uncertainty of the measurements, both electrodes are connected to the
Spellman SL300 high voltage power source, whose potential is set and verified manually before each run.
The electron gun is operated at 1307 eV, 10 uA, and centered as shown in Fig.

Figure shows the electron distribution measured by the RPA and predicted by the model for
rotation angles from —30° to 80° and electrode potentials from -600 V to -800 V. The secondary electron
signal is detected only at 70° and 80° for both the model and the experiments, and hence the —30° to 50°
data is removed from the plots, leaving the 60° case as a reference. In spite of the presence of numerous
sources of uncertainty, the model is able to predict the location and intensity of the peaks with remarkable
accuracy. The relative magnitude of the 70° measurements with respect to their 80° counterparts is captured
as well.

A constant bias of ~20 V is observed in the experiments with respect to the electrode potential.

Furthermore, the experimental peaks are almost symmetric, a feature that is not reproduced by SIMION



o7

< 3.5

S 60° 1-800 V S 357 1600 V 1700 V 60° 1-800 V
o — 700 | ° l l — 700 |
:2‘:/ 3 — 80! T 3 ! — 80°
c 2.5 ! - 2.5 !
K} I il |
5 21 ! 5 24
2 i 2
Z) 1.5 1 -.(Z,- 1.5
o 4 | c 1
<] | o
5 0.5 } 5 0.5
ko) w k)
w o 1 \ T T i w0 1 B E— S R - s
550 600 650 700 750 800 850 550 600 650 700 750 800 850
Ei(eV) E (eV)
(a) Experiment (b) SIMION model

Figure 3.6: Secondary electrons spectrum for a range of electrode potentials and rotation angles.

and that is not considered in the physical model described in Sec. . 1. Since the same multimeter is used to set
the electrode potential and measure the RPA grid voltage, an equipment-induced bias should be discarded
in the detection process. There are, however, two additional sources of error that may explain the peak
shift and its unexpected symmetry. The first is the presence of oxide or contamination over the electrodes.
Previous research has shown that this thin layer can induce spatially inhomogeneous surface potential losses
of the order of a few volts [250]. The second refers to the performance of the RPA itself, whose internal
configuration may result in an apparent plasma heating and wider energy distributions. Although interesting
from a purely scientific viewpoint, these errors do not represent a concern for the applications here considered.
In particular, a robust RPA calibration process will likely solve most of these problems, limiting the detection
error to tens of volts.

It should finally be noted that the experiments reflect a higher total electron current, computed as
the area under the distribution curve, than SIMION. Disagreements in the electron flux magnitude can
be attributed to a myriad of factors that have not been thoroughly characterized in this work, from the
secondary electron yield to the detector efficiency. The observed disagreement is a direct consequence of
such sources of uncertainty, but still, the model is able to provide the correct order of magnitude estimate.
From a technical perspective, the ability of the model to predict the electron flux magnitude is not as relevant
as its capacity to determine the orientations for which secondary electrons can be detected. It is clear from

Fig. that this primary objective is achieved and that, if an educated estimate of the target surface and
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Figure 3.7: Secondary electron trajectories between the electrodes.

detector properties is available, the incoming flux can be reasonably approximated.

3.3.4 Differential charging

The differential charging scenario is characterized by a complex potential field in the surroundings of
the charged object. Unlike the homogeneous case discussed in the previous section, a potential hill appears
between the electrodes (see Chapter 6 in Ref. 77), which due to Eq. and noting the negative charge of the
electrons may result in an overall attractive force and a well-localized electron trap [%]. The effect is shown
in Fig. , where most of the secondaries are not able to get out of the panel surface in the presence of
a 200 V potential difference. As a consequence, the steering and expansion of the electron beam determine
the effective emission area, which can vary significantly with small pointing errors. In order to mitigate
this effect and reduce the uncertainty of the experimental setup, a wide 3° half-angle electron beam at 1307
eV and 10 pA is subsequently employed with the same pointing configuration as before. Future spacecraft
systems may adopt the same approach when differential charging is suspected.

Figure shows the experimental and numerical electron current fluxes from a range of secondary
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Figure 3.8: Electron current fluxes at selected energy levels.

electron energies as a function of the electrode assembly heading and charging state. The bus is set to -800
V, while the -600 V and -700 V panel potentials are explored. The secondary electron energy range is chosen
to match the potentials of the electrodes within a band of £50 eV (see Sec. ). Experimental results
are in good agreement with the simulation but shifted by a constant ~3° in each case. The independence
of this value with the applied electrode potential points to the accumulation of errors in the transcription
of the experimental geometry to the SIMION model. Such errors are always hard to avoid in a vacuum
chamber experiment, where access is complicated, but do not represent a major technical concern. It is also
important to note how, for the first peak, both potentials can be easily determined. This contrasts with the
difficulties experienced by the x-ray method in the determination of multiple potentials [272].

More interesting is, however, the absence of a signal from the panel between 40° and 60° in the
simulations and the relatively large peak magnitude errors in the 70°-80° range. To shed light on this
issue, Fig. depicts the secondary electron trajectories for several heading angles and both potential
combinations. Electrons reaching the RPA come from the south face of the bus in the 45° and 55° cases,
while secondaries generated at the root of the panel are easily deflected. Since both electrodes generate
particles with very similar energy distributions, it can be readily concluded that the experimental signal
from the panel should come from a region close to the bus. A careful examination of the setup depicted in
Fig. shows that there is an unmodeled geometry that satisfies this characteristic: the small support of

the panel. The higher current flux in the 65° to 75° experimental peaks is harder to explain but may be
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Figure 3.9: Electron trajectories from panel (red) and bus (green) electrodes for different heading angles and
potential configurations.

attributed to (i) a higher than expected electron beam density in the intersection with the panel, (ii) a small
horizontal deflection error of the beam, or (iii) the presence of the unmodeled panel support.

The discussion on the geometrical disagreements between the model and reality reflects the sensitivity
of the electron-based touchless potential sensing method to apparently insignificant features of the target
geometry and electron beam properties in a differential charging scenario. This observation is in agreement
with the results reported in Ref. 19 and motivates the development of this model and its future application

in closed-loop detection algorithms.

3.3.5 Target observability

The observability space of the experimental setup is explored numerically in Fig. for electrode
potentials ranging from -500 V to -800 V, heading angles from 0° to 80°, and the electron beam configuration
employed in Sec. . The incoming electron current is quantified for each electrode energy range as
described in Sec. . Not surprisingly, the observable states conform to a small subset of the search space,

restricted mostly to the 50° to 80° range. Equipotential surfaces are generally easier to observe, as they avoid
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Figure 3.10: Observability matrix of the system for different heading angles and panel-bus potentials. Missing
angles are not observable.

the generation of electron traps between the electrodes, increasing the effective secondary emission area. It
is also important to note that, for those cases where the equipotential state is observable (60° to 80°), the
current (or, equivalently, the trajectories of the secondaries) becomes remarkably stable with the applied
voltage. Since secondary electrons are created with small initial energies (see Fig. ), the beginning of
their trajectories closely follows the electrostatic field lines, which determine their future evolution far away

from the assembly. Thus, for a sufficiently large electrode potential, the resulting trajectories and measured
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current will behave as noted.

An interesting feature is also observed for a heading of 10°, where the observability of the panel seems
almost independent of the applied potentials. This is just a consequence of the intersection between the
electron beam and the tip of the plate, which results in a direct flux of secondaries moving toward the RPA.
The effect is overestimated in the SIMION framework due to the relatively coarse Cartesian grid of the model

(2 mm/grid unit), which assigns a thickness to the panel of about 4 times the real value.

3.3.6 Source regions and sensing strategy

In the analysis carried out in the previous section, a given geometrical and electrostatic configuration
is assumed to compute the incoming flux of secondary electrons. Although this approach provides useful
information on the coupled dynamics of the active sensing problem, its computational cost is prohibitive for
most applications. Instead, future missions are likely to apply a different strategy: (i) determine the source
regions, defined as the areas of the target where electrons detected at the RPA are generated, and (ii) aim
the electron beam at such regions. Particle tracing simulation frameworks like the one here introduced can
implement this approach and its associated control algorithms. As an example, Fig. shows the source

regions for an 80° heading angle and a homogeneous electrode potential to -800 V. The electron beam should

Figure 3.11: Source region of secondary electrons reaching the RPA for a heading of 80° and an electrode
potential of -800 V.
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be aimed at the green points in order to detect a signal and measure the target properties.

Because the potential distribution of a target spacecraft is unknown beforehand, the determination of
source regions is complicated in the initial stages of the sensing process. Qualitative diagnostic information
would be helpful to bound the solution space and discover, for instance, if a particular component of the target
is electrically detached from the structure. Broad electron beams like the one implemented in Sec. may
be used to excite large portions of the target surface, enabling the measurement of multiple potentials and
overcoming electron traps. X-rays-sensing [27] is independent of the electrostatic environment and exhibits
optimum observability properties [277], which makes it appropriate for diagnostic purposes. However, it also
leads to larger potential errors than electron sensing [!/]. A combination of both methods is thus ideal to

achieve a robust and accurate detection, as highlighted by previous studies [/, 19].



Chapter 4

A quasi-analytical approach to electron beam modeling

As exemplified in Chapter , the detection of secondary electrons is determined by the geometry,
charging state, and electron beam configuration of the touchless potential sensing problem. The electron
beam plays a key role in this and other applications, but the forces involved in its propagation go beyond
Lorentz’s law in Eq. 2.7. Electromagnetic repulsion effects can also be relevant for high-current beams and are
generally ignored by particle tracing simulators (which, as pointed out in Chapter 2, do not usually consider
space-charge effects). In addition, particle tracers assign similar computational costs to the propagation of
each electron within the beam and to the resulting secondaries, effectively doubling the computational cost
of the simulation. This may not be concerning for on-ground studies, where computational power is readily
available, but can hamper the development of flight algorithms.

The purpose of this chapter is twofold: firstly, to introduce and test a quasi-analytical, uncoupled, and
computationally efficient electron beam expansion and deflection model for active charging applications and
in-situ operations; and secondly, to characterize the uncertainty in the beam-target intersection properties,

which condition the measurement of secondary electrons.

4.1 Context and strategy

Existing electron beam models may be divided into two families: those that fully implement the
space-charge effects induced by the beam, and those that ignore such interaction [J]. In the former, the
electric field depends on the trajectory of the particles and is hence computed by solving Poisson’s equation

in the simulation domain, leading to accurate results but large computational costs. Particle-In-Cell (PIC)
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simulations are commonly employed for this purpose, and have been widely used to study the injection and

long-term propagation of electron beams in plasma environments [27~277]. Charged Particle Optics (CPO!
) Boundary Element Method (BEM) [27%] in combination with the space-charge cell and tube methods [279)]
has also been applied to all sorts of electrostatic problems [220]. In the models that ignore space-charge

effects, on the contrary, particle trajectories are propagated under the unperturbed electrostatic potential
generated by the electrodes. Some representative approaches are SIMION’s Coulombic and Beam repulsion
models, that approximate the beam expansion dynamics by computing the electrostatic repulsion forces in
the beam cross-section at each time step [7]. Simplified analytical results for the beam expansion process
can also be found in the literature [221].

The appropriateness of a certain beam model depends on its scenario of application. In the active
spacecraft charging problem, servicer and target spacecraft are separated a few 10s of meters and employ
focused electron beams of 10s of kV. This implies that the beam will deflect only slightly before reaching
the target. In fact, the short propagation distance makes it remain in the initial expansion phase, where
the beam density is much larger than the GEO plasma density and the expansion dynamics are driven by
the radial electric field in the beam cross section [242]. With GEO Debye lengths of ~ 200 m [23%], plasma
interactions can be safely ignored (see Sec. ), but the beam evolution is determined by the electric field
from nearby charged bodies.

A solution that can be regarded as an intermediate approach between the analytical expansion equa-
tions described by Humphries in Ref. and SIMION’s repulsion models [7] is here presented. By taking
advantage of the particular active spacecraft charging environment, a simplified framework of analysis that
uncouples electron beam expansion and deflection processes is developed and combined with the Multi-
Spheres Method (MSM) for the estimation of electric fields [227]. The result is an accurate particle-tracing-
like model that overcomes the one introduced in Chapter * in terms of computational efficiency, making it

suitable for onboard flight algorithms.

! . Consulted on: 09/05/2022.
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4.2 Electron beam model

4.2.1 Physical model

The propagation of electron beams in space is subject to several internal and external electromagnetic
interactions. The quasi-analytical physical model introduced in this chapter assumes (i) negligible space-
charge effects, (ii) small beam deflection angles 6, (iii) small radial expansion, (iv) axisymmetric distribution
of geometry and loads within the beam cross-section, and (v) negligible plasma interactions.

The first two assumptions are key for developing a computationally efficient simulation framework
because they uncouple the beam-electrode system and the expansion and deflection processes. As explained
in Sec. , small beam deflection angles are produced when the potential difference between servicer and
target spacecraft is significantly smaller than the electron beam energy. This is the case of interest for remote
sensing applications; otherwise, the beam may be deflected enough to completely avoid the target. The third
and fourth assumptions reduce the cross-section electrostatic surface integrals to one dimension by allowing
the implementation of an infinite cylindrical beam framework of analysis. Such approach is appropriate for
small beam divergence angles and leads to large computational gains with respect to existing particle tracing
simulations. Finally, and since the separation between servicer and target spacecraft is of the order of 10s
of meters, which represents a fraction of the GEO Debye length of 100-1000 m, the electron beam dynamics

can be reasonably studied without taking into account complex plasma interactions.

4.2.2 Mathematical model

In what follows, the deflection of the beam is assumed to be produced by the electromagnetic envi-
ronment, while its expansion is a consequence of the distribution of charge in the beam cross-section and
the initial beam divergence angle. The model simultaneously and independently addresses both problems
by integrating the trajectories of the beam centroid (deflection) and a series of electrons distributed along
the axisymmetric beam cross-section (expansion). In both cases, Lorentz’s force defines the electromagnetic
force on each particle through Eq. . The relativistic change in momentum of the particle is given by

Eq. and the position @ in the inertial reference frame is computed from Eq.
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For the sake of clarity, the internal fields, that drive the expansion problem, are subsequently de-
noted by lowercase variables, while the external fields, that determine the deflection dynamics, are given by

uppercase letters.

4.2.2.1 Expansion of cylindrical electron beams

In the beam expansion problem, the radial trajectories of a set of electrons are integrated at different
radii of the beam cross-section using Eqs. 2.5-2.0. The internal electromagnetic fields and forces generated
by axisymmetric cylindrical beams must consequently be computed. This is done under the infinite length
approximation, leading to good estimates when the characteristic longitudinal (propagation) distance is
much larger than the characteristic radius of the beam. The main advantage of this approach is the large
reduction in computational cost achieved by expressing a 3D problem in the axisymmetric domain.

Axisymmetric cylindrical beams generate radial electric and azimuthal magnetic fields. The first is

readily derived from Gauss’s law, resulting in [251]

T

e(r,t) = i/ dr'n(r’, t)r'u,, (4.1)
€oT 0

where ¢ is the electron charge, n(r) denotes the volume density distribution of electrons, and {u,, uy, u,}

describes a cylindrical reference system centered in the axis of the beam and whose z component is aligned

with the velocity. Similarly, Ampere’s law gives the azimuthal magnetic field [251]

b(r,t) = Mo(ﬂ;z(t)/o dr'n(r’, t)r'uy, (4.2)

with po being the permeability of free space, and v, the propagation velocity of the beam (assumed to be
uniform in the cross-section). The modules of the electric and magnetic fields are related through e = (¢/3)b.

By applying Eq. to these fields, the internal electromagnetic force becomes

2

£ t) = (1-B(t)?) /0 ' dr'n(r' t)r'u,, (4.3)

Te€p
where the z component of the force, cause by the radial expansion velocity, has been neglected. The
magnetic and electric forces are related through Fiag = — B2F.. For relativistic electron beams, both terms

are approximately compensated (8 — 1), allowing long-distance transport at high current levels [251, ]
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The initial beam velocity profile is approximated in two steps. First, the velocity of propagation v, (0)
is computed from the initial relativistic beam energy, Ej = (7 — 1)mgc?, by solving for v and 3. Then, the
initial divergence angle ¢, which is not caused by the electromagnetic repulsion between particles but by the

optical configuration of the electron gun itself, is imposed as

v(r,0) ~ %vz(())ﬁr +v,(0)a,, (4.4)

where R} is the beam radius and a quasi-collimated beam is assumed (§ < 1). The initial electron density
function, n(r,0), is modeled following a pre-defined statistical distribution (e.g. quasi-Gaussian, uniform,

etc) that satisfies the electron beam current intensity I, and energy Ej. The condition

Ry Ib
dr'2nr'n(r' t) =
0 qu:(t)

(4.5)

is then imposed at each time step to conserve the electron beam current. This expression assumes a uniform
v, component computed in a plane perpendicular to the axis of the beam, which is consistent with the small
radial expansion assumption of the model. Uniform beams can be discretized with a single external electron
in the axisymmetric beam cross-section, while more complex profiles (e.g. Gaussian) should employ a finer
discretization to capture the evolution of the distribution. A convergence analysis should be carried out in
each case; in particular, high-intensity beams require more points to accurately simulate the electromagnetic
repulsion effect.

It should be noted that, although Eqs. . 1-1.5 are given as a function of time (describing the movement
of a particle), they are actually associated with a steady-state solution. Time is related to the arc parameter
s along the beam centroid through §s = v,dt. In a straight beam, s = z, and each of these expressions can
be written in terms of the cylindrical coordinates r and z. The ratio 8 also changes depending on the beam

propagation velocity, which is computed in the deflection problem independently of the expansion algorithm.

4.2.2.2 Deflection of cylindrical electron beams

The deflection of the beam is here represented by the trajectory of the centroid of the cross-section,

which is integrated using Eqs. 2.5-2.0 for given external electric and magnetic fields. While the first is
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mainly produced by the potential difference between both spacecraft, the second is imposed by the magnetic
environment.

The charge @ of a conducting body is related to its capacitance C through @ = C' V', where V is
the potential with respect to the ambient plasma. The identification of the zero potential with the ambient
plasma is a common choice in the spacecraft charging community [75] that has been adopted in this work.
If V is known, then the capacitance can be used to determine the total charge of the conducting body,
from which the electric field at distant points can be computed. However, objects in close proximity exhibit
mutual capacitance effects [255] which must be accounted for to accurately determine the total charge, its
distribution, and the nearby electric field. Capacitance is a function of the geometry of the system, but
analytical solutions are only available for a limited number of shapes (such as spheres or round plates).
Therefore, a numerical solution scheme must be used to find the capacitance of the system. The Method of
Moments is generally employed for that purpose and, based on its solution, the Multispheres Method (MSM)
has been developed as a computationally efficient alternative to approximate the resulting charge distribution
[283, ]. The MSM performs such approximation by discretizing the geometry using equivalent charged
spheres [223, ]. Given the potential on each sphere and its location with respect to the rest, the charge

distribution is computed by solving the linear system

Vl 1/R1 1/7“172 e 1/7”1," q1
V2 1/’1“211 1/32 e 1/”"2,71. qQ
Vn 1 Tn,1 1 Tn,2 . 1/Rn qn

where k. = 1/(4mep) is the Coulomb constant, R; is the radius of each sphere, 7; ; is the distance between
spheres 7 and j, and [S] denotes the elastance matrix [225], which is the inverse of the capacitance matrix. If
both spacecraft are assumed to be conducting bodies in electrostatics equilibrium, each of them must have an
equipotential surface, and so all V; belonging to the same surface must equal. This assumption is appropriate
for a GEO spacecraft since modern design specifications require all outer surfaces to be electrically connected
[0], although it can be relaxed for differential charging studies. The charge vector Q constitutes a model

of the charge distributions on the spacecraft, which allows calculating the electric field E created by these
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distributions as the superposition of the one produced by each individual charge g;, given by

dmegp

where p denotes the radial position vector, and R; is the radius of the sphere. An arbitrary number of
spheres can be placed and their radii adjusted to match the capacitance of the MSM to the true value.

In relation to the magnetostatic interaction, this work assumes an arbitrarily oriented GEO magnetic
field of 100 nT. Its large characteristic length of variation (~ 10® km), the small characteristic time of the
beam deflection process (~ 1076 s), and the small influence of the field in the problem under consideration

justify its treatment as a fixed parameter.

4.2.2.3 Nondimensional formulation

The numerical conditioning of the electron beam expansion and deflection problem can be largely

improved by employing a dimensionless formulation of Eqs. 2.5-2.0, which become
F=(vxB+9E), (4.8)
diye) _ o
=%, 4.9
dr (4.9)
dx
— =, 4.10
ar ° ( )
where
t tre reftre retls, t
o= 7=l a2ty g_Iip g Gl p g el p (4.11)
Tref tref Tref Myef MyefTref MyefTref

The electron mass and charge are taken as a reference (myef, Gref), with the characteristic time being
tref = 1070 s. The characteristic length e is equal to the initial electron beam radius R; and the mean
spacecraft separation L. for the expansion and deflection processes, respectively. In other words, two different

dimensionless problems are solved simultaneously.
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4.2.2.4 Validity metrics

As noted in Sec. , the analytical model introduced in this section is valid while the beam deflection
angle
6 = arccos |:’U(0)’U(tf)} , (4.12)
[0 (0)[[v(ty)]
is small, with ¢¢ denoting the final simulation time. The additional dimensionless parameter
R ymo? - i (4.13)

T gL wxB+E),| |0xB+8).|

is defined to describe the ratio between the instantaneous electromagnetic gyroradius and the characteristic
spacecraft separation L., with 1 denoting the force component perpendicular to the electron trajectories
and the different variables referring to the deflection problem. The metric R reflects the influence of the
electromagnetic environment on the trajectory of the centroid. A small value of R implies that its gyroradius
is comparable to the characteristic spacecraft separation, which ultimately leads to the focusing of the beam.
The reader may visualize this scenario with a simple geometrical problem: if two identical circumferences
are initially superposed and then separated slightly, two intersection points will be generated. The same
happens with an electron beam when R < 1. This effect is not contemplated in the model, which explains

why R (6) must be significantly greater (smaller) than 1.

4.2.2.5 Numerical integration scheme

The integration of Eqgs. 2.5-2.0 must conserve the total energy of the system. Common integrators, such
as the 4" order Runge-Kutta (RK) method, carry a certain truncation error with each time step, resulting
in unbounded divergences in the long term. This has made the Boris algorithm, which is an explicit, time-
centered integrator that conserves the phase space volume and bounds the global energy error, the standard
for particle physics simulations [?57]. However, in short-term applications (like the one discussed in this
manuscript) RK integrators still offer an appropriate solution. In the simulations that follow, a variable-
step, variable-order Adams-Bashforth-Moulton PECE solver of orders 1 to 13 is implemented by means of

Matlab’s routine ode113 [237], resulting in relative total energy errors below 0.001%.
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4.3 Performance analysis

4.3.1 Verification

Every model should be tested to verify its implementation, a step that is summarized here by inde-
pendently focusing on the deflection and expansion processes. As described in Sec. , the predicted
trajectories pass the energy conservation test. Besides, they also match the analytical electron gyroradius
and gyrofrequency in the presence of a constant magnetic field. Particle dynamics in combination with the
MSM representation of charged bodies have been thoroughly addressed in previous works [7], leaving the
beam expansion dynamics as the last module to be verified.

SIMION’s documentation includes a case of analysis? where its Coulombic and Beam repulsion models
are validated with coupled space-charge results from CPO [J]. The example consists on an isolated beam
of 1 eV that originates in a 3 mm circle with a uniform distribution of 1000 electrons and a deflection
angle of § = —16.7°. The beam current is set as a multiple of the maximum value Iy = 3.47 pA sustained
by the system, leading to the results depicted in Fig. . The same scenario is simulated with the beam
model presented in Sec. .2, showing an overall excellent agreement with SIMION. Small differences between
both sets of results should be attributed to simplifying assumptions. For instance, the initial beam velocity
profile in Eq. 1.1, leads to a set of particles with unequal kinetic energies. Although appropriate for small
deflection angles (like the ones used in active spacecraft charging scenarios), this approximation performs
worse with § > 1. However, while the computational cost of each SIMION simulation scales with the
square of the number of particles [9], just a few trajectories are required by the proposed framework: the
centroid, and a certain number of points in the axisymmetric cross-section that are employed to recompute
the volume distribution of electrons. Since in this case such distribution is uniform, a single electron is
needed to capture the evolution of the beam envelope; however, 50 particles are simulated for illustrative
purposes. This computational advantage, together with the reduction of a complex problem to a small set

of parameters, are the main advantage of the simplified model here introduced.

2 The interested reader is referred to the readme.html file in the examples/repulsion folder of SIMION 2020
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Figure 4.1: Comparison between simulation framework and SIMION’s beam repulsion model [J] for E = 1
eV, 0 =—16.7°, and Iy = 3.47 pA.

4.3.2 Validation

The physical mechanisms involved in the electron beam expansion and deflection processes have been
very well understood for decades, and the validation of fundamental particle dynamics has consequently

little technical value. On the contrary, future applications depend on the proper application of the model

presented in Sec. .2, which relies on a number of assumptions that limit its validity space. Provided that
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Figure 4.2: Experimental setup inside the ECLIPS chamber.

such assumptions are met, a computationally efficient and powerful analysis tool is obtained.

With the purpose of exploring the performance of the model in a worst-case scenario, the experimental
setup shown in Fig. 1.7 is tested in the ECLIPS Space Environment Simulation Facility [2¢9]. The assembly
exposes an electron beam from a Kimball Physics EMG-4212D electron gun to the electric field generated
by a charged spacecraft-like electrode mounted on a rotary stage. The shape and location of the beam spot
at approximately 35 cm from the gun orifice are observed with a 3.81 ¢cm diameter rugged phosphor screen,
and the spatial distribution is obtained with a Retarding Potential Analyzed (RPA) mounted on a linear
stage. The beam is configured at 1 keV energy and 10 puA current, while the electrode is set at -100 to -500
V employing a Matsusada AU-30R1 high-voltage power supply. The electron flux at the RPA is measured
with a Keithley 2400 multimeter. Finally, the system is automated by means of a LabView VI.

Figure shows the beam spot profiles at the phosphor screen for electrode potentials ranging from

-100 to -500 V. Because the gun orifice is slightly below the symmetry plane of the electrode, a voltage



(a) 0.3V (b) -100.9 \%

(e) -401.1 V (f) -501.3 V

Figure 4.3: Electron beam spot in the phosphor screen under different electrode potentials.

decrease leads to a slight downwards deflection. This is compensated with a fine tuning of the vertical gun
deflection settings, which do not alter the horizontal position or shape of the spot. Figure shows
a ~ 13 mm diameter beam cross-section, which is considerably larger than the initial ~ 3 mm diameter
beam. Tests with different beam current intensities give the same spot shape, which demonstrates that the
expansion is not induced by the electrostatic repulsion between electrons, but by the initial beam spread
angle 6. As the voltage decreases, the beam is deflected away from the electrode and its cross-section is

elongated vertically. The spot shape is deformed significantly below -300 V, indicating the existence of small
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Figure 4.4: Experimental electron flux distribution as a function of the applied electrode potential.

gyro radii with R ~ 1. These observations are complemented with the electron flux distribution computed
with the RPA in Fig. 1., where the narrowing process reduces the width of the flux peak and its amplitude.
Based on the 0 V case, the spread angle is estimated to be § ~ 2.5°. It should be noted that the apparent
beam radius shown in Fig. is smaller than the one reported in Fig. . This is due to limitations
imposed by the power density threshold of the phosphor screen and the effective aperture of the RPA3 .

The influence of the electrode rotation angle a on the beam deflection and spot shape is also explored
in Fig. for V.= —100 V and a = 10° to 50°. Although the beam is deflected and the cross section is
modified, these effects are much less pronounced than in Fig. | 3, implying that the R metric is significantly
larger. In other words, the uncoupled model is far more appropriate for this case.

The framework of analysis introduced in Sec. is not designed to predict the elongation of the
beam cross-section, but still gives accurate estimations for those cases where the beam deflection angle is
small. In order to evaluate the validity metrics defined in Sec. , the experimental setup is reproduced

with a 934-spheres MSM representation of the spacecraft-like electrode. The result is shown in Fig. for

an electrode potential of -500 V, that corresponds to the case in Fig. , and a beam expansion angle
0 =2.5°
The validity metrics R and 6 are reported in Fig. as a function of the electrode potential V' and

3 The variations in light intensity at the phosphor screen are caused by the Electron-Beam-Induced-Deposition (EBID) of
carbon and heavy molecules over the surface, and not by variations in the distribution of electrons in the beam cross-section.
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Figure 4.5: Electron beam spot in the phosphor screen under different electrode rotation angles at -100 V.

in Fig. in terms of the electrode rotation angle . An increase in the electrode potential decreases the
minimum QR value and increases the deflection angle 6, reaching ~ 3° and 9.5°, respectively, for the limit case
of -300 V. Larger values lead to significant beam cross-section deformations, as shown in Figs. -

Similarly, the rotation of the electrode creates a second minimum in the & plot (i.e. a second maximum
in the electromagnetic force), but since this minimum is larger than in the -200 V case, its effects on the
beam cross-section are less significant. Due to the large beam expansion angle ¢, the magneto-electrostatic

repulsion between electrons plays virtually no role in the expansion dynamics of the beam.
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The experiment demonstrates the appropriateness of the expansion/deflection decoupling when the
validation metrics R and € adopt sufficiently large values. In such cases, the beam cross-section becomes prac-
tically independent of the external electromagnetic force. Although the assumptions of the model significantly
constraint its validity range, it is precisely in the spacecraft charging scenario where this computationally

efficient framework can be better exploited.

4.4 Uncertainty in active spacecraft charging scenario

4.4.1 Problem statement

Once the validity of the beam model has been contrasted with experimental observations, the base
scenario of analysis is introduced in Fig. . The GOES-R* and SSL-1300° spacecraft MSM models are
shown together with the e~ beam centroid evolution in the global reference system {&, y, z}. The target
spacecraft (-2.5 V) is negatively charged with respect to the servicer (0 kV) due to the current unbalance
induced by the electron beam, generating a net electrostatic force that tends to deflect and slow down the 5
keV, 10 A electrons from 4.2 - 10" m/s to 3.2- 107 m/s. The electron beam energy must be larger than the
absolute potential difference to allow the electrons to reach the target surface. The R parameter depends

quadratically on the propagation speed and approximately linearly on the beam energy (see Eq. ), and

. Consulted on: 07/06/2022.
. Consulted on: 07/06/2022.
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Figure 4.6: MSM representation of the experimental setup with electron beam propagation at -500 V.
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Figure 4.7: Validation metrics R and 6 as a function of the electrode potential and heading angle.

(b) Varying the heading angle with V' = —100 V

hence the physical model here adopted is particularly well suited for high beam energy applications.

The trade-off between beam energy and spacecraft potential is analyzed in Fig.

by comparing the

validity metrics along the beam trajectory in three different scenarios. As expected, an increase in beam

energy leads to larger % and smaller 6 values, while a decrease in the target spacecraft potential has the

opposite effect. In the nominal case (E, = 5 keV, V = —2.5 kV), a deflection angle § = 5.33° and a minimum

Figure 4.8:
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Geometry of the 2-SC problem for the basic simulation parameters (see Table
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R = 4 are reached, satisfying the validity range of the model. These values are analogous, in terms of &R
and 0, to the experimental -200 V case pictured in Fig. and analyzed in Fig.

Figure explores the beam expansion dynamics for different deflection angles. When a stream
of collimated electrons (§ = 0) exits the gun, the magneto-electrostatic repulsion expands the beam radius
from 2.5 to 40 mm in the 30 m flight. The trajectory of those electrons is non-linear, but as the initial §
angle is increased, a linear expansion is achieved. This qualitatively different behavior reflects the existence
of repulsive and inertial expansion regimes. Although in the second case the expansion dynamics become
practically irrelevant, a larger beam-target intersection is also obtained. This may not be convenient for the
characterization of the target.

A discretization of 50 radial points is employed to model the expansion process, deviating less than a
0.01% from a 200-points model in the worst-case collimated beam regime. An MSM model with 172 spheres
is applied to the deflection problem, resulting in errors below 5 cm in the final beam centroid position with
respect to a high-fidelity 1976 spheres MSM simulation. These results are acceptable for the problem here

discussed.

60
V=-25kV,E,=5keV, 0 =5.33°
V=-25kV,E,= 10keV, 0 = 2.40°
50 V =-7.5kV, E, = 10 keV, 6 =9.90°
40 -
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Figure 4.9: Validation metrics & and 6 as a function of the target spacecraft potential V' and beam energy
E, for the nominal active spacecraft charging scenario.
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Figure 4.10: Beam radius evolution as a function of divergence angle for the nominal active spacecraft
charging scenario.

4.4.2 Uncertainty quantification analysis

The model built in Sec. is, because of its computational efficiency, particularly well suited to
quantify the uncertainty in the beam-target intersection position in an active spacecraft charging scenario.
The analysis is designed from the perspective of a servicing spacecraft that seeks to steer the beam toward a
particular spot of the target. A total of 702 uncertain variables are considered, with 688 being associated to
the MSM spheres that approximate the charge distribution of the two-spacecraft system. The list of input
variables and their distribution is detailed in Table 1.1. The outputs of the analysis are (i) the radius of
the beam cross section at the end of flight, (ii) the centroid landing position in the target plane, which is
perpendicular to the line of sight between both spacecraft, (iii) the landing energy, and (iv) the time of flight.

Due to the large number of parameters and reduced computational cost of the simulation, a Monte
Carlo analysis is chosen over other uncertainty quantification methods. The relative influence of each input
parameter on the output metrics is measured by means of sensitivity indices, computed with a Fourier
Amplitude Sensitivity Testing (FAST) suite® from Ref.

6
on: 07/06/2022.

Consulted


https://www.mathworks.com/matlabcentral/fileexchange/40759-global-sensitivity-analysis-toolbox
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Table 4.1: Uncertainty analysis parameters.

Variable Distribution Mean STD Unit
Beam current (1) Normal 10 0.1 A
Beam energy (Ej) Normal 5 0.05 keV
Initial divergence angle (¢) Uniform 0.1 Lims: [0, 0.2] deg
Initial particle density STD (o) Normal 0.83 0.083 mm
Servicer potential (Vier) Normal 0 0.05 kV
Servicer, Euler-313 (¥ser, ser, Pser) Normal [0,90,0] [0.1,0.1,0.1] deg
Target potential (Viar) Normal -2.5 0.25 kV
Target, Euler-313 (¢tar, Gtar, Ptar)  Normal [0,180,0] [5,5,5] deg
Relative Position (14, ry, ) Normal [0,10,32] [0.5,0.5,1] m
Capacitances (x172) Normal Dataset 1% C
Spheres pos. (x516) Normal Dataset 1% m
Initial beam radius Fixed 2.5 0 mm

4.4.3 Results

The Monte Carlo analysis is carried out with 10* random realizations generated from the distributions
reported in Table /. |, which are conservative estimations of the different sources of error. Each simulation
takes approximately 0.6 s after parallelizing the code with 7 CPU threads in Matlab 2021 (Intel Core i7-
7820HQ CPU at 2.90 GHz, 32 Gb RAM). The solution converges in mean and variance for the expansion
and deflection problems.

Results in Fig. depict the Probability Density Functions (PDFs) of the model outputs: (a) final
beam radius Ry, s, (b) final centroid position p, s and p,. r, (c) time of flight ¢, and (d) final beam energy
Ey s. The first follows a quasi-uniform distribution, clearly influenced by the uniform sampling of the initial
deflection angle §, and spans from 4 to 13 cm. These expansion values, computed for § C [0°,0.2°], are
small in comparison with the spread of the beam centroid shown in Fig. , where the target [0.11,
-1.26] m is marked as a red cross. The landing positions follow a multi-Gaussian distribution with mean
[0.07,—1.20] m and covariance [0.20, —0.006; —0.006,0.28] m?. This implies that the beam centroid has a
93.9% probability of intercepting the SSL-1300 solar panel, represented as a rectangle in the figure, while
the chances of hitting a 20 cm diameter circle surrounding the target are just a 0.3%. The time of flight
PDF is represented in Fig. and follows a log-normal distribution with logarithmic mean 14.07 pus and

variance 2.14-10~% ps?. This result is relevant for applications employing pulsed beam modulations to filter
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Figure 4.11: Result of the Monte Carlo simulation.

the returning secondary electron flux from the target. Modulated electron beams have been employed in
previous space instruments, such as the Electron Drift Instrument of MMS [01]. Finally, the landing energy
PDF is shown in Fig. and fitted with a Weibull distribution (scale 3309.98, shape 9.97) with mean
3148.55 keV and variance 144294 keV?2. The landing energy determines the SE yield, and is hence important
for defining the resulting SE flux [20]. Tt also determines the X-ray spectrum profile and intensity [201].

In order to determine the influence of each input on the outcomes reported in Fig. , a Fourier
Amplitude Sensitivity Testing (FAST) Global Sensitivity Analysis (GSA) is conducted. The analysis is

limited to the 15 non-MSM inputs in Table to minimize its computational cost. Although 688 MSM
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variables are removed, Table shows how the total variances remain practically identical, denoting that
such uncertain inputs have a negligible effect in the final distributions.

Table reports the sensitivity coefficients for 10* realizations. The five outputs of the model (final
beam radius Ey y, beam-target intersection coordinates p, y and py s, final energy Ej r, and time of flight
tr) are listed in the rows, while the inputs are shown in the columns. Bold fonts are employed to highlight
the largest sensitivities, showing that each output variance can be almost completely explained with less
than two inputs. For instance, the final beam radius is mainly dependent on the initial divergence angle,
while the final positions are related to the uncertainties in their corresponding relative spacecraft position
component. The output p,, r is also dependent on the target potential, which promotes the lateral deflection
of the beam, as shown in Fig. . Although the results seem to indicate that the variance in p, ; is also
explained by the beam current I}, this should be attributed to numerical errors, because the model uncouples
the expansion and deflection problems. The final beam energy 3 ; and time of flight ¢; are depend on the
initial beam energy Ej and target spacecraft potential V;,,, whose relative influence is strongly influenced by
the uncertainty bands selected in Table /. |. The attitude of each spacecraft does not seem to have a large
influence in any output variable; however, this is caused by the small attitude disturbance angles selected in
Table ‘|1, which would increase with less accurate attitude determination sensors.

It should be noted that, among the most influential input parameters, only the target potential and
relative positions are not predefined. An obvious conclusion is that the targeting of specific regions is limited
by the accuracy in the measurement of the relative position between the two spacecraft. Although this
problem may be addressed with better sensing equipment, the strong influence of the target potential raises
additional issues. In order to obtain a first measurement, the electron beam needs to intercept the target,

but such interception can only be guaranteed if an estimate of Vi, is available. The problem may be solved

Table 4.2: Comparison of output variances between the full 702 parameters and the reduced 15 parameters
MC analyses.

V(Rof) Vpey) Vpyr) V(Evwy)  Vity)
[m?] [m?] [m?] (keV?] [5]

Full 6.830e-4  0.204 0.276 1.387ed5  1.301e-16
Reduced 6.790e-4  0.203 0.269 1.456e5 1.319e-16
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Table 4.3: Normalized sensitivity indices from FAST sensitivity analysis with 15 inputs and 5 outputs. The
values are scaled by a factor of 10 for convenience.

Ib Eb Op ‘/tar ‘/;cr Tx Ty Tz ¢tar gtar wtar ¢sor escr wscr 0

Ry s 0.053 0.112 0.011 0.306 0.044 0.009 0.019 0.121 0.005 0.001 0.015 0.056 0.318 0.365 8.563
Doy 1.208 0.204 0.009 0.016 0.004 8.284 0.001 0.003 0.233 0.002 0.005 0.002 0.025 0.002 0.002
py,s 0.004 0.030 0.033 1.550 0.354 0.003 7.888 0.109 0.001 0.003 0.001 0.003 0.020 0.001 0.001
E,; 0.056 1.541 0.021 7.122 0.554 0.071 0.126 0.226 0.117 0.138 0.006 0.005 0.005 0.013 0.001

ty 0.028 3.524 0.005 4.661 0.760 0.006 0.024 0.741 0.010 0.238 0.001 0.000 0.001 0.001 0.001

by temporarily increasing the beam expansion angle § to irradiate larger areas, enhancing the chances of
collision, or by employing a more directive beam with higher energy Ej. An X-ray sensor oriented toward
the irradiated region would then be used to obtain the first target voltage estimation, which would then be
followed by more accurate SE estimations.

However, the availability of target potential measurements using the SE method, which is significantly

more accurate than the X-ray approach [17], is strongly dependent on the geometry of the system [¢]. The
spatial distribution reported in Fig. for the beam-target intersection has a critical influence on the
10
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Figure 4.12: Trajectory of 100 secondary electrons generated in the beam-target intersection region described
by the Monte Carlo analysis in Fig.
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flux of SEs. Figure depicts the trajectories of 100 SEs uniformly generated in a circle with 1.5 m
radius (30 interval) and whose center matches the origin of the Monte Carlo final beam centroid distribution
(x =0.07m, y = —1.20 m, z = 30 m). Since they are created with energies of the order of just a few eV
[255], SEs are assumed to start their trajectory with zero velocity. The SEs are able to reach the servicer
only when the beam hits a very specific area of the target, named source region in Chapter 3, so it can
be readily concluded that a limited subspace of the Monte Carlo solution domain will be detectable. That
is, an RPA mounted in the servicer and aimed at a suitable target region is not guaranteed to detect SEs
with the statistical distributions reported in Table .1, concluding that the combination of X-ray and SE
measurements is necessary to ensure a robust and accurate estimation of the target spacecraft potential. A
feedback control loop may be employed to actively steer the beam and guarantee the measurement of SEs,

following an implementation analogous to the Electron Drift Instrument of MMS [01].

4.5 Collaborators

The electron beam model presented in this chapter was developed in collaboration with Prof. Gabriel
Cano-Gémez, whose contributions are gratefully acknowledged. The author also thanks Prof. Alireza

Doostan for his comments on Sec.



Chapter 5

Active photoelectron-based sensing strategies

The active exploitation of photoelectron emission for touchless spacecraft potential sensing is explored
in this chapter by means of UV light sources. In contrast with previous works [7, 5], the photoelectric effect
is not treated from the current balance perspective, but with a particle-centered scheme. This enables the
inclusion of photoelectrons in the SIMION model introduced in Chapter , which is expanded and compared
with experimental results to assess the feasibility and challenges of this new sensing framework.

Several new applications are enabled by this approach, from material identification to charge control.
In particular, the simultaneous use of UV lasers and high-energy electron beams is proposed to excite the
emission of photoelectrons and x-rays in non-cooperative GEO objects. The ultimate goal of this strategy
is to reduce the sources of uncertainty identified in previous chapters by employing highly directive quasi-

relativistic electron beams and the rectilinear laser trajectories.

5.1 Simulation of active photoemission

A necessary preliminary step for the study of active photoemission problems is the development of
particle tracing simulators. With this goal, the model introduced in Sec. is adapted to include photons,

photoelectrons, and secondary electrons resulting from the impact of the latter on the electrode surfaces.

5.1.1 Implementation

The particle tracing model shares the same electrostatic framework and secondary electron implemen-

tation already discussed in Sec. . However, UV lamps are also considered as particle sources. Photons
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are modeled in SIMION as particles with zero charge and arbitrary mass and velocity that follow rectilinear
trajectories.

The impact of a photon with a charged surface is followed by the application of Eq. to determine
whether it is reflected or not. If the photon is absorbed into the material, photoelectrons can be generated
based on the photoelectric yield in Eq. . This mechanism is implemented adopting the Poisson point
process described in Sec. . Lambert’s cosine law, described by Eq. , is considered for the angular
distribution of emitted photoelectrons, which are released with fixed initial energy. Photoelectrons that
impact a different surface may generate a secondary electron following the procedures described in Sec.

The normal incidence parameters Ro(w) and Y*(w,0) and the work function ¢ are taken as external inputs.

Reflected photons keep flying under specular or diffuse schemes, depending on the ratio given by
Eq. . Specular reflections are trivial to implement in SIMION, while diffuse reflections are modeled
following Lambert’s cosine law in Eq. . A maximum number of successive reflections can be imposed for
computational efficiency. An overview of the processes implemented in the model is given in Fig. for a

single emitted photon.

(a) Immediate photon absorption (b) Photon reflection and absorption

Figure 5.1: SIMION examples of photons (white) being generated and reflected, leading to the emission of
photoelectrons (green) and secondary electrons (blue).
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5.1.2 Effective values

The photoelectric yield Y*(w, 0) and initial photoelectron energy E,(w) depend on the energy w of
the incident photon. However, photons are implemented as particles with arbitrary mass and speed, so they
do not contain any spectral information. Although this would certainly be easy to correct in SIMION, a
simpler and more computationally efficient approach is adopted in this work.

Knowing the normalized spectrum S(w) of the UV source, the effective photoelectric yield

5(0) = /0C><> Y*(w,0)S(w)dw, (5.1)

with “0” denoting the normal incidence angle, can be computed as the average number of photoelectrons
released per impinging photon. This value faithfully reproduces the response of the system due to the large

number of photons involved in the process. In addition, the mean photon energy

Ep:/o wS(w)dw (5.2)

is adopted for each photoelectron released in SIMION. This simplification is appropriate because initial
photoelectron energies are of the order of few eVs, but given that the electrostatic environment is dominated

by large spacecraft potentials, small variations in this value have a negligible effect in the overall result.

5.1.3 Superparticle method

The photoelectric yield is of the order of 10~7 for most materials and low photon energies, as shown
in Fig. , meaning that a large number of photons have to be generated in SIMION to release a single
photoelectron. To overcome this issue, the effective photoelectric yield computed in Eq. is multiplied by

a scale factor k to accelerate the simulation, leading to the wirtual photoelectric yield

Vi (0) = rY g (0). (5-3)

v

Each photon is thus treated as a superphoton that represents « particles. As a consequence, the current
measured by the RPA as predicted by the simulation needs to be adjusted accordingly. The photon flux

coming out of the UV source per second is

-0
=

Tlph = =) (54)

S|
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where Py, is the power of the source. If ng, photons are simulated with a scale factor x and a a number
Ne-, det Of electrons enter the detector during the simulation, then the actual measured current is calculated

as

. Mph
Jph = ndetn p. GeMNle-, det (55)

Sim

with 7n4et being the efficiency of the detector.

5.2 Material properties

The secondary electron, x-ray, and photoelectron emission processes depend on a series of surface
properties that must be characterized in a laboratory environment. Although the experiments performed
in this chapter only employ aluminum targets, this section presents standard values for a range of space

materials that will be later used in Sec.

5.2.1 Secondary electron emission

The parameters d,ax and Fa.x define the shape of the Sanders and Inouye secondary electron yield
curve and its angular dependence according to the Darlington and Cosslett model, while the work function
@ of the conductive material determines the Chung-Everhart secondary electron energy distribution. The
electron affinity y defines the energy separation between the lowest possible state for any excited electron in
a dielectric material and the vacuum level, and it may be used in place of the work function when analyzing
dielectrics [!]. Table reports these values together with the first (E7) and second (Fs) crossover points

(for which § = 1) for selected materials [!, 2]. Although the Sanders and Inouye yield model is adopted in

Table 5.1: Emission parameters for selected materials [1, 2].

Material Z  ¢/x[eV] Omax FEmax [€V] Ei1[eV] E;[eV]

Aluminum 13 4.20 1.0 300 300 300
Gold 79 5.47 1.4 800 150 >2000
Copper 29 5.10 1.3 600 200 1500
Iron 26 4.67 1.3 400 120 1400
Kapton 4.7 5.8 1.67 280 50 750

Teflon 3.8 4.1 24 350 50 180
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Figure 5.2: Backscattered electron yield for selected materials as a function of the impacting electron energy

[10].

this work, some materials exhibit high-energy yields that may be significantly larger than those predicted

by Eq. . For instance, gold has a yield of ~0.7 at ~20 keV [202].
5.2.2 Backscattered electron yield

Equation provides a good estimation of the backscattered electron yield for energies above the
limit given by Eq. as a function of the Z values listed in Table 5. 1. However, it is also important to

characterize how n(FE,0) evolves for E < Ep;,. Figure depicts the yield values below 6 keV for clean
(ion bombarded) and unclean samples of aluminum, gold, and copper from Ref. 10. As expected, clean and
unclean values converge and the measurements stabilize as F grows. The backscattered electron yield can
reach up to 50%, highlighting the importance of this effect for some materials. In the experiments presented
in this chapter, however, energetic electrons do not impact the electrode assembly and backscattered electrons

are not considered.

5.2.3 Photoelectric yield

The photoelectric yield Y*(w,0) is usually characterization by means of well-controlled laboratory
experiments. Results for aluminum, gold, Kapton, and Teflon are presented in Fig. as a function of the

photon impact energy. Kapton and Teflon are backed by silver [! 1]. In the case of aluminum and gold, the
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Figure 5.3: Photoelectric yield for selected materials as a function of the impacting photon energy [!1—13].

yield increases with the impinging photon energy until it reaches a plateau at 10~ and about 12 eV.

5.2.4 Normal reflectance

Similarly to the photoelectric yield, the normal reflectance of a perfectly smooth surface should be
characterized experimentally. Figure shows the value of Ry(w) for selected materials as a function of
the impinging photon energy [?]. Kapton is backed by aluminum, as it would be on multi-layer insulators
[13], and Teflon is backed by silver. The reflectance decreases with the photon energy for all materials, but

aluminum remains highly reflective until ~15 eV.
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Figure 5.4: Normal reflectance for selected materials as a function of the impacting photon energy [, 13, 11].
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5.3 Analysis of complex geometries

The performance of the model introduced in Sec. is assessed in this section employing a complex

spacecraft-like electrode assembly and the material properties for aluminum listed in Sec.

5.3.1 Experimental setup

The experimental setup pictured in Fig. is installed in the ECLIPS vacuum chamber and used in
the experiments. It is identical to the one adopted in Sec. , but includes a Hamamatsu L10706-S2D2 UV
light source whose normalized spectrum is shown in Fig. 5.0. In addition, the electrode assembly is connected

to a Matsusada AU-30R1 high voltage power supply that imposes potentials between -100 and -900 V. The
heading of the assembly spans from —40° to 100°, with 0° corresponding to a perfect alignment between the
electron beam and the panel electrode. Although the electron beam is not used in this experiment, this
reference is kept in consistency with the study performed in Chapter 3. The RPA forms an angle of ~16°

with the electron beam axis.

Figure 5.5: Experimental setup.
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Figure 5.6: Normalized spectrum of the Hamamatsu L10706-S2D2 UV light source [17].

The normalized spectrum of the UV lamp is provided by Hamamatsu in Ref. 17. Private communica-
tion with the manufacturer has revealed that the power P}, emitted by the lamp is approximately 1.2 mW,

which corresponds to a 160 nm radiant irradiance peak of 0.14 pWem ™ 2nm ™! at 50 cm from the source.

5.3.2 Configuration of SIMION model

The SIMION model introduced in Sec. is configured with the properties listed in Sec. . As
in Chapter 3, the values Fyax = 300 €V, dmax ~ 0.97 [07], and ¢ = 4 eV [255] are adopted for the
aluminum targets to simulate secondary electron emission. The average photoelectron energy resulting from
the spectrum in Fig. is B, ~ 4 eV, while the effective photoelectron yield becomes Y 5(0) ~ 5.88 - 1072
A scale factor k = 10 is considered, which returns a virtual yield Y% (0) ~ 5.88 - 107!. The reflectivity
Ry of aluminum is assumed to be 0.9, while that of the steel walls of the chamber is limited to 0.1. Once
again, it is important to highlight that surface conditions can have a very significant impact on these values

[219-252], which should be taken as a rough estimate. 200000 photons are propagated in the simulation.

5.3.3 Calibration

Similarly to the electron beam experiments performed in Chapter 7, the geometry of the SIMION
domain is adjusted to guarantee that the experimental setup is correctly reproduced. Figure pictures the

experiment and SIMION for different rotation angles. The electrode assembly is illuminated by the UV light
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while the panel is covered by a sheet of paper that eases visualization. An excellent qualitative agreement
with the SIMION model is achieved. However, the UV lamp illuminates areas outside the central bright
spot and generates a complex radial distribution. This is a significant source of uncertainty that cannot be

easily accounted for without dedicated characterization equipment. Alternatively, focused UV lasers may be

employed in future works.

(a) Experiment (30°) (b) SIMION (30°)

(c¢) Experiment (50°) (d) SIMION (50°)

(e) Experiment (70°) (f) SIMION (70°)

Figure 5.7: Calibration of the position and heading of the UV light.
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5.3.4 Results and discussion

5.3.4.1 Overview

The trajectories of 500 randomly sampled photons are propagated in Fig. to characterize the flux
of photoelectrons coming out of the electrode assembly. A single consecutive photon reflection is considered
for —25° to illustrate this effect, but it is then removed from the other cases for clarity. The results obtained
in this work are computed with an unlimited number of reflections. A brief study of the plots tells us that
photolectrons will be detected between —25° and 0° and between 75° and 100°. Reflected photons may also
induce photoelectron release, but this may be considered a second-order effect due to the spread of particles

in the vacuum chamber.

(b) 0° (c) 25°

(d) 50° (e) 75 (f) 100°

Figure 5.8: Overview of photoelectron trajectories (green) generated by the UV source (white) as a funtion of
the electrode assembly heading angle. The first iteration of reflected photons is shown for —25° and removed
for clarity in the other cases.
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5.3.4.2 Experiments

The potential of the electrode assembly described in Sec. is set to -100 to -900 V with steps of -200
V while being irradiated by the UV source. The assembly is rotated in steps of 2.5° and the electron signal is
recorded. When detected, photoelectrons appear in the energy spectrum of the RPA as a prominent, isolated
peak. Following the same approach as in Chapter 3, RPA currents generated by photoelectrons with energies
in the £50 eV band around the potential of the electrode assembly are recovered. This approach is much
less time consuming than measuring the full energy spectrum for each angle and potential configuration.

Figure compares experimental results with numerical simulations performed in SIMION with
and without diffuse photon reflections. In both cases, the model is able to identify the angles for which

the photoelectron flux is detected, the overall trend with the applied electrode potential, and the order of
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Figure 5.9: Comparison of experimental and simulated currents from the electrode assembly as a function of

its potential and heading angle. The currents correspond to the electron flux entering the RPA in the +50
eV band around the electrode potential.
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magnitude of the signal. Surprisingly, the elimination of photon reflections results in a qualitatively better
agreement with the experiments, particularly around —30° and 60°. This is counterintuitive, because the
UV light wavelength is so small that diffuse reflections must necessary take place over the rough aluminum
surface employed in the experiments. An additional interesting feature is the photoelectric current decrease
with the applied electrode potential for a 25° heading angle. As observed in Fig. .=, the panel of the assembly
acts in this case as an electrostatic deflector: when the potential decreases, the flux progressively moves away
from the RPA and the signal is lost. Most important, however, is to note that the peak between 75° and
100° is largely overestimated in the simulations. The study of Fig. shows that this peak corresponds
to incidence angles ¢ close to 90°. Either the simplified models presented in Sec. do not provide a
good representation of the photoelectric effect at high incidence angles, or geometrical errors are somehow
precipitating the appearance of the peak in the SIMION model. Unfortunately, this hypothesis is hard to
validate due to the spatial constraints of the vacuum chamber, and is left as an open question for upcoming

works.

5.4 Applications

The analysis presented in Sec. shows that particle tracing simulations can be used to compute
the detectability of a target spacecraft and an order of magnitude estimate of the photoelectron fluxes
when irradiate with a UV source. This opens the possibility of replacing low-energy electron beams by
high-energy UV lasers for secondary electron generation. The reasons why this may be an interesting idea
are subsequently discussed followed by the description of some of the applications that benefit from this

approach.

5.4.1 Critical analysis of previous methods

The surface properties listed in Sec. are generally obtained in a controlled laboratory environment
with samples that have been thoroughly cleaned with ion sources. Since even the slightest change in surface
conditions can alter these values [210-271, |, surface properties can degrade significantly after a prolonged

exposition to the GEO environment [252]. This adds a layer of uncertainty that must be accounted for while
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sensing.

In the electron-based method the release of secondary electrons at the target is induced by low-
energy electron beams. This choice is motivated by the rapid decay of the secondary electron yield §(E, ¢),
described by Eq. , after the peak d;,.x located at Epax < 1000 eV (see Table )! . Chapter | has
shown that low-energy primary electrons are particularly susceptible to the complex electrostatic environment
around the two-spacecraft system and add further uncertainty to the steering and expansion of the electron
beam. In addition to dymax and Enay, the secondary electron flux also depends on the backscattered electron
yield n(E, ¢). Even though the degradation of these parameters with respect to laboratory conditions can
significantly impact the charge balance and secondary electron flux magnitude coming out from the target,
Chapter  has shown that the spatial detectability of secondaries in a complex electrostatic environment
generally remains unaffected.

The operational conditions for the x-rays method, described in Refs. [27, 23], are the exact opposite
of the electron-based method. The emission of x-rays is boosted by high-energy primary electron impacts
[204], while the emission of secondary electrons is minimized (see Eq. ). The higher electron velocity
also increases its gyroradius, leading to quasi-rectilinear (hence, easily predictable) trajectories. Finally, the
backscattered electron yield converges to the value given by Eq , which remains relatively constant with
surface degradation, as shown in Fig.

Although the x-ray sensing method is particularly robust to changes in the geometry of the problem
[27], it is significantly less accurate than the secondary electron method [!/], which in turn exhibits large
sensitivities to the electrostatic environment [205]. Both approaches are therefore complementary. However,
the use of low-energy electron beams in the secondary electron method complicates the measurement process

and makes it particularly dependent on the uncertainty in material properties.

1 However, at high energies the secondary electron yield may follow an extended power law rather than Eq. . This
results in higher yields at energies beyond Ej,qz, which may enable the possibility of using high energy beams that are less
susceptible to the ambient electrostatic environment [253, I
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5.4.2 Touchless potential sensing

Active photoelectron-based sensing makes use of UV lasers to release photoelectrons with energies
of the order of few electronvolts (see Eq. ). Commercial lasers are already available for this purpose,
with a sample of them being given in Table 5.2. The electrons are then accelerated by the electrostatic
environment and reach the servicer with an energy that is approximately equal to the potential difference
between the crafts. An RPA is employed to characterize this flux and determine the energy of incoming
electrons. Knowing the potential of the servicer, that of the target is finally determined.

The active photoemission approach can be employed alone or in combination with high-energy electron
beams. However, the standalone implementation risks increasing the target potential by releasing photoelec-
trons, eventually preventing their emission. In addition, a concentrated laser beam may locally charge the
target and shift its potential [253, ], inducing further measurement errors. A trade-off study between laser
power and RPA sensitivity should be carried out to identify the best operational regime. Close proximity

operations may benefit from the accuracy of this method and the compactness of the hardware involved.

Table 5.2: Representative parameters of commercial-off-the-Shelf UV lasers.

Divergence A w Pon

Model (mrad) (nm) (eV) (MW
TOPTICA Photonics CW213 1 190 6.5 20
Photon Systems HeAg-224SL 4 224.3 5.5 50
Opto Engine LLC MPL-N-257 1 257 4.8 15
Photon Systems NeCu 30-248 4 248 5 50

5.4.3 Charge control

The decoupling of the x-ray and secondary electron generation processes and the net negative and
positive current fluxes that they respectively impart on the target brings the opportunity of measuring the
target potential without significantly altering the measurement. To do so, the positive and negative current
fluxes must be balanced.

The photoelectron current induced by a UV laser with photon flux np (see Eq. 5.1) is

Jph = Y(w,R)nph. (56)
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Similarly, the flux of high-energy electrons is

R £
]c = 57
ge ( )

where I, is the current of the electron beam. For beam energies F; of the order of 10s of keV and for most

materials, 6(F,0) < n(Z, E, ¢) and the flux of incoming electrons becomes

Jo = [1L=n(Z, )]je- (5.8)

If follow-up interactions produced by backscattered electrons and reflected photons are ignored, the condition

for neutral charging is obtained by equaling Egs. and 5., resulting in

¢  Y(w,R)

L TP M )

which gives the electron beam current I, required to balance, in first order approximation, the charge induced
by a laser with power Py, and photon energy w for E > 1 keV. If the target material is known, good
estimations of the surface properties can be obtained by employing high-energy electron beams and lasers.
However, simulation frameworks like the one introduced in Sec. are needed to account for backscattered
electrons, reflected photons, and, for materials with high yields at high impact energies (e.g. gold), secondary
electrons. The exact same approach could be employed in combination with spacecraft charging models to

set the target potential to a certain value.

5.4.4 Material identification

The photoelectric effect has been traditionally employed to determine the work function of surfaces
in laboratory settings. The material is exposed to a coherent laser beam with predefined wavelength, and
the energy of the emitted photoelectrons is characterized with an RPA. The stopping potential, defined as
the value that matches the energy of photoelectrons and prevents their collection at the RPA, is obtained.
This process is repeated for lasers of various energies, leading to a stopping potential versus laser photon
energy plot. Following Eq. , the y-intercept is the work function of the material [290]. From a remote
sensing perspective, the value of the work function can be employed to constrain the range of possible surface

materials.
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The same process could be utilized to approximately characterize the materials employed at the surface
of a target spacecraft. The servicer would utilize UV lasers of varying wavelengths to excite photoelectrons,
which are then collected by an RPA. The stopping potential is thus determined, and with it, the work
function of the material. However, the flux of photoelectrons arrives at the servicer with an energy equal to
the potential difference between the crafts plus the stopping potential. Given that the work function is of the
order of 5 eV (see Table ©.1) and that the maximum touchless potential sensing accuracy achieved to date
is of the order of 20 V (see Chapter 3), uncertainties in the stopping potential determination may render
this approach unfeasible. Instead, multiple lasers with energies between 2 and 10 eV could be employed to
sequentially excite the target. The minimum energy that produces a peak in the energy spectrum would

become the closest approximation of the work function of the material.

5.5 Collaborators

The results presented in this chapter were obtained in collaboration with Kaylee Champion, whose

contributions are gratefully acknowledged.
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Chapter 6

Preliminary considerations

The term low-gravity magnetohydrodynamics has been identified in Sec. as the intersection
where liquids are subject to relevant surface tension and magnetic polarization forces. Lorentz forces are
also included in this definition but, although briefly covered in Chapter |/, are not the main subject of
this dissertation. A first important feature of the combination of electromagnetism and low-gravity fluid
mechanics is the coupling between fluid and magnetic problems. That is, the presence of a magnetizable
volume in a magnetic environment modifies the magnetic field, and such field drives the momentum balance.
A second characteristic is the small gravity to surface tension ratio (or Bond number) that, similarly to
capillary flows, drives the behavior of the liquid. The low Bond number represents an important difference
with respect to most terrestrial fluid systems, and leads by itself to a complex analytical approach to the
fluid problem [%7]. When magnetic forces are considered, however, the system becomes dependent also
on a spatially inhomogeneous magnetic force potential, which invalidates and/or severely complicates most
classical solution procedures. Finally, the discontinuity in the Maxwell stress tensor across the interface of
a polarized liquid leads to a magnetic normal traction term that complicates the adoption of a potential
formulation.

The existing literature on the topic has not devoted sufficient attention to this family of problems, lead-
ing to overly simplified application-oriented models. However, ignoring key features like the fluid-magnetic
coupling may lead to significant errors, particularly in microgravity and for highly susceptible liquids. There-

fore, the goal of Part || is to comprehensively address the problem of low-gravity magnetohydrodynamics.
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6.1 Forces on magnetically polarized media

The discovery of diamagnetism dates back to 1778, when A. Brugmans reported the diamagnetic effect
on bismuth [207]. In 1845, M. Faraday demonstrated that magnetism is a universal property of matter and
carried out the first thorough study of the phenomenon, classifying different materials as “diamagnetic” and
“paramagnetic” [29%]. Atoms with completely filled shells have a total orbital momentum of L = 0 and
a spin angular momentum of S = 0. The corresponding total angular momentum operator J = L + 5 is
therefore J = 0 and the total atomic magnetic moment cancels out. When a magnetic field is applied, it can
however still modify the electron’s angular velocity as the electron spins around the atomic nucleus [299].

Considering that an atom has Z electrons, the magnetic dipole can be expressed as

Z
o =wi g (%), (6.1)

where wy, is the electron angular velocity, e is the elementary charge, ¢ is the speed of light, and <r2> is
the average squared radius of electron trajectories in a plane perpendicular to the magnetic flux B. The B
field-based magnetic susceptibility can be directly expressed as the quotient of the magnetization and the

magnetic flux modules as

M Ze?

X= g = s ()N, (6.2)

with IV being the density of atoms and m the electron rest mass. A diamagnetic species responds opposing
against a magnetic field via a negative magnetic susceptibility which increases with increasing r2. Param-
agnetic materials, in contrast, possess finite magnetic dipole moments due to the spin of unpaired electrons.
Upon application of an external magnetic field, the dipoles tend to align along the direction of the magnetic
field in order to reduce the magnetic energy. This alignment depends on the statistical distribution of the
initial orientations and on the temperature. The magnetic susceptibility of a paramagnetic substance is
given by

1 M,24
Yl=N :
X Sen T (6.3)

where 1 4 is the finite magnetic dipole of atoms, kp is the Boltzmann constant, and T is the temperature.
From a macroscopic perspective, diamagnetic and paramagnetic substances are repelled and attracted

by a magnetic dipole, respectively. The body force acting on a magnetized medium, named in this case Kelvin
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force, adopts the form (see Appendix )

JFm = moMVH, (6.4)

where g is the magnetic permeability of free space, and M and H are the magnetization and magnetic

fields, respectively. The H field-based volume magnetic susceptibility of the material, x¥°!, is defined through
M = x"°'H, (6.5)

and its sign determines whether a substance is diamagnetic or paramagnetic. The H-based definition of

VO

x"°! will be adopted in this work. Ferrofluids are characterized by large susceptibilities and a non-linear

vol )

dependence between M and H. Magnetic susceptibilities are commonly expressed per unit volume ('),

mass (x™*%), or mole (™)

in the international or CGS systems [}00]. In this thesis, symmetrical fluids
are considered for which the magnetization and magnetic fields are aligned. Alternating magnetic fields at
sufficiently high frequencies or fluids with very large vortex viscosity values may render Eq. inappropriate
due to the transient misalignment between M and H [20]. However, this is not a concern for the problems
studied in this dissertation.

Natural liquids exhibit very low susceptibility values. Therefore, the effect of the magnetization field
on H can be neglected and the analysis can be carried out as a function of the external magnetic field in the
absence of magnetized media, which is here denoted as H,. Same is true for the magnetic pressure terms

that arise at the liquid interface. This effectively uncouples the fluid-magnetic problem and simplifies the

modeling of the system.

6.2 Stress tensor and force distribution

The magnetodynamic state of an incompressible continuous medium is described by means of the

viscous Maxwell stress tensor, given by [02, 301-303]
T =9+9, +In, (6.6)
where the pressure, viscous, and magnetic terms are

I, =—-p"1I, (6.7a)
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I, =n[Vv+ (Vv)'], (6.7b)
T, = f%HQI + BH, (6.7¢)
and where
9
p* =pv,T)+ ,uo/ £ [vM]dH' (6.8)
0 1%

is the composite pressure, which includes hydrostatic p(v,T) and magnetopolarization terms. In these ex-
pressions, B = po (H + M), I = §;5e;e; is the unit dyadic in the Cartesian e; reference system, and v is
the fluid velocity.

The forces per unit volume exerted on the medium in the absence of electric fields are computed as

the divergence of the stress tensor given by Eq. , resulting in [307]
F=fp+Ff+Fm (6.9)
with
o=V -9 =-Vp", (6.10a)
f,=V-T,=V- {77 (Vo + (Vo)T] }, (6.10b)
for =V T = oMV H = juo(M - V)H. (6.10c)
The reader is referred to the Appendix A for the derivation of Eq. , where it is assumed that no internal

currents are present in the liquid. If the viscosity coefficient is constant, the viscous term reduces to

fo=nViv. (6.11)

6.3 Governing equations for a magnetic, viscous, incompressible fluid

6.3.1 Volume equations

The ferrohydrodynamic mass and momentum conservation equations that derive from the stress tensor
in Eq. are [10]

V-v=0, (6.12a)

v
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with D denoting the material derivative, and ¢ the time. Applications involving unequilibrated ferrofluid
solutions, for which M x H # 0, should also incorporate the effects resulting from particle rotation. An
additional term is then added to the viscous stress tensor J,, and the angular momentum and magnetic
relaxation equations also have to be considered [302, ]. As previously noted, symmetrical fluids are
considered in this dissertation, and therefore M x H = 0.

The terms f, and f,, are defined by the fields H, B, and M, which have to be computed at each time
step by solving the magnetic problem. Assuming a static magnetic configuration without surface currents

and electric fields, the magnetostatic equations that determine such fields are [20]
V-B =0, (6.13a)

VxH=J,, (6.13b)

where J. is the volume density of electric current, which only appear outside the magnetized region.

6.3.2 Boundary conditions

Surface forces are present at the liquid interface as a consequence of the discontinuity in the stress
tensor. Those forces are balanced according to the ferrohydrodynamic incompressible viscous boundary con-
dition. Assuming a contact between a ferrofluid and a non-magnetic, inviscid gas, the condition is expressed

in normal (n) and tangential (¢) components as [307]

vy,
n: p*— 277% + Pm — pg = 20%, (6.14a)
8Un a'Ut
t: — 4+ —1]=0 6.14b
7] (8.1375 + 6$n> ) ( )

with n being the external normal vector, p,, = uoM?2/2 the magnetic normal traction (derived in the Ap-
pendix ), # the mean curvature of the interface, v,, and v; the normal and tangential velocity components,
and z,, and x; the distances along the normal and tangential directions, respectively. These balances should
adapted if multiple liquids with different magnetic properties are considered, as done in Refs. and 3. In

addition, the magnetic boundary conditions are

n-[B] =0, (6.15a)
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n x [H] = K., (6.15b)

with K. denoting the electric surface currents, and [-] the difference across the interface. Therefore, the
normal component of B and the tangential component of H are continuous across the interfaces in the

absence of surface currents.

6.4 Formulation of mass-force potentials

Analytical methods rely heavily on potential formulations to simplify the derivation of results. Unlike

the inertial acceleration, the magnetic force is spatially inhomogeneous for virtually all scenarios of interest.

In spite of this complication, it can be shown that the magnetic force in Eq. derives from a potential if
the liquid is isothermal [305]. In that case, the mass-force potential II for inertial and magnetic terms is
Ho a
M=gz+1,,, with I, = ——/ M(H)dH (6.16)
P Jo
where the convention f = —VII has been employed. The mass-force potential can also include a centripetal

acceleration term [45], but this possibility is discarded for simplicity.



Chapter 7

An analytical perspective

The complexity of the coupled fluid-magnetic problem described in Chapter ( may suggest that an
analytical approximation to low-gravity magnetohydrodynamics is totally unfeasible. Indeed, previous works
in the field rely heavily on numerical simulation frameworks [157, —171], somehow renouncing to more
classical methods. This chapter shows that an analytical approach to the study of capillary, magnetic lig-
uid interfaces is not only feasible, but also convenient. The derivations here introduced follow the classical
literature in low-gravity fluid mechanics (brilliantly summarized by Myshkis and coworkers [#7]) and focus
on three basic concepts: equilibrium, stability, and modal response. The study is limited to axisymmet-
ric liquid-gas interfaces due to their relevance for space systems and simplified treatment. However, the
same fundamental modeling decisions can be applied to a wide variety of problems, from three-dimensional

equilibrium shapes to magneto-thermocapillary convection.

7.1 Problem definition

Figure sketches the basic problem under study, where a volume V of a magnetically polarizable
liquid fills an axisymmetric container and develops a meniscus with contour radius a in partial gravity
conditions. The liquid is incompressible, inviscid, with density p, specific volume v = p~!, surface tension o,
and wall contact angle .. An applied inhomogeneous axisymmetric magnetic field is imposed by a magnetic
source (e.g. a coil or a permanent magnet) located at the base of the vessel and interacts with the fluid
with magnetization M (H). H and M are the modules of the magnetic H and magnetization M fields,

respectively, which are assumed collinear. A non-reactive gas with pressure p, fills the free space. In the



111

a

Figure 7.1: Framework of analysis for the study of magnetic liquid interfaces in low-gravity [10].

figure, s is the arc parameter along the meniscus with origin in the vertex O and the relative heights are w
(fluid surface - vertex), f (meniscus - vertex) and h (fluid surface - meniscus). The meniscus and its contact
line are labeled as S’ and C, which for the moving interface become S and C, and the wall of the container
is denoted as W. The problem is studied using the cylindrical reference system {e,, e, e.}.

Although Fig. shows the classical paradigm employed in low-gravity liquid sloshing research, the
reader should note that minor geometrical modifications will transform this sketch into a pending droplet,
a gas bubble, or many other axisymmetric problems without significantly altering the formulations here
introduced. Unlike other works on low-gravity fluid mechanics [#7], centripetal accelerations is discarded for

simplicity (but can be included by adding an extra term to the mass-force potential in Eq. ).

7.2 Equilibrium

7.2.1 Dimensional formulation

The equilibrium equations for an axisymmetric interface subject to the mass-force potential given by
Eq. can be derived from the Young-Laplace equation in Eq. . After considering the hydrostatic

Euler condition for the pressure terms (resulting from the steady-state particularization of Eq. ), one



112

gets

—pIl + pp, + ¢ = 20%, (7.1)

where ¢ is an arbitrary constant. By employing the angle of inclination 8(s) of a point at the interface

profile, the derivatives of the radial and axial coordinates with respect to the arc parameter s become

v =cosf, [ =sinp,

(" =d/ds) (7.2)
P = *6/3/ f// _ 5/7”/
and the curvature of the interface can be expressed as [#7]
_ 1
weL(#+ 1), o

where the liquid is assumed to remain in the z-negative side of the interface. If the liquid was in the z-positive
region, a negative sign would precede this expression. By combining Eqs. 7.1-7.3, the equilibrium interface

equations become

o= {[en-t i - I (7.42)
por{[tn-teed -2} ra

where the geometrical compatibility condition 7’ 24 i 2= 1is imposed. These expressions differ with respect
to those obtained by Myshkis and coworkers [7] in the addition of the magnetic normal traction p,, and

the inclusion of a magnetic potential term. The system can be expressed in the alternative form

(Tfl)/ — ’I"'I"/ (gn _ I% + C) , (75&)
T/f// + f/f// _ 07 (7.5b)

by adding up r”” and f” in Eq. and differentiating the geometric compatibility condition. This expression
is derived in Ref. 10 from the vertical force balance at the interface, and its non-magnetic equivalent can be
found in classical textbooks on low-gravity liquid sloshing [(73]. Appropriate boundary conditions should be
imposed at the beginning and end of the axisymmetric arc. This task is simplified using a nondimensional

formulation of the problem, which is subsequently presented.
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7.2.2 Nondimensional formulation

The non-magnetic case of Eq. is usually transformed into a nondimensional set of differential

equations. In the magnetic problem, this process leads to

d (_dF dR —
s (Rd8> =R [A\+ BoF —¢(R)], (7.6a)

dF d*F dRd?R

ds as? Tasasz = (7.6b)
subject to the boundary conditions arising from Fig.
dF'(0) dR(0)
= F = — = —_— ]_ .
R(O0) = F(0) = S =0, o =1, (7.60)
w—tan<z—§) (7.6d)
drR 2 ) '

where R = r/a, F = f/a, 8 = s/a, Bo = pga®/o is the Bond number, A = ac, 1 includes the magnetic

potential and magnetic normal traction through

H(R,F(R)) M2
/ M(H)dH + ~2
H(0,0) 2

) (7.7)
F(R)

w<R>““O[

g

and the static contact angle 6. with respect to the vertical is given by

C/) . (7.8)

The axisymmetric meniscus F'(R) is computed with an iterative shooting algorithm that accounts for the

_ T dw
06 :9(X+§ arCtaH(dr

fluid-magnetic coupling. The algorithm solves the meniscus balance from Eq. for a given magnetic
field, and then the magnetic field is recomputed in magnetic solver employing the new interface. The
process is repeated until the vertex height converges with a prescribed relative variation. When non-trivial
magnetic setups are involved, a numerical solver must be included in the loop to compute the magnetic and

magnetization fields inside the liquid.

7.3 Stability

The classical literature in low-gravity fluid mechanics has devoted significant attention to the stability

of liquid interfaces [27]. Space applications make use of the critical Bond number Bo*, which determines the
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critical load g* that destabilizes the surface through

*x 2
Bo* =222 (7.9)
o
as a design parameter [#0]. Although this problem has been comprehensively studied since the Apollo era,

its magnetic equivalent remains practically unexplored. Exceptions are the numerical works by Marchetta
and coworkers 157, —171] where the magnetic field is computed or measured as a fixed external input.
Then, the magnetic contribution is either implemented as a source term in the momentum (Eq ) or
energy balances.

Even though the formulation of the problem is complicated by the application of highly inhomoge-
neous force fields, the meniscus stability analysis can still be carried out by means of quasi-analytical tools
for axisymmetric geometries. Referring to Myshkis and coworkers, “if for a certain position of absolute equi-
librium of a liquid the second variation 6°U of the potential energy U for the mechanical system ‘liquid +
vessel wall’ is positive, the position [of the interface] will be stable” [25]. The potential energy U is expressed
as the sum of energies related to the fluid surface S, liquid wall W, gas wall W, and mass-force potential

II, which results in

Cu:U\S|+6|W|—F0g|T/I/'g|+p/ Idv, (7.10)
v

where ¢ and o, are the surface tensions of the pairs liquid/wall and gas/wall, respectively, and | - | denotes
the area of the corresponding surface. By expressing Eq. in terms of the geometry of the system and

computing its second variation, a quadratic functional 62U is obtained. The application of the principles of
calculus of variations to this functional results in an eigenvalue problem that determines the stability of the
interface (i.e. a spectral stability criterion). For axisymmetric problems, it can be split as the sequence of

one-dimensional boundary-value problems
yo , d
—%o— —potals)po tu=Apo (0Ss<sp= o), (7.11a)

@o(s1) + x(s1)po(s1) =0, /051 rpo(s)ds = 0, (7.11b)

/ 2
— o — Don+ [a(s) + 712] on=App, (0<s<s;;n=1,2,..), (7.12a)
r r



115
@ (s1) + x(s1)@n(s1) = 0, (7.12b)

with s denoting the arc parameter along the axisymmetric meniscus S that starts at the axis (s = 0) and

ends at s1, i and A being unknown parameters,

a(s) =

r2

I I 2
g (r’i—z’%ﬁ) I (7.13)

being a function that depends on the radial r and axial z positions and the normal derivative of IT at the

interface, and

kcosf, — k

.14
sinf. ’ (7.14)

x(s1) =

representing a boundary parameter where 6, is the contact angle of the liquid with the wall and k and %
are, respectively, the radial curvatures of the surface S and tank wall W [25]. The functions ¢ and ¢,, are
bounded at the origin and denote the axisymmetric and lateral stability modes with increasing eigenvalues

Ao; and Ay; for ¢ > 1. It can be shown that the critical eigenvalue is given by
)\* = min{/\01, All}a (715)

and that the equilibrium state is stable (asymptotically stable, for a viscous liquid) if \* > 0, and unstable
if A* < 0 [29]. The nature of the instability is determined by the relative magnitude of the axisymmetric
and lateral eigenvalues. For example, if A\g; < A11, the axisymmetric perturbations are most dangerous.
Alternatively, the stability of the surface can be determined by defining a critical x*(s1) parameter, such
that if x(s1) < x*(s1) the equilibrium state is unstable, and if x(s1) > x*(s1) it is stable. From the
computational perspective, the main advantage of this method is that it substitutes the boundary-value
problems in Eq. and by three second-order ordinary differential equations. Further details can be
found in Ref.

The magnetic terms can be readily implemented in this procedure by employing the mass-force po-
tential described by Eq. . If a highly susceptible liquid is considered, the pressure-like term p,, must be
included in the derivation of Egs. and and a coupled fluid-magnetic simulation framework must
be employed to solve the liquid interface. Complex geometries or time-dependent problems may instead be

studied by means of numerical frameworks like the one introduced in Chapter
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7.4 Modal response

As with any other mechanical system, the analysis of the dynamic response of a liquid surface can be
performed through modal analysis. The procedure is conceptually similar in all problems: after finding the
equilibrium meniscus, the free surface is perturbed with a linear oscillation. A set of admissible functions
is then substituted in the governing equations, resulting in an eigenvalue problem from which the eigenfre-
quencies and eigenmodes are obtained [#(]. The modal analysis of microgravity liquid interfaces was first
formulated and solved by Satterlee and Reynolds in 1964 [200], and is significantly more complicated due to
the presence of a curved meniscus. However, it is key for developing mechanical analogies that reproduce
the forces and torques induced by a sloshing propellant on a spacecraft [03]. The low-gravity magnetic case
can be derived in a similar way after considering the fluid-magnetic coupling. Although forced oscillations

are addressed in Ref. 10, the discussion that follows is limited to the free surface oscillations problem.

7.4.1 Nonlinear formulation

If an irrotational flow field is assumed, there exists a potential ¢ such that

_ 09, 109 99
=—-Vo¢= o e, 69 8262. (7.16)

The velocity potential satisfies Laplace’s equation

62¢ 19¢ 109% 0% .
T‘ar‘i‘ﬁw‘i‘@:()lnv, (717)

v2¢ _
subjected to the non-penetration wall boundary condition

96 100 96
E —07 1"80 O7 & =0on W. (718)

An additional boundary condition at the free surface is given by the unsteady ferrohydrodynamic Bernoulli’s

equation, which for an isothermal system with collinear magnetization field M adopts the form [20, ]

26 v L, _
3t+f+f+g —==dpons (7.19)

where ¢(t) is an arbitrary function of time. For magnetically diluted systems M ~ p, where p is represented
by the magnetic particles concentration for the case of ferrofluids. Under this additional assumption, both

pressure-like components are approximately compensated, and hence p* = p(p,T) [20].
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From Eq. , the ferrohydrodynamic boundary condition in the absence of viscous forces becomes
P =20% + py — pm on S, (7.20)
with
10 10
— = o t 33 = (7.21)
ror 1+ w2 + Hw? " 1+ w2+ swd
being the curvature of the surface [3(]. Since at Eq. only the spatial derivatives of the velocity potential
have a physical meaning (e.g. Eq. ), any function of time can be added to ¢ whenever it is convenient.

From a physical viewpoint, the absolute value of p remains undetermined under the incompressible flow
assumption [307]. The integration variable ¢(¢) can be then absorbed into the definition of ¢. By arbitrarily

selecting ¢ = py/p, the dynamic interface condition is obtained

09 _11(00\" 1 (00\* (06| _20% Wy | oMy
Bt_2[<8r> te (89 + 9z T, —gw+ P + 2 =0on S. (7.22)

In an inertial reference system, the vertical displacement w of a surface point lying at (7, 6) in the interface
z =w(r,0,t) is given by
dw Ow  Owdr Ow do

If the velocity components relative to the tank dw/d¢, d7/dt and 7df/dt are expressed as a function of the
potential given by Eq. , the kinematic interface condition that relates the last with the shape of the free
surface becomes

ow  0¢  Owd¢ 1 0wdp

E__a—’—gf%—’—ﬁ%% on S. (7.24)

The continuity equation given by Eq. , together with the kinematic relation in Eq. and the boundary
conditions at Eq. and Eq. , conform the problem to be solved after imposing the contact angle at

the wall (6.) and a contact hysteresis parameter that will be described later in the text.

7.4.2 Linear equations

The dynamic and kinematic conditions at Eq. and Eq. are highly nonlinear. This difficulty

can be overcome by linearizing the problem and restricting the analysis to small oscillations. If the wave
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position is expressed as the sum of the static equilibrium solution and a small perturbation

w(r,0,t) = f(r) + h(r,0,t), (7.25)

it will be possible to express the system of equations and boundary conditions as a Taylor’s series expansion

around the equilibrium surface S’. After neglecting second-order terms, the boundary-value problem becomes

V2p=0inV, (7.26a)

8(;5_0 18(;5_0 0¢

E_ , ;%_ , &ZOOH W. (72613)

1 1 H M
%_ﬁ_E ,g M Eﬁ ah—m —|:g—MO<Ma+Mn8n>:|h=OOHS/,
ot p | ror | Y1+ (0ffor)2| 1200 | \/1+ (0f/0r)> p 0z 9z
(7.26¢)
oh 09 Of 09 ,
ot~ oz Tarar MY (7.:26d)
% =~h on C'. (7.26€)
Equation assumes that the slope of the perturbation field at the wall is related to the magnitude

of the perturbation at the same point through the parameter v. The free-edge condition is characterized
by v = 0, while the stuck-edge condition is associated with v — oo [17]. This assumption is far from being
rock-solid, and has indeed motivated a strong debate in the past. It has been suggested that the contact
angle hysteresis condition depends not only on the position of the wave but also on its velocity [30%] or the
state of the wall [709]. In the absence of a clear criteria, some studies assume the free-edge condition or
intermediate approaches, generally obtaining a reasonable agreement with experimental data [310].

The only difference between the previous formulation and the classical problem without magnetic
interactions is given by the magnetic term in Eq. . The effective gravity acceleration includes both

inertial and magnetic components and is given by

(7.27)

oOH oM,
0z C 0z )

ror-a (2
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where it can be observed that the magnetic contribution is a function of the radius. The magnitude and
relative importance of the magnetic terms depend on the magnetic configuration and gravity level of the
system under analysis.

The magnetic field modifies the effective gravity acceleration of the system and shifts its natural
frequencies, as reported in normal-gravity works 100, ]. If the magnetic term was approximately constant

in R, like in the case of a linear magnetic field and a flat surface, the problem would be equivalent to the non-

magnetic system [ (2, ]. In this analysis, however, an inhomogeneous magnetic field is being considered.
7.4.3 Dimensionless linear equations
In Refs. and |7 it is proposed to split the potentials ¢ and h into spatial and temporary compo-

nents, the second being a cyclic function of time with a circular frequency w. The resulting dimensionless

boundary-value problem is

V20 =01inV, (7.28a)

g—i =0on W, (7.28Db)

Q*® — [Bo + Bomag(R)|% + %% m %% \/% =0onS’, (7.28¢)
#H = g—i - %g—g on S, (7.28d)

% =T% on C’, (7.28e)

where R =r/a, Z = z/a, F = f/a, $(R,0,Z,t) = \/goa*>P(R, 0, Z) sin(wt), h(R,0,t) = \/ago/w?*F (R, H)-
cos(wt), 0% = padw?/o, T = ay and go is the acceleration of gravity at ground level [“(]. The Magnetic

Bond Number is defined as

2
Bogag(R) = — 122 <M %—H + M,LaaMn> , (7.29)
g z z F(R)

and accounts for the effects of the external magnetic field on the liquid.
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7.4.4 Variational formulation
By following the procedure described in [17, ], it is possible to develop a variational principle
equivalent to Eq. and Eq. as
(0% /OR 1 0% /00)?
[OR)" (0%/99) + (Bo + Bomag(R)) #* — Q*®F | RARAO—

=l

{1+ (0FJOR)?  R?\/1+ (OF/OR)?

02 // ®GRARAO — F/
W !

%2

e df = extremum, (7.30a)
1+ (0F/OR)? | ._,

subjected to

V20 =0inV, (7.30b)

09 OF 8<I>

n S, 7.30

~09Z OROR° (7.30c)

o® oW 09
& _Ywer .30d
G 27 orRoR ™ n W, (7.30d)

o

R I'#% on C’, (7.30e)
where G is a function defined by Eq. that accounts for the non-penetration wall boundary condition
and that arises naturally after reducing a volume integral in the original form of Eq. to a surface
integral using Green’s theorem, as described in Ref. | 7. The obtention of this variational formulation follows

the procedure described in Refs. and

7.4.5 Ritz method

The previous set of equations can only be solved analytically for simplified configurations in the
absence of magnetic fields, like the case of a cylindrical container with flat bottom and flat fluid surface
(6. = 90°) [300]. For other physical systems, Ritz approximations [!7, “0] or finite differences approaches
[313, ] have been proposed to approximate the eigenfunctions of the problem. The basic formulation of
the first approach is subsequently developed based on Refs. and

By following Ritz’s method, the eigenfunctions ®() can be approximated as the linear combination of

admissible functions ®;(R, 0, Z) that satisfy the boundary conditions of the problem described by Eq.
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to Eq. . This results in
N
o™ =", (n=1, .. N), (7.31)
i=1

where N is the size of the set of admissible functions. In the same way, the eigenfunctions ‘7@(”) and G

are approximated by (;(R,0) and &,(R, #) through

N
7™ =3 ", (7.32)
N
a™ =3"c"E,. (7.33)
The sets of admissible functions are linked through Eq. and Eq. L IF e (™ and G are
continuous functions of Ci(”), the extremum condition represented by Eq. requires that
I
% =0, (i=1,2...,N), (7.34)
ac;™
which results in the system of equations
N
e (Rij + BoLy +Lj;" — QiQ,»j) —0, (j=1,2...,N), (7.35)
i=1
being
(0¢;/OR)(0C./OR 2(0¢;/OR)(OC;/OR 2m ¢
Ry = [ | LR 01 | OO OR)] iy | e .
Y 1 + 6F/8R) R?\/1+ (OF/OR)? 0 $/1+4 (OF/OR)? Re1
(7.36a)
L= [[ <& nana. (7.36b)
F
L5 = [ Bowag(RICE; RaRas. (7.36¢)
1 S 1 S
Qij = 5 // (CIJiCj + (chi) RARAO + 3 // (<I>,-§ + &, )Rde&. (7.36d)
F F

The system has a nontrivial solution only when its determinant is zero. The eigenvalues 92, and therefore

no

the corresponding modal circular frequencies w,,, are then computed by means of the characteristic equation
HR” + BOLij + ng-mg — Q2Q”|| =0. (737)

Once solved, the eigenfunctions of the problem are obtained from Eq. to Eq.
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7.4.5.1 Selection of admissible and primitive functions
The set of admissible functions for ®, # and G, related through Eq. and Eq. , satisfy
by definition Eq. to Eq. and form truncated series that approximate the eigenfunctions of the

problem. A set of primitives should be previously defined as [3((]

¥y = Jn(kpR) cos(m)e**?  (p=1,...,.N,N+1), (7.38a)
oV, OF 9V
¢, = <P _ P) , (7.38b)
P 9Z  OROR ) ;_pp
(09, OW 0¥,
& = ( 9Z ~ OR OR ) P— (7.38)

with k, being the roots of the equation

d
T (k; =0, .
[dRJ( R) . 0 (7.39)

where J, is the Bessel function of first kind and order n. This index is used to study the axisymmetric
(n =0) or lateral (n = 1) case, while m defines the circumferential symmetry of the problem. Axisymmetric
primitive functions will be characterized by n = m = 0, while lateral sloshing functions can be obtained with
n=m=1.

However, the previous set of primitives does not satisfy Eq. . The set of admissible functions is

then created as a linear combination of the previous

o N+1 B N+1 B N+1
(I)i = Z aipﬁpv Cz = Z aipva gz = Z aipfpa (Z:J;Q;:N) (740)
p=t p=1 p=t

The N 41 — p coefficients a;;, for each i value are determined by imposing (i) a normalization condition, (ii)
a contact angle value, and (iii) a Lagrange minimization problem designed to produce Bessel-like functions.

These condition are respectively expressed as [30(]

N+1

Z aipGp(1) =1, (7.41a)

N+1 8(
> ai,,a—Rfu) =T, (7.41D)

p=1
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N+1
¢, L
Z aip(Kpj - k;ij) + )\1187%(1) + /\QiCj(l) =0 (]:’L, i+1, ..., N, N-/-]), (741(3)

p=i

where \1; and Ag; are the Lagrange multipliers of the minimization problem and

Cz‘(R) = Ci(Ra 9)/C05(m9)a (7-42)

_ oG —n .
Ky = //F (aRaé _ Rggg) RARAS. (7.43)
Lij = i ]RdeG 7.44
/ /F G (7.44)

Once the system is solved, the admissible set can be used to solve the eigenvalue problem.

The success of this method depends on finding an adequate set of admissible functions ®; such that
the eigenfunctions ®(™ can be represented with a reduced number of elements. The Z term in the primitives
9,, evaluated at the equilibrium surface, grows exponentially when F(R) departs significantly from Z = 0.
This is the case of low Bond numbers and small contact angles. In [217] it is stated that for contact angles
lower than 15° in the case of free-edge condition (I' = 0) or lower than 60° for the stuck-edge condition
(I' = o0) the system may become numerically ill-conditioned. Furthermore, the comparison between this
method and a finite differences approach showed significant divergences in the shape of the eigenfunctions
®() for particular cases.

A possible solution would be finding a set of primitive functions without exponential terms. To the
best knowledge of the authors, and considering the attempts made in Ref. , an alternative has not yet
been proposed. It should also be noted that the magnetic force generally flattens the equilibrium surface,

hence mitigating the effect of the exponential term in Eq.

7.4.6 Finite differences method

As previously mentioned, the system defined by Eq. can also be solved numerically, as done in
the 1960s with the non-magnetic problem using a finite differences approach [317, ]. This overcomes the
difficulties associated with the definition of appropriate primitive functions in the Ritz method.

In order to verify the implementation of Sec. , the numerical approach introduced in Ref.
to simulate the nonlinear dynamics and linear stability of capillary fluid systems is adopted in Ref. to

study a ferrofluid surface in a cylindrical tank taking the magnetic Bond number and the meniscus profile



124

S====S===S2s

Figure 7.2: Mesh employed to discretize a ferrofluid interface in a cylindrical tank using the finite differences
solution procedure.

as inputs. The spatial physical domain is mapped onto a rectangular computational domain by means of a
nonsingular mapping. Figure shows the mesh produced by this procedure for a particular configuration
of interest. The system defined by Eq. is discretized using Chebyshev spectral collocation points. The
temporal derivatives for the perturbations in A and ¢ are computed assuming an oscillatory behavior of the
type e, with w being the natural frequency. The generalized eigenvalue problem resulting from the spatial
and temporal discretizacion is finally solved using MATLAB’s EIG function, returning the different modes
of oscillation. For the case under analysis in Ref. , the eigenvalues obtained with both methods differ by

at most a 0.5%, verifying the implementation of the solve.

7.4.7 Limitations

Although the modal analysis procedure presented in this section is particularly efficient with respect
to coupled magnetohydrodynamic simulations, the reader should note that the linearization performed in
Sec. is done for constant magnetic and magnetization fields. In other words, a zero-order approximation
to the magnetic field variation with the oscillation of the ferrofluid interface is assumed. The next two
chapters will show the impact of this apparently innocent assumption and how fully coupled frameworks,

like the one presented in Chapter |0, perform in comparison.



Chapter 8

Bubble dynamics

Gas bubbles are the elemental multiphase flow unit and can be found in virtually all liquid systems
in space, ranging from life support to spacecraft propulsion. A vast body of literature has explored their
behavior on Earth, unveiling a plethora of phenomena of scientific and technical interest [317]. Even though
the models for the equilibrium, stability, and modal response of magnetic liquid interfaces described in
Chapter 7 are fully applicable to gas bubbles in liquids, specific features are here addressed.

The evolution of an isolated gas bubble subject to an inhomogeneous magnetic field in low-gravity can
be studied as a four-step process, represented in Fig. : nucleation, growth, detachment, and displacement.
The magnetic force does not directly impact the mass balance during the nucleation phase, but the same
cannot be said about the rest. Although realistic applications (e.g. low-gravity electrolysis, see Chapter 1)
lead to far more complex interactions [21(—219], the tools here introduced are still useful to draw fundamental

conclusions. A comprehensive chemical analysis of the bubble nucleation process can be found in Ref.

(i) Nucleation (i) Growth (iii) Detachment (iv) Displacement

Liquid

Electrode

Figure 8.1: Conceptual stages of single bubble evolution when subject to an inhomogeneous magnetic field
in microgravity. Detachment occurs when the vertical momentum balance is no longer satisfied, inducing a
microconvection flow in the surrounding liquid. The bubble subsequently accelerates until viscous drag F',
compensates the magnetic buoyancy force, reaching the terminal velocity.
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8.1 Effective total force

Due to its technical relevance, it is important to clarify how magnetic polarization forces act on a
magnetic body (b) immersed in a magnetic environment (me). As shown in Ref. 77, different equivalent
formulations can be employed to compute the total magnetic force experienced by such body. One of the

most common procedures consists on integrating the volume and surface magnetic force densities as

F;if:/dvmeﬂf dSfr,, (8.1)
v ov

where V' and 0V denote the volume and surface of the body, respectively. Assuming the magnetic polarization

forces introduced in Sec. and Appendix /\, the surface force distribution in 0V becomes
s _ Mo
fm = 7 (M72L,b - MTQL,me) n (82)

with n being the external normal of the body surface V. The effective volume force distribution in V' is

m

Fu = o (GO HVH = X HVH) | (8.3)

where H is the virtual magnetic field that would be present if the volume V' was occupied by the environment.
The same expression can be obtained by applying the Archimedes’ principle.

If the system is in thermodynamic equilibrium, the total force can be also computed by integrating the
magnetic stress force in the external contour 9V [7]. Taking again into account the Archimedes’ principle,

the effective magnetic force acting on the body can be formulated as

Fyi = b dsn- [T} — (T)*], (8.4)

where T} is the magnetic stress tensor in the external contour OV when the volume V' is occupied by the
medium b, and (T,,)" is the magnetic stress tensor at the same points computed as if the volume V was
part of the environment.

A third equivalent formulation of the effective magnetic force can be obtained by applying the Principle
of Virtual Works to the free energy variation of a magnetizable medium caused by changes in the applied

magnetic field Hg. The result is a well-known expression [02, 77, ] that modified as before results in

Fof =y / AV [(\°'H — \}otH) - V| H. (8.5)
\%
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These force formulations represent the Archimedes’ principle for the magnetic component of the external

fields. The effective inertial forces can be obtained by following the same procedure, giving

F?rff = /Vdv (pb - pme)g‘ (86)

These expressions can be particularized for the case of a bubble (non-magnetic body, magnetic environment)

or a droplet (magnetic body, non-magnetic environment). The next sections focus on the former.

8.2 Growth

The quasi-static momentum balance is one of the fundamental and most widely extended tools to
study bubble growth. Following Fig. ©.1, the problem under study considers a magnetic fluid environment
(f) with density ps and a body consisting on a single gas bubble (g) with volume V, density p,, and liquid-gas
surface tension . The bubble is sitting on an horizontal surface with apparent contact angle 8, while subject

to an inertial acceleration g. In the absence of dynamic forces, the momentum balance can be obtained as

done in Ref. for the electric polarization force, resulting in
/ dVpeg + / dLotsg + j{ dSn- 97; + dSn- I, =0, (8.7)
1% CL av av

where C'L denotes the circular contact line of diameter Dy and ¢y, is the tangent unit vector in the meridian
plane, depicted in Fig. . The pressure and magnetic stress tensors are defined in Eq. . It should be
noted that OV, that can be decomposed as a surface 0S on the liquid face of the gas-liquid interface and
surface A delimited by CL in the gas region, denotes a complete surface enclosing the pinned bubble volume

V. The pressure term can be expanded as

fgvdSnpr*:ffgvdSﬁ}nJr/AdS@’}—p;)n, (8.9)
with ;T)’} being the virtual composite pressure applied to the magnetic fluid if it occupied the bubble volume
V (see Eq. ). The term (ﬁ} - p;) is the virtual fluid overpressure with respect to the gas flow pressure
evaluated at the plane A. In quasi-static conditions, the first term in the right equals the inertial and

magnetic flotability forces acting on the bubble, and Eq. can be reformulated as

/ dLotsg + / dS (p} —py)n + Fff + Ff,ff =0, (8.9)
crL A
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where Fff is given by Eq. or, equivalently, Eqs. or 2.5, and Flef is defined by Eq. . For practical
purposes, it is useful to project Eq. on an axis k perpendicular to A, which results in
F,+F,+ F, + F,, =0, (8.10)

with the buoyancy, internal overpressure, surface tension, and magnetic forces being given by

Fy=k-Fil~V(py—ps)k-g, (8.11)
7TD2 * —%
Fy == (p; —77) (8.12)
F, = / dLok - t;y ~ —mDgo sin b, (8.13)
CL
FE,, =k-FT, (8.14)

and where uniform fluid density and overpressure on A have been assumed. For gas bubbles in diamagnetic
media, which exhibit susceptibilities of the order of |x*!| ~ 1076, the magnetic fields in Eq. can be

approximated as H, H ~ H,. The total force exerted on a small, spherical, gas bubble is then
eff 2 3 vol 2
F)~ gﬁRbqux VH;, (8.15)

where Ry, is the radius of the bubble and with Ay"°! = XZOI — x?°! denoting the differential magnetic
susceptibility between gas and the water environment. This approach has been employed in previous works
on dielectric manipulation in low-gravity [/, ]. The momentum balance may also consider a forced

viscous shear flow by including the viscous stress tensor and its associated lift and drag expressions [19].

8.3 Detachment

The detachment of the bubble is produced when the balance of vertical forces cannot longer be
satisfied with increasing volume [152]. In this context, the magnetic force F, can be employed to accelerate
the detachment process or, equivalently, reduce the critical bubble volume.

Alternative simplified expressions can be developed to estimate the bubble detachment radius. In

boiling and heat transfer research, the maximum break-of diameter of a bubble on an upward facing surface
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is usually estimated form Fritz’s equation [320)]

g
do =120, | — 8.16
0 9(ps — pg) (8.16)

where 6, is expressed in radians. If the bubble is sufficiently small, the magnetic force may be approximated

by a constant, uniform field. The magnetic Fritz equation would then be rewritten as

g

with f,, = F,,/V being the overall magnetic body force density (in N/m?3). The departure diameter may
deviate from this result due to the microconvection flow associated with the detachment process [320] and

the interactions between adjacent bubbles [210, 217, 219].

8.4 Displacement

8.4.1 Dynamic regime

The displacement of bubbles in liquids has historically raised significant attention due to its importance
for a wide range of industrial applications. The problem is severely complicated by factors like the bubble
radius, shape, and formation method or the liquid purity, viscosity, temperature, and pressure [321]. In
spite of this inherent complexity, three distinct dynamic regimes can be observed: viscosity-dominated,
surface-tension-dominated, and inertia-dominated [17, , ]. The dynamic regime of a given bubble is

determined by the balance between fundamental forces. The Weber number

_ prQ(QRb)

g

We (8.18)

reflects the ratio between Laplace (surface-tension-induced) and inertial pressures. This ratio is much smaller
than one for the radii and velocities covered in this work, indicating that bubbles remain almost perfectly

spherical. On the other hand, the Reynolds number

Re = pfvfbe), (8.19)

where 7 is the dynamic viscosity of the liquid, describes the ratio of inertial to viscous forces and is usually

kept below 100 in unforced low-gravity flows. The combination of low We and moderate Re numbers results
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in spherical bubbles with no-zigzag motions. Therefore, due to the weakness of the diamagnetic force and
the overwhelming role of surface tension, the case of a free-floating air bubble subject to the influence of a
magnet in microgravity falls within the viscosity-dominated bubble displacement regime. In terms of fluid
motion, the flow remains attached to the bubble until Re ~ 20, where it is separated at the rear stagnation

point and a steady wake region is generated until Re ~ 130 [317].

8.4.2 Bubble force balance

In the dynamic regime described in Sec. , the movement of a spherical bubble in a liquid is
described by the balance

,d%x
my—m =
b a2

FY L P+ Fy, (8.20)
with m} = (4/3)7R3(py + 0.5p;) being the virtual mass (that accounts for the surrounding fluid accelerated
by the bubble [321]), p, the gas density, « the position of the bubble, F,ef the magnetic polarization force,
F; the viscous drag, and F'j, the history (or Basset) force [325]. If a rigid sphere is considered, the Stokes

law predicts the drag force [220]

F,; = —67Rn(dzx/dt), (8.21)

which is appropriate in virtually every technical application where the liquid is exposed to impurities and the
so-called “Marangoni” effect blocks the bubble surface movement. In particular, water is extremely sensitive
to surface contamination [327, ], and even the contact with the atmosphere can immobilize its surface
[229]. Pure liquids exhibit a mobile interface that promotes the circulation of air inside the bubble. In these

cases, the Hadamard-Rybczynski drag force [330, 331]
F 4, = —4wRn(dx/dt), (8.22)

validated on Earth using ultra-clean systems [329, ], should be employed instead. Intermediate formula-
tions with partially mobile surfaces have also been proposed [377].
Both the Hadamard-Rybezynski and Stokes laws neglect the convective terms of the Navier-Stokes

equations. Therefore, they are only valid under the Stokes flow approximation (Re < 1). For higher Reynolds
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numbers, most results are based on experimental or numerical works where the drag force module

da/dt

e/ (8.23)

1
F;= —§pr2ACD

is defined by means of the drag coefficient Cp, with A = 7 R? being the reference area of the spherical bubble

[317].

8.4.3 Terminal velocity
The magnetic terminal velocity is obtained after assuming a steady-state behavior in Eq. , resulting
in [7]
R2
Ve~ %AXVOI\VHSL Re<1. (8.24)
n
for a Stokes flow. For higher Reynolds numbers, the drag force defined by Eq. must be employed instead.

Numerous correlations have been proposed for the range Re € [0.01,100], one of the simplest being given by

Rumpf
24
Cp = — 8.25
D =K+ Re’ (8.25)
where k£ = 2 for Re € [0.01,10] (& 5% error) and k = 1 for Re € [10,100] (£ 20% error) [}17]. Although

more accurate formulations have been derived [}17, ], this one allows the derivation of a closed-form

terminal velocity

I+ V3V kpop RBAXYV HE| + 2712
t (3/2)

(8.26)

that can be useful for first-order bubble velocity estimations. It is important to emphasize that both Eq.
and Eq. are only valid for steady-state systems. However, the inhomogeneity of the magnetic force and
the short duration of diamagnetic-dominated transfers prevent bubbles from reaching their terminal velocity.

Still, this value can be employed as an upper speed limit.

8.5 Application to liquid droplets

As pointed out in Sec. , the expressions derived in this chapter for the growth, detachment, and
displacement of bubbles in liquids are fully applicable to the problem of a liquid droplet immersed in a

gas. In this case, the condensation of liquids over nucleation surfaces becomes the focus of interest. A key
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difference is that liquid droplets experience very small drag forces while they displace at low speeds in a gas,
rendering the concept of terminal velocity useless for most applications. Instead, the total force acting on
the droplet and its free-floating kinematic analysis acquire a particularly relevant role in technical settings
like those covered in Chapters |2 and

The total force acting on the droplet can be computed from Eq. or any of its equivalent forms
in Sec. . Newton’s second law is then applied to derive the velocity and displacement of the droplet
under appropriate magnetic modeling assumptions (see e.g. Ref. 77). However, in order to obtain analytical
closed-form results, the simplified problem of a perfectly spherical liquid droplet moving along the symmetry
axis of an axisymmetric coil or magnet in a non-magnetic gas is subsequently studied. The droplet is small
in comparison with the variation of the magnetic field and exhibits linear magnetization with susceptibility
xp» < 1. A soft magnetic liquid with collinear external, internal, and magnetization fields is considered and
magnetic surface force terms are neglected. In this simplified framework, the magnetic field generated by a

circular coil with n turns, radius R, and current intensity I at a distance z along the symmetry axis e, is

InR?
B = Momez. (8.27)
From Eq. ©. 1, and noting the collinearity between magnetization and magnetic fields and the negligible role

of surface force component (caused by the small magnetic susceptibility x, < 1), the total force per unit
volume induced by the coil on an infinitesimal liquid droplet located in the symmetry axis is

0H

F, ~uhM——e,.
m Ho azez

(8.28)

Making again use of the assumption y; < 1, the magnetic flux density due to the imanation of the ferrofluid
can be considered negligible, and hence B == ugH inside the droplet, with H being the magnetic field in
the absence of the droplet. The internal magnetic field can then be approximated as H ~ H,. Assuming a
linear magnetization curve, where M = x, H, a simplified expression for the total force is obtained as

OH
F,, =~ MOXbHOTZOeza (8.29)

but since Hy ~ B/ug, the consideration of Eq. in Eq. results in

I 2 p4
_3uox(nl)"R e (8.30)

Fm ~ z
1 (Rt
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This expression can be applied to axially magnetized cylindrical magnets with magnetization M,,, radius R
and height [ by employing an equivalent circular loop with the same radius and current intensity I = M,,l.

The simplicity of Eq. enables the derivation of a quasi-analytical expression for the time of flight
of the droplet. After considering Newton’s second law and solving the resulting second-order differential

equation with initial position z(0) = L and velocity 2(0) = 0, the duration of the flight becomes

_dm [ L1 71/2dz (8.31)
pox(nl)?R* Jo [(2*+ R?)?  (L*+ R?)3 ’ '

where it should be noted that ¢; is inversely proportional to nI (or, if a magnet is employed, to M,,l.,).

8.6 Collaborators

Many of the magnetic formulations introduced in this chapter were obtained in collaboration with

Prof. Gabriel Cano-Gémez, to whom the author expresses his most sincere gratitude.



Chapter 9

Experimental validation

The analytical formulations for the equilibrium, stability, and dynamic response of axisymmetric fer-
rohydrodynamic interfaces presented in Chapters 7 and ¢ involve a number of assumptions that require
validation with relevant experimental results. This process must necessarily involve coupled ferrohydro-
dynamic setups where both surface tension and magnetic forces are relevant (i.e. Bo = 0, Bomag ~ 1).
Experiments satisfying these characteristics were almost non-existent at the time of starting this thesis.
In order to cover this fundamental gap, the European Space Agency (ESA) Drop Your Thesis! 2017 The
Ferros experiment [172, ] studied the axisymmetric oscillations of water-based ferrofluids in cylindrical
tanks when subject to an inhomogeneous magnetic field in microgravity. Lateral oscillations, which have an
intrinsic technical value as main sources of attitude disturbances, were explored in the United Nations Of-
fice for Outer Space Affairs (UNOOSA) DropTES 2019 StELIUM project, whose design is comprehensively
described in Refs. , , and

This chapter summarizes the design and main results of the aforementioned experiments, that helped
validate the analytical results derived in Chapter 7 and motivated the development of the numerical interface-
tracking simulation framework described in Chapter (. A brief description of the drop tower of the Center
of Applied Space Technology and Microgravity (ZARM), which was thoroughly employed in this work, is

also provided.
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9.1 ZARM’s drop tower

ZARM’s drop tower, pictured in Fig. , is a vacuum-chamber-type microgravity tower located in
Bremen, Germany, that provides a gravity residual of approximately 10 %gy for 4.7 s or 9.3 s. This quality
level is comparable to on-orbit platforms, which makes it ideal for fundamental physics experiments. The
tower features a 120 m vacuum chamber and operates with drop and catapult modes. In the former, the
capsule is released from the top providing 4.74 s of microgravity conditions and experiencing a deceleration
of approximately 50 gy at the end of the flight. The catapult mode, available since 2007, launches the
capsule vertically from the bottom of the tower extending the flight duration to 9.3 seconds. The capsule
and its enclosed experiment experience an acceleration of up to 50 gy before the experiment begins. The
acceleration profile of both modes is shown in Fig. 0.2, Each launch takes 2 — 3 h and includes the capsule
loading, pumping down, experimental, venting, and capsule retrieval phases, allowing for 2-3 drops per
working day. Due to its extended microgravity period, the catapult mode was selected for the experiments
described in this chapter. However, the drop mode is employed in Chapter

The catapult capsule allows a maximum payload weight of 165 kg and a cylindrical payload volume

(a) Outside view (b) Capsule, drop tube, and deceleration chamber

Figure 9.1: ZARM’s drop tower.
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Figure 9.2: Acceleration profile of ZARM’s drop tower drop and catapult capsules. Disturbances during the
microgravity window are caused by the payload.

with 600 mm diameter and 953 mm height. The system is monitored and automated by the Capsule Control
System (CCS), which is connected to an external control room through radio telemetry and telecommand.
To ease integration, experiments are mounted on standardized platforms and kept at ambient pressure

throughout the drop. Further specifications can be found at ZARM’s Drop Tower User Manual [330].

9.2 Axisymmetric free surface oscillations

9.2.1 The ESA Drop Your Thesis! 2017 - The Ferros project

Axisymmetric oscillations, although less technically relevant than lateral oscillations, were first studied
during the ESA Drop Your Thesis! 2017 The Ferros experiment. This decision was aimed at reducing the
complexity and sources of uncertainty of the experiment. This data is relevant for the validation of several
results presented in Chapter 7. The project team was led by the author, completed with Mr. Tim Hermans
and Ms. Lidia Parrilla Benitez, and coordinated by Prof. Elena Castro-Hernandez at the University of
Seville. It counted with the external support from Prof. Gabriel Cano-Gémez and Prof. Miguel Herrada.
The author thanks all of them for their contributions to the project. This section provides a brief description

of the experiment and its main results.
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9.2.2 Experimental setup

The experimental setup, represented in Fig. , is composed of mobile and fixed structures. The
former slides over the latter by means of two linear actuators, and holds two identical assemblies with
equivalent experiments separated 368 mm. Each assembly includes a cylindrical vessel that holds the liquid
while a N = 200 turns copper coil with 94.25 mm mean radius imposes a static magnetic field. The coils
resistance at ambient temperature is approximately 0.86 2. Despite having a high thermal inertia, the
temperature of the coils increases during operation, modifying the resistivity of copper. A PicoLAS LDP-
CW 120-40 constant current power source is employed to fix the magnetic field intensity for each experiment
after wiring the coils in series. Axisymmetric free surface oscillations are first induced by ZARM’s drop tower
catapult, that launches the experiment from the bottom of the facility, and then by a percussion mechanism
that displaces the mobile structure along the rails following a sinusoidal profile 4.5 s after launch. The
oscillations of the center of the fluid surface are recorded by a visualization system located on top of each
container.

Both transparent Plexiglas cylindrical tanks, depicted with relevant variables in Fig. as a par-

S
S
o
o
[ce]
S

/S

-— (8)

450 mm ®

Capsule Experiment

Figure 9.3: From left to right, ZARM’s drop tower, drop capsule, and setup of the ESA Drop Your Thesis!
2017 The Ferros experiment [3]. The setup has a mobile structure (red labels) with two identical assemblies
that include (a) cylindrical ferrofluid containers, (b) magnetic coils, and (c) detection systems. The structure
slides over a fixed frame (blue labels) with (d) a stepper engine actuator, and (e) two linear modules, as
indicated by the orange arrow.
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Figure 9.4: Geometry of the ESA Drop Your Thesis! 2017 The Ferros liquid tank.

ticularization of Fig. , have an inner diameter of 11 cm, a height of 20 cm, and are filled up to 5 cm
with 475 ml of a 1:10 water solution of the commercial Ferrotec EMG-700 ferrofluid. In order to minimize
the visualization issues reported in Ref. , the inner surface of the container is treated with Aquapel, a
hydrophobic treatment that minimizes stains. Further technical details on the experimental setup can be

found in Refs. and

9.2.3 Visualization system

The visualization system consists of a monoscopic fringe reflectometric device and a series of lateral
visualization cameras. The former include a Photron Fastcam MC2-10K camera with a SKR KMP-IR
CINEGON 8 mm lens located 20 cm above the surface of the fluid and a Picotronic DD635-5-24(16x62)-
DOE laser projector. The camera works at 60 fps, a shutter speed of 1/60 s, and a resolution of 512x512
pz?, and is placed in the symmetry axis of the vessel. The laser projects a pattern of parallel lines over the
ferrofluid surface with an inclination of @ =14° with respect to the vertical. The deformation of the ferrofluid

surface is perceived in the image plane as a lateral displacement of the laser lines. The system exhibits an
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Figure 9.5: Frame of one of the video records. The central point, laser pattern lines and light reflections can
be observed.

ideal accuracy of £0.9 mm.
The equivalence between in-plane (d, [px]) and vertical (dy [mm]) laser displacement is obtained
from a simplified pinhole model that neglects the intrinsic non-linear deformation produced by the camera,

following

_ kd,
V'™ tana + tan 8’

(9.1)
where k& = 110/430 mm/px is the horizontal equivalence at the ferrofluid surface and § is the tilting angle
of the visual line with respect to the camera axis. In this way, the central pixel has a 5 = 0°, while the ones
at the top border of the image are associated with 8 = FOV/2, with FOV being the field of view of the
camera.

Due to strong light reflections, the analysis is limited to the brighter central point and line, depicted
in Fig. . While the point is used to obtain the fundamental and second oscillation frequencies, the line
allows computing the axisymmetric equilibrium surface profile F(R), and hence the wall contact angle in
microgravity conditions 6.. The central laser point is selected to perform the modal analysis, as it remains
unaffected by residual lateral oscillations. The equilibrium surface is measured 4 seconds after launch, just

before the application of the artificial percussion. A semi-automatic image analysis algorithm is employed

to extract the position of the laser line in the image plane.
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Two measurements, associated with the oscillations induced by catapult and percussion, are obtained
per container and drop, but only one is available for I = 21.3 A due to a malfunction of the percussion
mechanism. A Fast Fourier Transform is applied on the time domain curve to determine the fundamental

and second frequency peaks for each case.

9.24 Liquid properties

The magnetization curve of the ferrofluid solutions, that determine their magnetic response, were
measured after the experimental campaign with a MicroSense EZ-9 Vibrating Sample Magnetometer. Figure
represents their magnetization curve, characterized by an initial susceptibility xy = 0.181 and saturation

magnetization My = 3160 + 100 A/m. The curve is fitted with a function of the form
2
M(H) = — [ap arctan (epr H) + by arctan (dpsH)J (9.2)
™

where ap; = 459.70 A/m, ko = 2747.15 A/m, k3 = 5.73-107% m/A and x4 = 1.03-10~* m/A.

Additional properties of the solution are reported in Table
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Figure 9.6: Measured magnetization curve of the 1:10 vol EMG-700 ferrofluid solution.

Table 9.1: Physical properties of the ferrofluid solution employed in the ESA Drop Your Thesis! 2017
experiment with their standard deviations [3].

p % o 0
(g/ml) (cP) (mN/m) ()

Upper 1.012 +0.008 1.445 £ 0.005 62.39 £ 1.02 67 £ 6
Lower 1.020 4+ 0.002 1.448 +0.007 61.7+0.95 55 +4

Tank
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9.2.5 Operation

The setup was launched five times at ZARM’s drop tower in November 2017 with varying current

intensity, as shown in Table U.2. The operation and characteristics of the facility can be found in Sec.

Table 9.2: Current intensities for each drop.

Drop 1 2 3 4 5
I(A) 213 106 5.7 159 109

9.2.6 Results

Simulation results from the coupled free surface oscillations model introduced in Sec. (abbreviated
as Cou.) and an uncoupled framework (denoted by Unc.) where the magnetic field inside the ferrofluid is
approximated as H ~ Hy — M and H is computed analytically are subsequently analyzed and compared
with experimental measurements for the upper and lower containers.

The first result of technical interest is the equilibrium free surface (or meniscus) profile f(r), which is
computed with the coupled magnetic model and shown in Fig. for upper and lower containers. Due to the
particular magnetic configuration and physical properties of each system, the free surfaces show qualitatively

different responses to the magnetic interaction. However, they remain practically unaffected by the external

Upper: — ug == 11 A -- 22A
60 Lowerr — pg — 11A -- 22A

Figure 9.7: Theoretical meniscus profile for upper (red) and lower (blue) containers for 0, 11, and 22 A
computed using the coupled equilibrium model (Sec. ).
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Figure 9.8: Experimental vertex to border vertical distance f’ as a function of current intensity I, measured

4 seconds after launch and comparison with coupled (solid) and uncoupled (dashed) theoretical frameworks.
The measurements have a resolution of +1.8 mm.

magnetic field. This motivates the employment of the relative height f’ between the static contact line C’
and vertex O as a metric to validate the magnetic free surface predictions.

As described in Sec. , the experimental meniscus is computed from the deformation of the central
laser line 4 seconds after launch. The relative height f’ is measured and compared with the theoretical models
in Fig. . Due to the limited number of launch opportunities, only 5 experimental data points are available.
Each point is subject to the +2x0.9 mm pixel resolution of the detection system. Additional sources
of error affect the value of f’, but can only be quantified by analyzing repeated experiments. Although
at least 3 points would be needed to reach a minimum statistical significance at each current level, the
comparison between experimental and theoretical linear slopes is still indicative of the magnetic response of
each theoretical framework. This statistic follows a t-student distribution with 3 degrees of freedom, which
enables a more robust analysis than individual data points. For the upper container, the linear regression
of the experimental points has a slope of 1.29 - 107 mm/A with [~0.78 - 104, 1.03 - 10~*] mm/A 95%
confidence interval (CI). If the coupled model was assumed to be correct, the resulting measurements would
exhibit a linear slope of —4.78 - 107° mm/A, which falls within the CI. The uncoupled model slope, on the
contrary, would be —2.4 - 10~* mm/A, which falls outside the CI. In the lower container, the experimental
slope is 2.45 - 1075 mm/A with [-1.46-107%, 1.95-10~%] mm/A 95% CI, and the coupled model would give

—2.25-107* mm/A (outside the CI) while the uncoupled model would return an even more negative slope
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of —4.17 - 10~* mm/A (outside the CI). Although these results should be taken with caution due to the
limitations of the experimental dataset, the analysis and Fig. itself indicate that the uncoupled model
performs worse than the coupled framework and that it is unable to predict the deformation of the magnetic
meniscus.

The divergence in the predictions from both theoretical models is associated with the characteristics
of their magnetic frameworks. The magnetic Bond number at the interface, represented in Fig. for a
range of current intensities, shows how each model leads to very different magnetic interactions, highlighting

the importance of using an appropriate magnetic model for the system under study.

7] Cou.: 5A 10A — 15A — 20A
Unc.: 5A 10A -- 15A =—- 20A

0.0 0.2 04 0.6 0.8 1.0
R()

Figure 9.9: Magnetic Bond number Bon,g at the meniscus as a function of the dimensionless radius and
coils current intensity for coupled (solid) and uncoupled (dashed) magnetic models.

Free, Cou.
Free, Unc.
Stuck, Cou.
Stuck, Unc.

0.0 0.2 0.5 0.8 1.0
R ()
Figure 9.10: Normalized first and second axisymmetric modes as a function of the dimensionless radius R

for the free (light) and stuck (dark) edge conditions, the coupled (solid) and uncoupled (dashed) physical
models, and T =20 A.
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Further results of interest relate to the modal shapes and frequencies of the free surface oscillations
problem. Figure represents the first two theoretical axisymmetric modes for the free (v = 0) and stuck
(v = o0) edge conditions, and the coupled and uncoupled magnetic models. The hysteresis parameter -y
determines the slope of each mode at the wall by following Eq. , as observed at R = 1. Modal shapes
do not diverge significantly between magnetic frameworks, with the observed differences being explained by
the different distributions of the Bopae number reported in Fig. 9.9. Although the I = 20 A case is depicted,
it should be noted that the magnetic interaction has a marginal effect on the eigenmodes of the system, and
so the I =0 A and I = 20 A modal shapes are almost identical [10].

The movement of the center of the ferrofluid surface, whose vertical position is computed as described
in Sec. , is employed to study the evolution of the axisymmetric modes. Figure depicts the
fundamental oscillation frequency of this point as a function of current intensity. Experimental measurements
are taken from the upper and lower vessels, and are generated by ZARM’s drop tower catapult (Cat.) or

the percussion mechanism (Per.). The first sinusoidal wave period is discarded in the analysis to respect the

& Exp.(Cat)
Exp. (Per.)

87 7 Exp. (Cat)

| ¥ Exp.(Per)

@ 79 Exp. Fit
2 — Cou. T
= 6 Unc.
3 =

s ==

4 = T T T

0 5 10 15 20
L(A)

Figure 9.11: Fundamental axisymmetric oscillation frequency for experimental (Exp.), coupled model (solid),
and uncoupled model (dashed) values as a function of coils current intensity for upper and lower containers.
The error bars denote the standard deviation of the measurements, to which a linear regression (dotted) is
superposed. The free edge condition is assumed in the computations.
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small displacements assumption of the magnetic sloshing model. Error bands are built by identifying the
FFT resolution with the 30 Gaussian interval, and linear regressions of the measurements are fitted for
upper and lower tanks. Those fits are shifted by a constant frequency of ~ 0.9 rad/s, reflecting the small
differences in the non-magnetic physical parameters reported in Table 9.1, and possibly others (e.g. filling
ratio). Theoretical predictions from the coupled and uncoupled magnetic models are superposed assuming a
free-edge condition. It should be noted that the stuck-edge condition produces higher oscillation frequencies,
reaching 6.2 rad/s in the upper vessel for I = 0 A, which are not observed in the experiment.

Although the limited number of experimental data points limits the scope of the analysis, a good overall
agreement between experimental and theoretical values is observed. The uncoupled theoretical model leads to
important deviations for high current intensities with respect to the coupled framework due to the mid-range
magnetic susceptibility of the ferrofluid solution (xin; = 0.18). This behavior reflects the importance of the
fluid-magnetic coupling. Experimental results show a slight frequency shift and a smaller slope with respect
to the coupled magnetic model. While the first effect may be attributed to the accumulation of errors in the
non-magnetic parameters of the system, such as the actual filling ratio or contact angle, the second depends
mainly on the magnetic interaction and is hence of particular interest for this work. The experimental slope
at the upper container is 0.158 rad s 'A~! with [0.138,0.178] rad s~*A~! 95% CI, that does not include
the 0.187 rad s~ 'A~! slope of the coupled magnetic model. In the lower vessel, it results in 0.170 rad
s7tA~! with [0.121,0.219] rad stA~! 95% CI, which includes the 0.186 rad s~*A~! theoretical value. This
points out, at least for the upper container, to a significant statistical difference between experimental and
theoretical slopes. Several reasons may be behind this divergence: (i) numerical errors in the computation of
the theoretical solution, (ii) magnetically-induced viscosity effects, (iii) uncertainty in the determination of
the magnetic parameters of the problem, (iv) violation of modeling assumptions, or (v) unmodeled physical
effects. Ritz’s solution to Egs. is verified with a variation of the numerical model presented in
Chapter |0 with relative errors in the oscillation frequencies below 0.5% (more details in Ref. ). The
convergence of the underlying magnetic Finite-Elements Model is also confirmed in Appendix 2. Liquid
viscosity is commonly ignored in low-gravity fluid mechanics research due to its minimal impact on the free

oscillation problem [0, ], and although ferrofluids develop an inhomogeneous viscosity distribution in
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the presence of magnetic fields and shear flows [20), |, this effect is negligible for the concentrations and
field intensities employed in this chapter. However, the damping ratios, reported in Table and computed

by means of the half-power bandwidth method as

~ 1Aw_34B

bn=g5——) (9-3)

2wy

where w,, is the natural frequency of mode n and Aw_34p is the frequency width between the -3 dB points on
the FFT spectrum, lead to an estimated viscosity-induced reduction of the natural frequencies of roughly a
1.5% (resulting from a factor m) The second axisymmetric mode has a smaller damping ratio than the
first, as &, oc w,; ! and wo > wy. In addition, the uncertainty of a 3% in the saturation magnetization of the
ferrofluid solution leads to a maximum error of a 1% in the fundamental frequency at I = 20A. These small
contributions can explain up to 3% of the difference between experimental and theoretical slopes, but they
still leave the theoretical value for the upper container outside the 95% CI of the experimental trend. The
reason behind this divergence may be found in a potential violation of modeling assumptions. Issues related to
the small displacements framework should be discarded after noting the overall excellent agreement between
catapult (low-amplitude) and percussion (high-amplitude) frequencies in Fig. . Additional unmodeled
physical effects may influence the free surface frequencies. For instance, a non-trivial dependence between
~ and the magnetic field may be hypothesized. Noting that the theoretical results here presented consider
a constant free-edge v = 0 value for all current intensities, and that the stuck-edge (7 — o) frequencies
are much higher than their free-edge counterparts, unexpected variations in v could potentially have a large
impact in the results. This hypothesis will be studied in Sec. . However, the numerical simulations
presented in Chapter |0 unveil an additional, fundamental, source of error: the assumption embedded in the
analytical framework in Sec. that the magnetic field does not change with the linear oscillations of the
liquid. More details on this key aspect are given in Chapter

Experimental observations are in better agreement with the trend of the uncoupled I — w curve, that
exhibits a slope of 0.160 rad sT'A~! at the upper tank, and 0.170 rad s"'A~! in the lower container (both
within the experimental 95% CI). In spite of this apparently good result, the simplified model violates the

magnetohydrodynamic coupling of the problem and is hence, by design, less accurate than the coupled frame-
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Table 9.3: Damping ratios for the first two axisymmetric oscillation modes computed by means of the half-
power bandwidth method. The uncertainty is represented by the standard deviation.

& () £ ()

Upper 0.138 £ 0.038 0.087 £ 0.035
Lower 0.171 4+ 0.037 0.093 £+ 0.040

work. The errors induced by this approximation seem to compensate the unmodeled effects hypothesized in
the previous paragraph. Care should be taken when trying to extrapolate this result, as the compensation
may not be reproduced by different systems.

Figure depicts the second axisymmetric oscillation frequency as a function of current intensity for
those cases where the second mode is observable. The amplitude of the second mode is much smaller than
the first, and so harder to detect, but several measurements are still obtained. Experimental values show
a slope of 0.136 rad s~*A~! with [0.049, 0.222] rad s7*A~! 95% CI for the upper container, and 0.202 rad

s~tA~! with [0.054, 0.349] rad s*A~1 95% CI for the lower. Theoretical slopes from the coupled models
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Figure 9.12: Second axisymmetric oscillation frequency for experimental (Exp.), coupled model (solid), and
uncoupled model (dashed) values as a function of coils current intensity for upper and lower containers.
The error bars denote the standard deviation of the measurements, to which a linear fitting (dotted) is
superposed. The free edge condition is assumed in the computations.



148

are 0.180 rad sT!A~! (upper) and 0.190 rad s'!A~! (lower), and both fall within their corresponding CI.
The frequencies are overestimated at the lower vessel, an effect that could be explained by the accumulation
of errors in the non-magnetic parameters of the system and that is also present in Fig. . The uncoupled
and coupled models diverge slightly for high current intensities, but the first only shows a better agreement
with the experimental slopes for the upper tank, with trends of 0.151 rad s~*A~! (upper), and 0.162 rad
s~ tA~! (lower), both within the CIs. The statistical analysis is hence unable to determine the importance

of the fluid-magnetic coupling in the second oscillation mode, reflecting the need for additional data points.

9.3 Lateral free surface oscillations

9.3.1 The UNOOSA DropTES 2019 - StELIUM project

The Drop Tower Experiment Series (DropTES) is a fellowship programme of UNOOSA in collabora~
tion with ZARM and the German Aerospace Center (DLR) that provides access to ZARM’s drop tower to
students from around the world. The author received the 2019 DropTES award together with the StELIUM
team, completed with Mr. Antonio Garcia-Salcedo, Mr. Francesco Garrone, Ms. Inés Rivoalen, and advised
by Prof. Filippo Maggi at Politecnico di Milano. The StELIUM project was aimed at complementing the
results presented in Sec. by studying the lateral oscillations of ferrofluids in cylindrical tanks subject to

magnetic polarization forces in microgravity. This data completes the validation of the free surface oscilla-

tions framework presented in Sec. 7.. What follows is a brief description of the experiment and its main
results.
9.3.2 Experimental setup

The experimental setup of StELIUM, depicted in Fig. , is a modification of that shown in Fig.

designed to operate in a 9.3 s catapult launch at ZARM’s drop tower. The system, that is thoroughly
described in Ref. , is subdivided into two identical assemblies that contain a cylindrical Plexiglas container
(similar to Fig. ), a surrounding electromagnetic coil, and an horizontal linear slider that imposes a
lateral oscillation to the fluid in the middle of the flight. This oscillation induces a lateral sloshing wave

that is complemented with the axisymmetric wave started by the initial launch acceleration. A restoring
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Detection system

953 mm

ZARM'’s drop tower

Drop tower capsule  Container assembly

Figure 9.13: Experimental setup (not in scale).

polarization force is applied to the ferrofluid during this process by operating the coils with constant current
intensities I ranging from 0 to 20 A. The 20 A level generates an inhomogeneous magnetic force distribution
with characteristic meniscus magnetic Bond number and accelerations values of ~ 35 and ~ 0.71 m/s?

respectively.

9.3.3 Visualization system

The evolution of the free surface is captured by a sophisticated device located on top of each container
whose design is thoroughly described in Refs. and . It can be considered an evolution of the one
presented in Sec. . A laser line is pointed at the surface of the ferrofluid while a camera records its
projection. The deformation of the line is then correlated with the height of the surface using analytical
geometry tools and the three-dimensional liquid surface profile is extracted as exemplified in Fig.

The system is able to compute the axisymmetric meniscus, from which the apparent contact angles 0. are
derived, and the evolution of the axisymmetric and lateral waves along the direction of excitation. A modal
projection is subsequently applied to compute the hysteresis parameter I' defined by Eq. from the
lateral waves, while a Fast Fourier Transform of the movement of the laser line is employed to extract the

modal frequencies plotted in Fig. . I' is here assumed to be the same for axisymmetric and lateral modes.
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Figure 9.14: Surface line laser evolution of a StELIUM container in microgravity. On the top, the time
evolution of different surface points is depicted. The first and second columns represents the top and lateral
reconstructions of the ferrofluid surface. On the third column, synchronized lateral images are shown.
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Figure 9.15: Fast Fourier Transform of the laser line for axisymmetric and lateral oscillations of the upper
container.

This assumption is motivated by the difficulty in extracting I' in the axisymmetric case, where magnetic

and non-magnetic modal shapes are very similar (see Fig.

). This capability is key to explore the effect
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of I' on the eigenfrequencies of the system hypothesized in Sec. . The interested reader is referred to

Refs. and for further details on the design and operation of the detection system.

9.3.4 Liquid properties

The liquid tank has 11 cm diameter and 20 cm height, and is filled up by a 1:5 volume solution of
the Ferrotec EMG-700 water-based ferrofluid. Again, an Aquapel treatment was applied to the walls of the
container to avoid the visualization issues reported in previous works [[(3]. The ferrofluid has a density
of 1058 kg/m3, surface tension of 55.6 mN/m, a viscosity of 1.448 mPa-s, employs an anionic surfactant,
and contains a 1.16% vol concentration of 10 nm magnetic nanoparticles. The magnetization curve of the
solution was measured with a MicroSense EZ-9 Vibrating Sample Magnetometer, resulting in an initial
magnetic susceptibility x = 0.39 and saturation magnetization M; = 4160 &+ 100 A/m. The curve is fitted
with a function of the form given by Eq. with ap; = 1120.25 A/m, by = 3103.56 A /m, cp; = 8.49 106

m/A, and dp; = 1.94-107% m/A.

9.3.5 Operation

The experiment is carried out using only four catapult drops. The response of the liquid is analyzed
as a function of the magnetic field intensity (or, equivalently, the coils current intensity I'), which changes
between drops. During each flight, a single oscillation is induced 3 seconds after launch, when the surface
reaches its equilibrium position. The frequency w,. of such actuation is set between the first and second

modes so that both are excited and measured by the detection system.

Table 9.4: StELIUM test matrix.

Drop we (rad/s) I(A)

1 6.5 20
2 3.3 10
3 3.3 0
4 5 15
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9.3.6 Results

Estimations for the fundamental axisymmetric and lateral frequencies w,/;, fundamental damping
ratios &,/;, contact angle ., and lateral hysteresis parameter I' are obtained after analyzing the laser line
projection as described in the previous sections. Results are shown in Table as a function of current
intensity I for upper and lower containers. Data for the lower container at the 20 A drop is recovered from a
time-of-flight sensor (see Refs. and ). Even though they share the same geometry and a very similar
magnetic environment, each container has significantly different values of 6. (two-sample t-test ¢(5) = 3.07,
p = 0.03), revealing dissimilar wettability conditions. An analogous bias is observed with I, although in
this case it is not statistically significant (¢(3) = 0.90, p = 0.43). These effects may be attributed to the
potentially uneven application of the hydrophobic treatment over the internal walls of the tanks and to the
large sensitivity of water to surface contamination [327, 324].

Microgravity facilities are expensive to operate and their access is generally limited. Having only 4
launch opportunities, it was decided to follow the same approach as in Sec. and favor the derivation
of statistical trends rather than statistical repetitions. The comparative analysis between individual data
points shall thus be treated with care since data dispersion may impair accuracy. Nevertheless, there seems
to be a strong dependence between I' and I when switching between non-magnetic (I = 0 A) and magnetic

(I =10 A) regimes. A 56.3% and 68.0% drop in T is observed for upper and lower containers, respectively,

Table 9.5: Experimental results for contact angle, fundamental oscillation frequency and damping ratios for
axisymmetric and lateral waves, and lateral hysteresis parameter.

I 0. r Wa,1 Ean w1 &1
[A]  [deg] [] [rad/s]  [] [rad/s] []
- 0 60.52 16.75 4.52 0.19 2.58 0.21
a 10 H9.87 7.23 5.82 0.15 3.62 0.16
:g* 15 6236 7.11 7.05 0.14 4.60 0.12
20 65.67 4.41 7.60 0.13 5.30 0.11
0 47.52 15.27 3.62 0.23 2.21 0.22
g 10  53.07 4.88 5.41 0.16 3.36 0.17
5 15 5815 5.44 5.98 0.17 4.18 0.15

20 * * * * 4.90 *

* Not available due to a malfunction of the primary de-
tection system.
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Figure 9.16: Axisymmetric (left) and lateral (right) fundamental frequencies as a function of the coils current
intensity.

suggesting the existence of a shift from surface-tension-dominated to magnetic-force-dominated regimes. To
the best knowledge of the author, this effect has not been reported before and should be confirmed by future
studies.

In spite of the aforementioned limitations, solid statistical conclusions can be drawn through the
application of appropriate statistics to the variables of interest, as discussed in Sec. . Figure shows
the fundamental axisymmetric and lateral free surface oscillation frequencies as a function of current intensity.
Experimental values, whose error bands are derived by identifying the FFT resolution with the 430 Gaussian
interval, are superposed with free edge (I' = 0) and stuck edge (I' = 00) estimations from the model described
in Sec. using mean contact angle values of 62.15° and 52.91° for upper and lower containers, respectively.
The use of mean contact angle values is motivated by the absence of a significant linear correlation between
I and 6. for upper (r(2) = 0.79, p = 0.21) and lower (r(1) = 0.99, p = 0.10) containers' . From a technical
perspective, reducing the number of inputs simplifies the characterization and simulation of the system. The
free edge condition is associated with the lowest free surface frequency, while the stuck edge case sets the
maximum possible value. Although experimental lateral frequencies fall withing those boundaries, the same
does not seem to happen in the axisymmetric case.

Two more theoretical predictions are superposed in Fig. : a first one that considers a linear

1 However, previous works [}37-330] have reported a dependence between the apparent contact angle and the applied
magnetic field of ferrofluid droplets, an effect that should be explored with larger datasets for the setup employed in this work.
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interpolation of the contact angle 6. and hysteresis I' values reported in Table , and a second that
assumes average 6. and magnetic I' (upper: 6.25, lower: 5.16) results. Both curves are practically identical,
exemplifying the small effect of the contact angle variability, but diverge by ~0.2 rad/s for I = 0. This effect
is attributed to the large increase of I' in the non-magnetic case, confirming the hypothesis from Sec.

that variable I' values affect the frequency response. The most remarkable feature of these predictions is,
however, the excellent agreement with experimental results observed for the lateral frequencies. While the
interpolation of I and 6. results in an adjusted coefficient of determination Ridj = 0.983 (with 3 explanatory
variables, T, 0., and I) and a mean-squared error of M SE = 0.01 rad/s, the use of averaged values returns
R,zdj = 0.976 with a single explanatory variable I and an M.SE = 0.02 rad/s. Both models lead to normally
distributed residuals according to the Saphiro-Wilk test (p = 0.075, W = 0.84 and p = 0.49, W = 0.93 for
the fitted and averaged models, respectively). Interestingly, if the frequencies are computed with a restoring
inertial acceleration equivalent to the mean magnetic acceleration at the interface (which, for I = 20 A, is
~0.71 m/s?), the deviation at 20 A is just ~0.3 rad/s for both the free and stuck lateral cases. The reasons
are that (i) Bomag(R) remains almost constant along the meniscus for this setup (see Fig. 9.9), and (ii) the
meniscus profile is only slightly deformed by the magnetic field. In other words, when these two conditions
apply, the frequencies can be roughly estimated by assuming a low-gravity interface subject to an equivalent
inertial acceleration.

Results for lateral oscillations are in sharp contrast with the axisymmetric case, where the free-edge
model (Ridj = 0.873) performs much better than the rest (e.g. the averaged alternative, Ridj = 0.486).
This is consistent with the analysis reported in Sec. , that assumes the free-edge condition, and with
the fact that the I' values are derived from the shape of the lateral sloshing waves. The magnetic response
of the model (i.e. its current-frequency slope) cannot be robustly assessed because, unlike in Sec. 9.2, the
small sample size prevents any meaningful comparison. Furthermore, an Ridj coefficient of just 0.873 is far
from acceptable for confirming or denying the conclusions of said section, where the analytical framework in
Sec. is shown to overestimate the axisymmetric free surface oscillation frequencies.

The damping ratios reported in Table are computed by means of the half-power bandwidth method

as described in Eq. . The division by w,/; justifies the decrease of £, with I. Most importantly, the
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excellent agreement between inviscid theoretical and experimental lateral frequencies confirms the negligible
impact of fluid viscosity and magnetically-induced viscosity [2(, ] on the sloshing problem for the system
under study, as predicted in Sec.

From a technical perspective, this analysis shows that, given an educated estimate of 6. and I" and
an appropriate characterization of the geometric and magnetic environments, the inviscid model introduced
in Sec. is able to predict the lateral sloshing parameters of a highly-susceptible low-viscosity magnetic
liquid in microgravity. This is important for future space applications involving magnetic positive positioning
or magnetic liquid sloshing (see Chapter |2) because lateral oscillations represent the largest fuel-induced
attitude control disturbance. Furthermore, the results confirm the importance of coupling the magnetic and
fluid problems for the study of the dynamics of highly susceptible ferrofluids: if the simplified uncoupled
model introduced Sec. was considered instead, the frequencies at 20 A would be underestimated by 1.37
rad/s and 0.74 rad /s for the axisymmetric and lateral cases, respectively, falling well beyond the error bands.
The excellent agreement between experimental results and the averaged model, that operates employing a
global estimation of 6. and I', makes basic science discussions on the dependence of such parameters on the
applied magnetic field less relevant for most applications, at least for the configuration here considered. The
same can be said about axisymmetric oscillations, which have a weaker impact on the spacecraft dynamics
[63, 56].

In spite of these results, an outstanding open question remains: why does the free surface oscillations
model from Sec. fail to predict the axisymmetric response of the interface in Sec. ? This and other

questions are addressed in Chapter

9.4 Free floating ferrofluid droplet

During the fourth drop of the ESA Drop Your Thesis! 2017 The Ferros campaign, the vertical
percussion produced by the stepper engine generated a ferrofluid jet and a free-floating droplet of 11 mm
diameter in the upper assembly. This effect was not observed in the other four drops and is a consequence of
the destabilization of the free surface described in Sec. 7.3. Figure pictures the formation and breakup

of the ferrofluid jet, that generates several droplets of which the one shown in the figure could be tracked
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Figure 9.17: Sequence captured by a lateral camera showing the ferrofluid droplet formation and evolution
after the application of the vertical percussion. a) -2.5s; b) -1 s;¢) -0.5s;d) 0s;e) 0.5s; ) 1s;g) 1.5s; h)
2s;1) 2.5 s.

with reasonable accuracy. This was a rare opportunity to study an example of magnetic mass transfer in
microgravity.

The three-dimensional position of the droplet is triangulated by making use of the two lateral cameras
located at opposite sides of each container. A Monte Carlo simulation is carried out to estimate the error
of the visualization system and the initial uncertainty in the droplet position and velocity by perturbing
every parameter involved in the triangulation process. The magnetic environment is simulated in Comsol
Multiphysics employing the model described in the Appendix 2, and the magnetic fields inside the droplet are
approximated using demagnetization factors. Then, the total magnetic force is computed with the different
equivalent formulations listed in Table

The theoretical vertical displacement of the droplet is integrated starting from its initial position

and velocity and compared with experimental measurements in Fig. . The theoretical error bands are
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Figure 9.18: Measured and integrated height of the droplet as a function of time for the total force distribution
(Eq. + Eq. ) and the Kelvin force alone (Eq. /\.0). The error bands represent the standard deviation.

due to the uncertainty in the initial position, while experimental errors are a consequence of the Monte

Carlo analysis. The laws of motion z(t) are integrated using a basic momentum balance for (i) the full

force distribution arising from Eq. and Eq. , and (ii) the Kelvin body force in Eq. alone.
This distinction is made to emphasize the importance of the surface force terms defined by Eq. in
ferrofluids, which are generally neglected in previous works [(0, , ]. Not surprisingly, the full force

formulation shows the best agreement with the experimental results and deviates from the prediction given
by the Kelvin force, that falls outside the experimental error band. Greater divergences may be observed
with highly concentrated ferrofluids, for which xy > 1 [311, ]

The results exemplify how the indiscriminate use of Kelvin’s body force without the corresponding
surface term may lead to large errors when computing the total force. This assumption, common in normal-
gravity research [/, , |, has a critical impact in space applications where the magnetic force acquires
an overwhelming role due to the absence of gravity. Special care should therefore be taken when modeling,
implementing, and describing the magnetic interaction. From the technical perspective, the dynamics of the
droplet are predicted with high accuracy in spite of the inherent complexity of the magnetic setup, informing
the design of future space systems.

This section has presented a brief summary of the full analysis carried out in Ref. 77, which focuses
on the derivation, implementation, and comparison of the total force formulations listed in Table and

derived in collaboration with Prof. Gabriel Cano-Gémez. The selection of the system of forces acting on
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ferrofluids is an important fundamental problem. However, once an appropriate force distribution is adopted,
the practical differences between different options tend to vanish for most applications. The interested reader

is referred to Ref. 77 for a comprehensive discussion.



Chapter 10

Fully coupled interface-tracking magnetohydrodynamic model

Numerical magnetohydrodynamic multiphase simulation frameworks can be used to extend the ca-
pabilities of analytical tools beyond the axisymmetric, inviscid flow assumptions. This chapter extends the
interface-tracking framework introduced in Ref. to study the equilibrium, linear stability, modal response,
and time-dependent deformation of capillary liquid interfaces subject to magnetic polarization. A robust and
numerically stable implementation is achieved by employing a fully implicit monolithic approach that solves
both problems with essentially the same code. Its implicit nature allows using arbitrarily large time steps on
each Newton-Raphson iteration. Symbolic functions and collocation matrices are employed to evaluate the
Jacobian of the discretized system of equations and take advantage of the sparsity of the resulting matrix,
leading to significant gains in flexibility and computational efficiency with respect to previous approaches.

One of the unique capabilities of the model is its ability to easily compute the modal shapes and
frequencies of ferrohydrodynamic interfaces. The validation of this feature is complicated by the fact that
previous experiments were mostly concerned with the equilibrium and dynamic evolution of ferrofluid in-
terfaces rather than their modal response. An exception is the European Space Agency (ESA) Drop Your
Thesis! 2017 The Ferros project, whose configuration (described in Chapter 9) is here implemented. Beyond
the computational interest in developing interface-tracking magnetohydrodynamic frameworks, an additional
technical motivation for this chapter is to shed light on the disagreement reported in Chapter Y between
experimental and quasi-analytical measurements for the axisymmetric free surface frequencies of a ferrofluid
interface, thus paving the path for the development of magnetic propellant management devices like those

described in Chapter
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10.1 Numerical method

10.1.1 Problem formulation

The system under study, represented in Fig. , consists on a partially filled cylindrical tank
subject to an inhomogeneous axisymmetric magnetic field. Such field is imposed by either a coil or a magnet.
The tank has radius a, height hp, and holds a volume V of an incompressible, Newtonian, magnetic liquid
with density p, specific volume v = p~1!, shear coefficient of viscosity 1, and surface tension o at temperature
T. The static contact angle between the liquid and the wall is 6.. The free space is filled by a non-reactive
inviscid gas at pressure pg. A vertical inertial acceleration g is also applied to the tank.

The basic theoretical framework described in Sec. is particularized for the cylindrical reference
system {e,,eq,e.} depicted in Fig. . Although the model here introduced can be applied to a
variety problems, the experimental setup of the ESA Drop Your Thesis! 2017 The Ferros project is adopted

for verification and validation (see Chapter 9). The goal of the model is to determine the axisymmetric
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Figure 10.1: Schematic of the problem under study and numerical simulation domain with mapped regions
and interfaces. The dashed rectangle F. denotes the virtual coil domain.
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equilibrium, stability, modal response, and nonlinear time evolution of the surface.
Five regions and their corresponding interfaces conform the simulation domain, as shown in Fig.
: A (liquid), B (air inside the container), C (air over the container), D (air below the container), and
E (surrounding air). The subdivision between regions B and C is not strictly necessary; however, adding a
buffer area on top of B allows expanding the simulation domain while easily controlling the mesh density.

The magnetic source (e.g. a coil or magnet) is included in E as a subdomain E..

10.1.2 Axisymmetric Navier-Stokes equations

The mass and momentum conservation equations defined by Eq. should be expressed in the

cylindrical reference system after considering the axisymmetry of the problem. This results in

or + 9 = 0, (10.1a)
ou  Ou ou\  Op 0u  O(ufr) d%*u O0H, OH,
P(at +Ua’r‘+waz) = - or + H(W+ ar +@ + Lo MTWjLMZ 2 s (101b)

ow ow dw op* Pw 10w 0O*w OH, O0H,
p(+u+w ) = pg — Ep +n(a7”2+Ta7‘+f9Z2> + Mo (MTa?" -i-]\[z(()Z)7 (10.10)

where r (2) is the radial (axial) coordinate, and w (w) is the radial (axial) velocity component. The
axisymmetry of the magnetic problem is taken into account in the previous expressions, so that J. has
only azimuthal components, and M and H lack from them, resulting in H = H,e, + H,e,, and M =

M.e, + M_,e,. For practical reasons, vertically magnetized magnets will be considered.
10.1.3 Magnetic potentials for axisymmetric problem
Equations and are rewritten as a function of H, resulting in
V-H=-V-M, (10.2a)
VxH=J,. (10.2b)

Therefore, H has scalar sources in the magnetized regions and vector sources in the coil. According to

Helmholtz’s theorem, H can be expressed in terms of scalar and vector magnetic potentials. Taking into
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account the axisymmetry of the problem,

10V 99 190 99

b= "o 70 "o

(10.3)

where @ is the scalar potential generated by scalar sources and the stream-like function ¥ = rAg(r, 2)/uo is
directly related to the azimuthal component Ag(r, z) of the vector magnetic potential created by the electric

current. The magnetic problem is then formulated and solved in terms of ® and ¥ after noting that

0?9’ 100
VH=—|—+—+-—], 10.4
|:6Z2+8T2+7‘67“:| (10-4)
Vem= L[O0 OW 10V (10.5)
T lorr T o2 ror | '
In the domain A, M = x*°!(H)H and Eq. becomes
Vo o0 100 __ 1 PP AL (10.6)
022 or2  ror 14+ xl(H)\'" or 20z )’ '
where xV°! also depends on ¥ and ® through the magnetization law
2a 2b
XN H) = wg arctan(cp H) + 7r1£\{4 arctan(dy H) + epy, (10.7)
with apr, bas, e, dar, and ey being a set of fitting parameters []. For domains B-E, Eq. is simplified

to V- H = 0 due to the absence of inhomogeneous magnetization fields. It should be noted, however, that

magnets may be considered in the subdomain E.. When such subdomain is occupied by a coil,
J. = —ey, 10.8
g € (10.8)

with N being the number of wire turns, I the current flowing through each of them, and S, the cross section

of the coil. Consequently, Eq. adopts the form

i o 1ow) N1
r|lor2 922 ror| S.°

(10.9)

For domains A-D (and E, when E. is occupied by a magnet), J. = 0, and the previous expression simplifies
to V x H = 0. If a magnet with uniform, vertical magnetization field is considered in E., the condition

M = M, e, is imposed at such region and the stream-like function has trivial solution ¥ = 0.
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10.1.4 Boundary conditions

An axisymmetric boundary condition is applied at r = 0 for both fluid and magnetic problems, while
the wall-liquid interaction is described by the non-penetration and no-slip boundary conditions. This results

in

ow
: — el 10.1
3t u=0, -=0, (10.10a)
11: u=w=0, (10.10b)
14: u=w=0. (10.10c¢)
The interfacial conditions described by Eq. are particularized at the free fluid surface 15 by

following a parametrization of the form z;, = G(s,t) and rj, = F(s,t), resulting in the normal balance

pomem e 2 () o[ R R G G g
n 2 2 ’
FNOs ) 0s |\ J(eEy 1 (2¢)? 57+ (%)
(10.11a)
tangential balance , ,
(B -] (Brv gy 28082 (B -8) o
G+ (5 - e
and the kinematic and geometric compatibility equations
oF\ 0G 0G\ OF
2 2
0G 0°G 8F8F:0 (10.11d)

where s is the arc length coordinate along the interface. The contact angle 6. is imposed at the wall (s = 1)

through
oF oG
D tan (g — 06) D5 = 0, and F =R. (10.11e)
The magnetic boundary conditions derive from Eq. after considering the axisymmetry of the

problem and noting that the liquid is magnetized. Two conditions can be imposed per block and boundary,

which leads to four equations per internal connection and two per external boundary. The internal boundary
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conditions are

11,14,15: U, =0y, @ = Py, (10.12a)
Hiy=Hi2, Bni= Bypa, (10.12b)

10,12,13: WU, = Uy, &, = &y, (10.12¢)
% _ %’ % _ %, (10.12d)

16: U =T, & =, (10.12¢)

OV, OV, 0B, _ 0Dy 10120

0z 92 9z 9z

where, in order to ensure the continuity of the magnetic field at 10, 12, 13 and 16, the continuity of the
potentials ¥ and ® and their derivatives across the internal boundary are imposed. The continuity of
the derivative along the boundary is implicitly enforced by the continuity of the potential. In the fluid-air
interfaces 11, 14, and 15, H; and B,, are expressed as a function of the potentials and the normal and tangent
vectors, and the analytical expressions are equaled at both side of the interface. It should be noted that
the continuity of the potentials across a magnetized domain or a coil is a consequence of the magnetic field
formulation shown in Eq. . The opposite would lead to a singularity (i.e. a nonphysical solution). This
also motivates the modeling of such magnetic sources as subdomains of region E, named E., where either
the source term J . is considered in Eq. (and not in the rest of the domain), or a vertical magnetization
value is imposed.

Two conditions are applied to the external contours. In the axis,

— =0, (10.13)

which results in H, = 0 (see Eq. ) and imposes a reference value for U. The potential ¥ is truncated at the
external contours (1,6-9) by imposing its analytical solution, which can be easily found as the superposition of
magnetic potentials induced by virtual circular loops located in the region of interest. This can be expressed
as [301]

U(r, z)

77 T‘ z |16 9, (10.143,)
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2

NG [(1 - k;j) K(kij) — E(ki; )

Wi j(r,2) 60 = : (10.14b)

1
ks
with N being the number of turns of the actual coil, I its current intensity, k7 ; = 4r;r/ [(ri +7)%+ (2 — 2))?]
an intermediate parameter, r; (z;) the virtual loop radius (height), N; (IV;) the number of virtual loops in
the radial (vertical) direction, and K (k) and E(k) the complete elliptic integral of first and second kind,
respectively. The potential is shown to converge with errors below 0.001% for N; = N; = 15, which are
adopted for the analysis.

The sources of scalar potential ® are the magnetically polarizable liquid in A and an hypothetical

magnet in E.. Its value at the external contour can be approximated by the contribution of the dipole terms

of the magnet and magnetized liquid, and so the condition
D(r,2)|1,6-0 = U (r, 2)|1,6-0 (10.15a)

is imposed, with
N
5 omy, (z — 21)

A [ 4 (2 = 2k)? Py g

(1, 2)|16-0 = ; (10.15b)

where the N magnetized domains are characterized by the dipole moments m; = mye, located at ri = z,e,.
The dipole associated with the magnet can be calculated beforehand, but the position and magnitude of the
one deriving from the magnetized liquid needs to be computed by integrating M in the domain A. Although
this Dirichlet boundary condition exhibits excellent numerical stability properties, a Neumann condition
with higher spatial convergence rate may be imposed instead by considering the radial and axial derivatives
of ®. The unicity of the solution should then be imposed by setting the value of ® in an arbitrary point
of the external boundary. However, this implies that different conditions are applied along the same line,
leading to slight numerical aberrations in the potential field.

It should be noted that, if the system only includes magnets and magnetized liquids, the boundary
condition given by Eq. becomes unnecessary, since ¥; g_g = 0. Similarly, it is possible to impose
®y 6-9 =~ 0 when a weakly magnetized liquid and a coil are considered. For very large simulation domains

the more practical magnetic insulation condition ®; ¢_g = ¥ g_g = 0 may be imposed.
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10.1.4.1 ® — ¥ uncoupling and virtual magnet substitution

From the structure of Egs. and and the magnetic boundary conditions in Eqs. and

, the uncoupling between ¥ and ® becomes evident. Both fields are computed separately, and ¥
does not depend on the deformation of the ferrofluid volume in the domain A. In other words, ¥ could
be calculated at the beginning of the simulation and then implemented as an invariant source term in
substitution of Eq. . This is advantageous from the computational perspective, as the number of
variables of the system is reduced and specific domains or subdomains are no longer needed. The only
purpose of the boundary domains B-E would then be to ensure the convergence of ® to the true solution by
imposing the dipole approximation given by Eq. sufficiently far away from the ferrofluid. However,
this approach also limits the scope and flexibility of the simulation framework, particularly for 3D problems
without analytical solutions for W. For this reason, both magnetic potentials are solved numerically in this
chapter.

Although Eq. provides an exact boundary condition for any axisymmetric current distribution,
the ® field induced by magnetized media has to converge to the dipole approximation given by Eq.
Consequently, if E. is occupied by a magnet, larger simulation domains are required to guarantee convergence.
It would be desirable, from a computational perspective, to have an exact boundary condition also in that
case, limiting the dipole approximation to the magnetized region A. To overcome this issue, it should be
noted that the B,, flux produced by a magnet can be described by two equivalent magnetic virtual currents:
(i) a volume term J,, = V x M,, distributed in the magnet volume, where M, is the magnetization
field, and (ii) a surface term K,, = n x [M,], with n denoting the normal to the interface and [M,] the
magnetization jump across it.

For a vertically magnetized cylindrical magnet with uniform magnetization M ,,, = M, e, the equiv-
alence results in a system of electrical currents with a volume density term J, = 0 in E. and a surface
density term K. = M,,ey4 at the lateral wall. If the magnet has a height h, the equivalent electrical system
can be modeled as a homogeneous distribution of N; — oo circular loops in the lateral wall with current

M,h/N;. The magnetic field induced by this equivalent system is H, = (B./uo), with B, being the
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magnetic flux produced by the circular loops, which is identical to B,,. Because the magnet induces a field
H,, = B,,/up — M,, inside the magnetized volume, and H,, = B,,/uo outside, H, is identical to H,,
outside E.. In other words, the virtual magnet substitution procedure provides an exact analytical solution

outside the magnet volume, leading to important computational advantages and faster model development.

10.1.5 Discretization of the simulation domain

The numerical procedure used in this study is a variation of the interface-tracking method developed
in Herrada and Montanero for multiphase flows [105]. As shown in Fig. , the simulation domain is
divided into five blocks that implement different discretization methods.

The blocks A, B, C, and D are mapped onto the square computational domains A: [0 < s < 1] x [0 <
Na<1,B:[0<s<1x[0<np<1],C:[0<s<1x[0<nc<1and D: [0<s<1]x[0<np <1] by

means of the analytical mappings

ra=F(s,t), za=G(s,t)na, (10.16a)

rg = F(s,t), zp=G(s,t)+ [hpo — G(s,t)|nB, (10.16b)
rc =F(s,t), zc=hpc+ (htop —hBc)nC, (10.16¢)
rp = F(s,t), zp = hbot(1 —7nD), (10.16d)

where hiop = 0.15 m (hpot = —0.1 m) denotes the top (bottom) height of the domain, and hg = 0.1 m
defines the transition height between B and C.

The domain E is built following the same approach, but in addition to concentrating points next to
the domains A-D and adapting to their deformation, this block also has the functionality of defining the
subdomain E. and concentrating points close to its boundaries. In an early version of this work, these
requirements were addressed by means of a meshfree discretization of domains D and E. However, that
approach resulted in the ill-conditioning of the nodes that interfaced with blocks A-C, an excessive numerical
error, and reduced tolerance to fluid deformation [3/1]. In the definitive configuration, instead, nonsingular
transformations of the form

TE :FE(SE), ZE :GE(SE’nE’t)7 (1017)
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mapped onto the square computational domain [0 < sp < 1] x [0 < g < 1] are implemented in E. The
radial and vertical position of the points are fixed with the exception of the subdomain between A-D and

E., which follows the quasi-elliptical mapping [37]

Fp = F}, (10.18a)
0’Gg 0*Gg 0’Gg
it CUE  9g,——E  _ 10.18b
g22 852, + 911 o, 912 Dsp0nm ( )
with boundary conditions
0GE

8 =0 10.19
Ve, (10.192)
10 —13: GE ZGA_D, (10.19b)
T Gp=hp, (10.19¢)
9:  Gg = hbot, (10.19d)

where 8" denotes the line parallel to 8 that touches the left wall of E., F}; is an imposed radial distribution,

and the coefficients take the form

_(8GE\®  [(0FR\’
g11 = <8SE> + (88}3) , (10203)
8GE)2 (8FE>2
_ n 7 10.20b
922 (37715 one ( )

_ 9GpdGg | OFg OFg
B Ong Osp one dsp

912 (10.20¢)

Because the boundaries with A-D and the rest of E are fixed, this subdomain adopts the role of a sliding
mesh, ensuring the connectivity between the magnetic source and the liquid and proper adaptation to fluid
deformation.

All the derivatives appearing in the governing equations are expressed in terms of s, , and ¢. Then,
the resulting equations are discretized in the s direction using fourth-order finite differences with ng and
N, stretched points. In the n direction, fourth-order finite differences are also employed with n,,, n,,,
Npe, Npp, and n,, stretched points. This discretization strategy gives rise to meshes that automatically
adapt to any variation of the free liquid interface. The results presented in this work are obtained using

ne, = 101, ng, = 99, n,, = 101, n,, = 41, n,, = 21, n,, = 61, and n,, = 221. The employment of
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fourth-order finite differences over a second-order approach leads to lower truncation errors with marginal
implementation efforts and a reasonable computational penalty. Most importantly, it allows reducing the
number of points in the simulation domain. Further details on the finite differences implementation can be
found in Sec.

To compute the steady-state solution, all the equations of the system are solved together in a mono-
lithic scheme with a Newton—Raphson approach. Second-order backward differences are used to compute
the time derivatives (see Sec. ), and since the method is fully implicit, the time step is chosen to
be sufficiently large to ensure that a steady state is reached in a single iteration. This value is set to 100
s. If the time-dependent interface deformation is explored instead, a time step of 0.01 s is employed to
guarantee convergence to the solution (see Sec. ). One of the main characteristics of this procedure is
that the elements of the Jacobian matrix are obtained by combining analytical functions and the collocation
matrices of all subdomains. This allows taking advantage of the sparsity of the resulting matrix to reduce
the computational time on each Newton-Raphson iteration, which converges when the norm of the state
error vector dx is smaller than 1072, It should be noted that the norm of the solution is at least of order
1 [107], and hence the 10~ threshold ensures convergence, as observed in the results. On the other hand,
the Newton-Raphson method exhibits quadratic convergence rates close to the final solution, which speeds
up the computation

As a reference, the computation of a single Newton-Raphson iteration using an Intel Core i7-7820HQ
CPU at 2.90 GHz with 32 Gb RAM takes between 60 and 120 s with the base mesh employed in this
work. A single time step usually takes between 3 and 15 iterations to converge. The non-magnetic interface
tracking method on which this work is based has already been shown to overcome existing models in terms

of computational efficiency in Ref.
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Table 10.1: Fourth-order finite difference coefficients.
Type Order c¢_4 c_3 C—2 C—1 ‘o “ 2 ‘s -
Forward 1 ; 3255//1122 -2§/3 1;9?}2 -iﬁ% 1_11//32
— ey R/ VY K
Coural ) R M St
Backvardn 1} Wi s r s
Backward n ) 117112 -_144//33 193/2 —2_64/ 3 gg%

10.1.5.1 Finite differences framework

The governing equations of the problem are discretized in the uniform s-n computational grids. The

first and second fourth-order derivatives of each variable f are computed as

n 4
%(%) - 12i:c" D leif (@) +0(Az?),

i=—

(10.21)

with z; being the spatial coordinate (s or 1) at node i and ¢ = 0 the node under consideration, Az the
uniform grid space, f(z;) the value of the variable at x;, ¢; a coefficient given by Table , and n the order
of the derivative. Forward, central, and backward finite differences are implemented depending on whether
the node is located in the boundary or bulk of the domain.

Second-order backward finite differences are employed in the time domain using a fixed time step At,

resulting in

of 1

S = S B (te) — 4 (t1) + f(t-2)] + O(AP),

(10.22)

where tg denotes the time under consideration. The first time step is computed with a first-order approxi-

mation of the derivative assuming an initial steady state.

10.1.6 Sloshing modes and free surface stability

The numerical procedure employed to compute the meniscus and time-dependent interface deformation

is essentially the same that is used to determine the linear modes of the system [105]. The time derivatives
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are computed assuming that the time-dependent perturbation of any variable x(r, z,t) is of the form
K(r, 2,t) = ky(r, 2, t) + €dr(r, 2, t)e ™t (e < 1), (10.23)

with (7, 2,t) denoting the steady-state solution, € a small coefficient of perturbation, Jx(r, z,t) the spatial
dependence of the eigenmode for that variable, and w = Re(w) + iIm(w) the eigenfrequency. The spatial

dependence of the eigenmode is the solution of the generalized eigenvalue problem

FPD 6k = iwQP, (10.24)

(q)

(7:9) i5 the Jacobian of the system evaluated at the steady-state solution k", and ngp D accounts

where §,
for the time dependence of the problem (i.e. contains the time-dependent terms of the Jacobian). The
resulting generalized eigenvalue problem is solved using the MATLAB EIGS routine. An example of the
eigenfrequencies obtained with this method for I = 10 A is shown in Fig. . A free-edge condition with
fixed contact angle is assumed in this process (i.e. the vertex A-B-E can move freely in the vertical direction,
but keeping a constant 6.). However, different implementations may consider a stuck-edge approach or more
complex hysteresis mechanisms, as discussed in Sec.

The dominant eigenmode is related to the largest growth factor Im(w). If such growth factor is
negative, the damping ratio of the mode can be computed as ¢ = —Im(w)/|w|, with |w| being the norm
of the eigenvalue. If Im(w) is positive, the meniscus becomes asymptotically unstable. This result is of
particular importance for low-gravity magnetic liquid positioning applications, as it can be used to size the

magnetic actuators of the system [}10]. Further details on the computation of the eigenfrequencies and
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Figure 10.2: Eigenfrequencies spectrum for I = 10 A. The first three dynamic modes are labeled.
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eigenmodes of the system can be found in Ref.

10.2 Verification and validation

10.2.1 Field-free solution

The dynamic response predicted by the interface-tracking framework on which this work is based has
already been validated with experiments on liquid bridges at the International Space Station [!10%]. For
completeness, however, an extended verification is here presented for the axisymmetric non-magnetic liquid

sloshing problem. The dimensionless variables

Bo— P99 o _ pRe@ ) (1 0’
o o poa

that correspond to the Bond number, the dimensionless real fundamental frequency, and the Ohnesorge
number, respectively, are employed in the validation together with the previously defined damping ratio ¢
in consistency with the original sources of data.

Figure depicts the dimensionless real fundamental axisymmetric frequency of the tank described
in Sec. for a range of contact angles and Bond numbers. An inviscid liquid is employed to run the
simulations, which are then compared with the analytical model developed by Yeh in Ref. |7. The results
are in perfect agreement and demonstrate that the implementation of the inviscid non-magnetic terms (in

particular, surface tension) are appropriate.
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I I I I I I
300 400 500 600 70.0 80.0 90.0
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Figure 10.3: Real fundamental axisymmetric frequency as a function of the contact angle and gravity level
compared with analytical results from Yeh [17].
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Figure 10.4: Numerical results for the dimensionless frequency as a function of the Ohnesorge number and
contact angle compared with envelope data from Gerstmann and Dreyer [|].

Next, the modal response of the liquid is explored for different contact angles and Ohnesorge (viscosity)
levels in Fig. and compared with free-edge envelope computations from Gerstmann and Dreyer [I4].
Following their discussion, gray patches define parametric spaces where surface oscillations are observable,
which are bounded by analytical approximations for small Oh at 6, = 0° (" = 3), 4. = 90° (Qa* = 7.5),
and transition limits of the form Q; = a+bln(Oh). The dark and light gray areas denote the viscous damping
and boundary layer-dominated regimes, respectively. The second is characterized by the the enlargement of
the boundary layer and the increase of the frequency with the Ohnesorge number caused by the reduction
in the effective liquid radius. The interested reader is referred to Ref. for a comprehensive discussion
of these effects. In the context of this section, however, the main conclusion is that numerical results are
in perfect agreement with the reference study, validating the implementation of viscous terms and no-slip
boundary conditions at the walls of the tank.

The dependence of the damping ratio ¢ with the Ohnesorge number and contact angle is finally
reported in Fig. and compared with the envelope computed by Gerstmann and Dreyer [15]. Again,
the results are in perfect agreement and reproduce the transition from linear to non-linear regimes as Oh
increases.

The previous results have been expressed in dimensionless variables for consistency with the sources
of data. However, it is important to note that the magnetohydrodynamic model introduced in this work

is dimensional. There is an inherent benefit in using dimensionless variables in low-gravity fluid mechanic
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Figure 10.5: Numerical results for the damping ratio as a function of the Ohnesorge number and contact
angle compared with envelope data from Gerstmann and Dreyer [!=].

(and, in general, capillary) problems, but this practice is far less beneficial in magnetohydrodynamics due
to the dependence of the solution on the magnitude, direction, and distribution of the inhomogeneous
magnetic force. An excellent review of analytical low-gravity fluid mechanics methods is given by Myshkis

and coworkers in Ref.

10.2.2 Magnetic model

The magnetic field H is first compared in Fig. with a finite elements Comsol Multiphysics
magnetic model. The model takes the equilibrium ferrofluid interface and, assuming the same materials,
computes the magnetic field without solving the Navier-Stokes equations. Further details on its implemen-
tation can be found in the Appendix 3. Both solutions are in excellent agreement, reflecting the appropriate
implementation of Eqs. and and their axisymmetric formulations in Sec. . Similar levels of
agreements are observed when the coil is substituted by a vertically magnetized magnet but, as described in
Sec. , larger simulation domains are needed.

Figure compares the magnetic force density for I = 20 A with the control model in Comsol
Multiphysics. The distributions are virtually identical, which verifies the implementation of the magnetic
force in Eq. . The force depends on the spatial derivatives of the magnetic field is then highly sensitive to
irregularities in H and M. In the figure, however, such irregularities are only observed in the finite elements

Comsol Multiphysics model, reflecting the high stability of the fourth-order finite differences scheme employed
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Figure 10.8: Comparison of presssure and magnetic field lines for a paramagnetic fluid with x¥°' = 0.1 at
I=1A.

in this work. The irregularities in the Comsol solution are just a consequence of the gradient computation
step and do not reflect an underlying problem with the simulation. The implementation of the magnetic force
term in the momentum balance is verified in Fig. . According to Eq. , the steady state pressure
lines must be coincident with the constant H? lines for a linearly magnetized liquid. After implementing a
constant magnetic susceptibility x¥°' = 0.1, the comparison between both plots reflects the desired behavior.
Here and in the rest of the chapter, the pressure is referred to the value at the B side of line 15.

Finally, quantitative intermediate results are reported in Table for different locations inside
domain A as a function of the applied current intensity. The reader may find this useful as a reference for

future works.

10.2.3 Equilibrium and virtual magnet substitution

The previous section verifies that (i) the magnetic model produces the desired magnetic field, (ii) such
field results in the appropriate magnetic force, and (iii) the magnetic force is properly implemented in the
system. The next logical step consists on comparing the equilibrium solution with previous models

In the magnetic sloshing problem, the equilibrium free surface profile - or meniscus - defines the

steady-state solution of the system. Such profile experiences very small deformations in the ESA Drop Your
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Table 10.2: Intermediate results for representative positions in domain A as a function of the applied current
intensity.

I r z 10) P H Fy, p* n
[A] [em] fem] [A]  [Am] [A/m] [N/m’] [Pa] [mPas]

1 1 0.52  -13.38  9612.92 32.77 1.80 1.447
10 5 1 1450 -7.64 12481.52 331.13 7.20 1.448
5 5 981 11.64 8036.53 193.77 -0.78 1.446
1 1 0.78 -17.11 14630.95 63.03 4.69 1.448
15 ) 1 21.76  -9.64 18907.84 593.66 14.64  1.449
5 5 1472  14.68 12076.60 385.32 -0.66 1.448
1 1 1.04 -19.58 19725.66  96.22 8.09 1.449
20 ) 1 29.01 -10.93 25390.19 865.30 22.81  1.450
5 5 19.62 16.69 16135.73 605.11 -0.51 1.449

Thesis! 2017 - The Ferros experiment, making it unsuitable for comparison, and so a different setup is
chosen. The model and case of analysis introduced in Ref. are analyzed employing the virtual magnet
substitution approach introduced in Sec. . A 5 cm radius cylindrical tank filled up to 5 cm with the
ferrofluid described in Sec. is exposed to the magnetic field produced by a 28 mm radius, 3 mm height
disc cylindrical magnet with a 5 mm hole in its center. This magnet is located 1 mm below the bottom of the
container, and is magnetized at M, = 1500 kA /m along the z-direction. The resulting B field corresponds
to the one produced by an internal virtual surface current K.; = —M,,eq at r = 2.5 mm, and an external
virtual surface current K., = M,,eq at r = 28 mm. 20 equispaced circular loops with currents of 375 A
are employed on each side to compute the ¥ potential of this equivalent system.

Although the assimilation of virtual magnetization currents as electric currents cannot be adopted in
the computation of the magnetic field H inside the magnet, an exact solution is still obtained in the external
domain. Indeed, the magnetic field represented in Fig. , obtained with the virtual magnet substitution
procedure, is in excellent agreement with the previous quasi-analytical magnetic sloshing model [ 0] shown in
Fig. . In the second case, the magnetic problem is solved by iterating with the Comsol Multiphysics
magnetic model described in the Appendix !>. Both solutions show a characteristic protuberance at the
center of the meniscus, which results from the tendency of the liquid to follow the constant Bomag (or H)

lines when surface tension is weakest. Previous works have predicted and reported this behavior [0, ].
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Figure 10.9: Comparison of magnetic fields and meniscus produced by a 3 mm height, 27.5 mm external
radius magnet with a central 5 mm radius hole located 1 mm below the container. The virtual magnet
substitution method described in Sec. is employed.

10.2.4 Modal shapes

Figure compares the shape of the first two axisymmetric modes obtained using the procedure
described in Sec. with predictions from the quasi-analytical model in Sec. for I =20 A. The plot
shows the normalized modal vertical displacement Z of the surface as a function of the non-dimensional
radius 7/a. An excellent overall agreement is observed, but small disagreements are produced due to the
inherent differences between both methods. While the procedure here presented is based on the numerical

solution of an eigenvalue problem, the quasi-analytical solution relies on a set of suitable primitives and
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Figure 10.10: Comparison of first two fundamental modes for I = 20 A.



180

admissible functions that are employed in Ritz’s method.

10.2.5 Dynamic response

As discussed in Sec. , the geometry and physical properties of the ESA Drop Your Thesis! 2017
experiment The Ferros [}] are subsequently adopted in the validation of the dynamic response of the model.
Among the potential validation metrics, the natural free surface oscillation frequencies arise as the easiest to
measure and the most relevant for the development of mechanical analogies [20]. Furthermore, they condense
the effect of the magnetic settling force in the fluid system.

The first two axisymmetric free surface oscillation frequencies are reported in Fig. for the
upper and lower containers of the setup depicted in Fig. as a function of the coils current intensity.
Predictions from the numerical framework are compared with results from the quasi-analytical inviscid
magnetic surface oscillations model in Sec. and with experimental data in Chapter 9. The experimental
setup has a second coil that is not modeled in the simulation domain (see Figs. and .3), but since
its contribution increases the fundamental oscillation frequency in just a 0.45%, it is considered negligible.
Two comparison metrics can be extracted from Fig. : the vertical shift between curves, and their slope.
The former is attributed in Chapter Y to the accumulation of errors in the non-magnetic parameters of
the system. This conclusion is backed up by (i) the large uncertainties reported in Table for contact
angles and surface tension coefficients, (ii) the strong dependence of the natural oscillation frequencies on
such parameters, explored in Fig. , (iil) the linearity of the current-frequency curve, and (iv) the field-
independent experimental shift of ~ 0.9 rad/s between the fundamental frequencies of upper and lower
containers. This constant shift points to the field-free frequency upon which the magnetic response is built,
and hence to the non-magnetic parameters that determine it. It also shows that such initial uncertainty has
little or no effect on the frequency-current response of the system because both lines are practically parallel,
as quantified in the next paragraph. This is further supported by the fact that the magnetic force is too
weak to produce significant deformations on the interface, and thus any potential surface tension or contact
angle discrepancy will be unable to alter the magnetic response if the meniscus geometry is kept essentially

frozen.
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Figure 10.11: First two axisymmetric natural sloshing frequencies compared with the quasi-analytical model
Sec. and experimental measurements obtained during the ESA Drop Your Thesis! 2017 campaign and
reported in Chapter

Unlike the vertical frequency shift, the frequency-current slopes reflect the magnetic response of the
system. The experimental slope of the fundamental frequency at the upper container is 0.158 rad s~*A~!
with [0.138,0.178] rad s~*A~! 95% confidence interval (CI), while in the lower vessel it results in 0.170 rad
s71A~1 with [0.121,0.219] rad s7'A~! 95% CI. These CIs do not include the 0.187 rad s~'A~! slope of
the analytical model at the upper vessel, but include the 0.186 rad s~*A~! value of the lower tank. On
the contrary, the numerical model presented in this work matches almost perfectly the experimental slopes,
with 0.161 rad s~'A~! for the upper container and 0.167 rad s~*A~! for the lower. As expected from the
field-free analysis presented in Fig. , the non-magnetic solution (I =0 A) is also in excellent agreement
with the quasi-analytical model.

The second fundamental axisymmetric modes are also reported in Fig. for those cases where
they are observable. The amplitude of the second mode is much smaller than the first, and so harder to
detect. Because in some experiments the second mode could not be recovered, the number of data points is

significantly smaller. In addition, its higher oscillation frequency and complex shape makes it more sensitive

to disturbances in the contact line. This explains the horizontal bias in the plots and why the experimental
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slopes of 0.136 rad s~*A~1 with [0.049, 0.222] rad s7*A~! 95% CI (upper container) and 0.202 rad s71A~!
with [0.054, 0.349] rad s~*A~1 95% CI (lower container) have such wide CIs. As pointed out in Chapter ),
this large uncertainty effectively renders any comparison with the theoretical slopes statistically meaningless.
Still, results are given for completeness.

The differences between inviscid quasi-analytical and numerical results cannot be explained by the
effects of liquid viscosity, that accounts for just a 0.6% reduction of the real frequency component. The
remaining discrepancy may be attributed to the differences in modal shapes shown in Fig. , but there
is a deeper reason that could cause it and that has already been disclosed in Sec. . While the model in
Sec. applies a first-order perturbation to an equilibrium solution while considering a constant magnetic
environment, the monolithic numerical framework here introduced linearizes the full fluid-magnetic solution
around the equilibrium state. Therefore, the magnetic terms are also linearized and contribute to the modal
response. If any, this is an important reason for choosing monolithic approaches over partitioned schemes
when studying coupled ferromagnetic problems.

The results of the UNOOSA DropTES 2019 StELIUM experiment, shown in Chapter ¢, also report
an increase in the imaginary component (damping) with the applied magnetic field. However, the damping
ratios measured for both the ESA Drop Your Thesis! 2017 and the UNOOSA DropTES 2019 StELIUM
experiments are one order of magnitude larger than in Fig. . Because the viscosity of the ferrofluid
employed in both experiments was measured with a rheometer under zero-field conditions, the reader may
be tempted to attribute this effect to the magnetic interaction. Magnetic nanoparticles, like any magnetic
dipole, tend to align with the magnetic field. Although the reorientation is assumed instantaneous in this
work, this may not be true for ferrofluids with high vortex viscosity or subject to high-frequency alternating
magnetic fields. Such liquids exhibit an apparent increase in the shear viscosity coefficient 7 [20]. However,
the application of Shliomis’ shear model [330] to the problem under study results in a viscosity variation
of just ~1% at 10° A/m, justifying the adoption of the symmetrical constitutive relation in Eq. ¢.7. The
larger experimental damping may instead be caused by interfacial effects induced by the surfactant. Similar
disagreements have been reported in previous experiments with water and hexadecane in Refs. and ,

suggesting a large susceptibility of the effective viscosity of low viscosity liquids to surface contamination.
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Table 10.3: Complex fundamental axisymmetric frequencies as a function of mesh density in region A
(ns x ny,) for different current intensities.

Re(w1) [rad/s] Im(w;) [rad/s]
91 x 91 101 x 101 111 x 111 91 x 91 101 x 101 111 x 111
0A | 4.3179 (+0.0269%) | 4.3168 | 4.3159 (-0.0216%) | -0.0506 (+0.0046%) | -0.0506 | -0.0507 (+0.1878%)

) (- )
5A 4.5862 (+0.0243%) 4.5851 4.5842 (-0.0191%) | -0.0510 (4-0.1241%) -0.0509 -0.0510 (+0.1013%)
10 A | 5.2454 (40.0210%) 5.2443 5.2435 (-0.0157%) | -0.0518 (4-0.4098%) -0.0516 -0.0515 (-0.1069%)
15 A | 6.0486 (4+0.0197%) 6.0474 6.0466 (-0.0139%) | -0.0526 (4-0.7670%) -0.0522 -0.0520 (-0.3681%)
20 A | 6.8627 (40.0193%) 6.8614 6.8605 (-0.0132%) | -0.0534 (41.1809%) -0.0528 -0.0525 (-0.5821%)

Table 10.4: Complex second axisymmetric frequencies as a function of mesh density in region A (ns x n,,)
for different current intensities.

Re(w2) [rad/s] Im(w2) [rad/s]
91 x 91 101 x 101 111 x 111 91 x 91 101 x 101 111 x 111
0A 10.8173 (40.0518%) 10.8117 10.8074 (-0.0403%) | -0.1078 (4+2.0552%) -0.1056 -0.1043 (-1.2539%)
5A 10.9659 (40.0509%) 10.9603 10.9560 (-0.0395%) | -0.1083 (+2.1204%) -0.1060 -0.1046 (-1.3018%)
10 A | 11.3980 (+0.0499%) | 11.3924 | 11.3880 (-0.0383%) | -0.1096 (+2.3165%) | -0.1071 | -0.1056 (-1.4433%)
( ) ) ( (-
( ) ) ( G

15 A | 12.0173 (+0.0498% 12.0113 12.0068 (-0.0376% -0.1114 (4-2.6019%) -0.1085 -0.1067 (-1.6841%)
20 A | 12.7226 (+0.0506% 12.7162 12.7115 (-0.0374% -0.1132 (4-2.9240%) -0.1100 -0.1079 (-1.8967%)

Real and imaginary frequency components are reported in Tables and for different current
intensities and block A mesh densities. It should be noted that the configuration of block A determines the
density of the rest of the simulation domain. The convergence of the base mesh (101 x 101 nodes) is demon-
strated for real and imaginary components with errors below 0.05% and 1.9%, respectively. Furthermore,
the error decreases with increasing densities, showing that the solution is mesh-independent. The imagi-
nary terms are more sensitive to the mesh density, as they depend on the discretization of the boundary
layer at the walls of the container. This motivates, in first instance, the adoption of the non-uniform node

distribution in block A shown in Fig.

10.3 Extended capabilities

10.3.1 Global stability

As discussed in Sec. 7.3, understanding the stability properties of capillary interfaces is essential for
numerous physical systems, from liquid bridges [12%, 31%] to conduit geometries [121, 319]. Figure
depicts the evolution of the fundamental axisymmetric frequency of the ESA Drop Your Thesis! 2017

problem as a function of the inertial acceleration g along the axis of the container. The transition to an

unstable equilibrium regime is characterized by the sudden change of sign and the drop to zero of the
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Figure 10.12: Fundamental axisymmetric frequency as a function of the applied destabilizing inertial accel-
eration for magnetic (I = 22 A) and non-magnetic (I =0 A) cases.

imaginary and real components, respectively. While the non-magnetic interface breaks for a critical load
of 0.1441 m/s?, a value that is in agreement with analytical results from the model described in Sec. 7,
the magnetic force stabilizes the system and pushes the limit up to 0.518 m/s?. This represent a 359.5%
critical load increase, and exemplifies how magnetic polarization forces may be employed to enhance the
controllability of space propellants. Greater gains should be expected for systems employing high-density

permanent magnets, like the magnetic sloshing control devices proposed in Chapters |2 and

10.3.2 Time-dependent analysis

To conclude the presentation of numerical results, Fig. depicts the time-dependent vertical
displacement z. of the center of the free surface after the application of 5, 15, and 20 A step loads in
microgravity. The response of the surface to a ~ 0.53 m/s? step acceleration in the absence of magnetic
fields is shown for comparison. This value corresponds to the mean magnetic acceleration exerted by the coil

on the interface at 20 A, which drives the dynamic response of the system according to the quasi-analytical
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t[s]

Figure 10.13: Time evolution of the center of the free surface after the application of magnetic (top) and
inertial (bottom) step loads in microgravity. The modal fits reported in Eq. and Table are
superposed.

model described in Refs. 10 and . If the position of the center is fitted with a function of the form

2
Ze = Z [aielm(m)t cos (Re(w; )t + bl)} + ko (10.25)

i=1

where a;, b;, W;, and kg are the fitting parameters for mode i, the results reported in Table are obtained.
It should be noted that w; are estimations of the complex eigenfrequencies of the system. As expected,
they match the real (Re(w;)) and imaginary (Im(w;)) magnetic frequency components computed in Table
and with minimum errors. Those errors are caused by the inherent difficulties in observing the
second eigenmode when superposed to other waves. This result verifies the implementation of the eigensolver
described in Sec. and the consistency of the solution.
As the magnetic step load increases in magnitude, so does the dynamic response of the interface. The
5 and 10 A excitations keep the wave amplitude below ~0.25 mm, but this value jumps to ~0.5 and ~1.5 mm
for 15 and 20 A, respectively. It is important to note that the 0.53 m/s? inertial load produces a wave that
is three times larger than the 20 A counterpart that is supposed to resemble. The reason should be found in
a slightly larger inertial load, reflected in its higher eigenfrequencies in Table , and the curved magnetic

field contours at the interface shown in Fig. , that differ significantly from the horizontal equipotential
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Table 10.5: Fitting parameters defined in Eq. for the time evolution of the center of the free surface

reported in Fig. for different step loads.

Step load “ Im(@;)  Re(@) by az Im(@z) Re(w2) bo ko
P [mm] [rad/s]  [rad/s] [-] [mm] [rad/s]  [rad/s] -] [mm]
5A 5.158-107°  -0.0532  4.576  -0.0035 2.2645-107° -0.1180 10.916 -0.0634 0.0444
10 A -1.1093-1073  -0.0567 5.233  -0.0181  1.2449-10~* -0.1073 11.345 -0.0611 0.0445
15 A -5.462-107*  -0.0515  6.045 -0.0334 3.2057-107* -0.1213 11.988 -0.0928 0.0448
20 A -1.063-1073  -0.0543  6.843  -0.0135 -0.5423-10~% -0.1469 12.640 -0.0252 0.0451

0.53 m/s> -4.866:1072 -0.0553  7.428  -0.0466 -0.6506-10"3 -0.1624 14.952 -0.1785 0.0487

lines of the inertial field. Since the horizontal equipotentials are further away from the field-free meniscus,
once the excitation is applied the interface will acquire higher potential energies and produce larger amplitude
oscillations.

Finally, Fig. shows the streamlines associated with the cases covered in Fig. . Successive
time points reflect the approximate first node (0), minimum (7'/4), second node (7'/2), and maximum (37'/4)
of the displacement of the center of the surface. The four points chosen for the inertial wave are highlighted
in Fig. . In the non-magnetic case, the same nodal flow patterns reported in Ref. are observed.
However, the magnetic cases also show an apparent boundary layer enlargement at the lower right corner
of the container. This is presumably caused by the large localized magnetic forces induced by the coil and
seems to be a feature of the magnetic sloshing problem. The minimum and maximum displacement points
correspond to transition regimes and lead to more complex flow patterns with respect to the nodal cases.
Higher order eigenmodes are clearly visible as counter rotational votexes in several plots (e.g. at T/4 for 5

A, 20 A, and the inertia<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>